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Synchronization of Pancreatic Islet Oscillations by Intrapancreatic Ganglia:
A Modeling Study
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ABSTRACT Plasma insulin measurements from mice, rats, dogs, and humans indicate that insulin levels are oscillatory,
reflecting pulsatile insulin secretion from individual islets. An unanswered question, however, is how the activity of a population
of islets is coordinated to yield coherent oscillations in plasma insulin. Here, using mathematical modeling, we investigate the
feasibility of a potential islet synchronization mechanism, cholinergic signaling. This hypothesis is based on well-established
experimental evidence demonstrating intrapancreatic parasympathetic (cholinergic) ganglia and recent in vitro evidence that
a brief application of a muscarinic agonist can transiently synchronize islets. We demonstrate using mathematical modeling
that periodic pulses of acetylcholine released from cholinergic neurons is indeed able to coordinate the activity of a population
of simulated islets, even if only a fraction of these are innervated. The role of islet-to-islet heterogeneity is also considered. The
results suggest that the existence of cholinergic input to the pancreas may serve as a regulator of endogenous insulin pulsatility
in vivo.
doi: 10.1016/j.bpj.2009.05.016
INTRODUCTION

Plasma insulin levels are pulsatile in normal mice, rats, dogs,

and humans (1–4) and this pulsatility is impaired in humans

with diabetes (5). In addition, relatives of type II diabetics

(6,7) and animal models of human diabetes such as ob/ob

mice (8) also show impaired pulsatility. Combined with

data showing that pulses of insulin are more efficacious

than constant insulin secretion (9–12), this suggests that

type II diabetes may be caused, at least in part, by either

a loss or irregularity of plasma insulin oscillations.

Insulin secretion from isolated islets is pulsatile because of

electrical bursting oscillations. In an islet, the individual

insulin-secreting b-cells coordinate their bursting activity

primarily through gap junctions. During a burst of electrical

impulses the Ca2þ concentration in the cytosol rises, evoking

insulin secretion (13). The period of the slow electrical and

Ca2þ oscillations in the islet, which is 5–7 min (14–18), is

similar to the period of insulin oscillations measured in

plasma in vivo (2,3,17,19). Since the insulin in plasma is

oscillatory and the islets produce insulin oscillations of a

similar frequency, a substantial fraction of the islets must

therefore be synchronized, otherwise no oscillation in the

blood insulin level would be observed (15,21).

To mediate this synchronization, a number of potential

mechanisms have been proposed. One is mutual feedback

between the pancreas and liver. Insulin secretion from islets

promotes glucose absorption by the liver, affecting all islets.

This has a synchronizing effect on the islet population, as

was demonstrated in a recent computational study (22).

However, this mechanism cannot explain results from
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in vitro experiments showing that insulin released from peri-

fused pancreas also oscillates (23,24). Another potential

synchronizing mechanism is neural input from intrapancre-

atic ganglia (25). There is a rich innervation of the pancreas

by preganglionic vagal neurons (26–29). These autonomic

nerves synapse onto intrapancreatic ganglia—clusters of

neurons that are spread in a connective plexus throughout

the pancreas in rat, cat, rabbit, guinea pig, and mouse

(30–33). The ganglia have been shown to be electrically

excitable when autonomic nerve trunks are stimulated in

cat (31). Furthermore, in vitro and in vivo vagal stimulation

promotes glucose-dependent insulin release from the

pancreas (28,34–36). Ganglia are often found in the prox-

imity of islets and provide innervation (30,37,38). On the

receiving end, b-cells express muscarinic receptors (39,40)

and neurons in the pancreatic ganglia of rat, cat, rabbit, and

guinea pigs express choline acetyltransferase (30,41). In addi-

tion, intrahepatic transplantation of islets to diabetic rats only

results in peripheral insulin pulsatility after a 200-day lag

(42). This delay may reflect the time required for reinnerva-

tion of the islets and thus the synchronization of their activity.

Our goal in this computational study was to investigate the

feasibility of the hypothesis that cholinergic neural ganglia

can serve as an islet-synchronizing agent and to assess the

consequences of periodic neuronal activity on endogenous

islet insulin pulsatility.

To this end, we used a mathematical model of the b-cell, the

dual oscillator model (DOM), which has been shown to repro-

duce many of the essential behaviors of the pancreatic islet

(43,44). The model is composed of two oscillatory subsys-

tems. The first is an electrical subsystem, which produces

fast bursts of action potentials and also accounts for changes

in the free Ca2þ concentration of the cell. The second
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oscillatory component includes b-cell glycolysis, where feed-

back onto the allosteric enzyme phosphofructokinase (PFK)

leads to metabolic oscillations (21,45–47). The glycolytic

oscillation drives the slow component of the model cell’s

oscillation, through effects of ATP and ADP on ATP-sensi-

tive Kþ ion channels in the electrical subsystem.

We have recently shown experimentally that a single large

bolus of the muscarinic agonist carbachol (ACh) can synchro-

nize a population of mouse islets in vitro (48). The islets

remain synchronized for many minutes after agonist applica-

tion, but eventually drift apart. In accompanying computer

simulations, we found that a population of islets modeled

by the DOM produced a similar synchronizing response.

The islet studies are consistent with previous findings that

ACh or carbachol pulses initiate Ca2þ oscillations in b-cells

and b-cell aggregates (49,50). According to our model, the

carbachol pulse leads to the release of Ca2þ from the endo-

plasmic reticulum (ER), resulting in a transient increase in

the cytosolic Ca2þ concentration. The pumping of cytosolic

Ca2þ from the cell or into the ER utilizes ATP, lowering

b-cell ATP levels. Since ATP inhibits PFK, the resulting

drop in the cytoplasmic ATP concentration transiently

increases PFK activity. This perturbation to the glycolytic

oscillator, applied simultaneously to all islets in the chamber,

resets the oscillators to the same phase, thus synchronizing

them. The novelty of this method of synchronization is that

the slow glycolytic oscillations driving the membrane poten-

tial can be synchronized through ACh pulses, even though the

muscarinic pathway has no direct effect on glycolysis. We

emphasize that ACh pulses in the model result in the synchro-

nization of the collection of islets but are not required for

oscillations of individual islets to occur. The latter process

is endogenous to the islet due to mechanisms that reflect the

ionic and metabolic dynamics of the b-cells.

In this computational study, we simulated agonist pulses of

a much smaller and more physiological magnitude to deter-

mine whether periodic pulsing can synchronize the model

islets. This periodic pulsing is representative of what could

be produced by the neural ganglia (31). In the first section,

we investigate the effect of a large single agonist pulse and

discuss similarities between the model results and experi-

mental data (48). Next, we investigate the effects of contin-

uous pulsing of the DOM and 1), determine whether the driver

of the model slow oscillations, glycolysis, can be entrained to

periodic ATP levels and 2), determine whether it is possible to

synchronize a population of islets with heterogeneous

frequencies. Finally, we investigate what fraction of model

islets must be innervated to yield coherent insulin oscillations.

MATERIALS AND METHODS

The mathematical model

We used the three-compartment model developed by Bertram et al. (44). The

first compartment describes glycolysis, which can generate an independent

slow oscillation. The second compartment models mitochondrial metabo-
lism. The third compartment describes plasma membrane electrical activity

and cytoplasmic Ca2þ handling. Complete mathematical and physical

descriptions of the model can be found in Bertram et al. (44).

The glycolytic oscillator component models the M-type (muscle-type)

isoform of PFK that results in oscillatory glycolysis in muscle extracts

(21,45). PFK is an allosteric enzyme (Fig. 1) whose catalytic rate is affected

by different metabolites, including adenosine monophosphate, adenosine

triphosphate (ATP), fructose 6-phosphate, and fructose 1, 6-bisphosphate

(FBP). The enzymatic product of PFK, FBP, accelerates PFK activity

whereas subsequent substrate depletion decelerates it, leading to oscillations.

ATP is an inhibitor of PFK. As glucose 6-phosphate is in rapid equilibrium

with fructose 6-phosphate, both are representative of the levels of PFK

substrate. As originally modeled by Smolen (51), the glycolytic cycle is

described by

dðG6PÞ
dt

¼ ðJGK � JPFKÞ; (1)

dðFBPÞ
dt

¼
�

JPFK �
1

2
JGPDH

�
; (2)

where JGK is the glucokinase reaction rate, JPFK is the PFK reaction rate, and

JGPDH is the glyceraldehyde 3-P dehydrogenase reaction rate, which is a

surrogate for the later steps of glycolysis. Functional forms and further

descriptions of the rates can be found in Bertram et al. (44). In this model,

FBP feedback is central in generating oscillations through acceleration of

the PFK reaction rate. Importantly, the model does not depend on ATP

directly for producing the oscillations, but ATP can terminate the oscilla-

tions if its concentration becomes either too high or too low. This was

demonstrated previously where membrane hyperpolarization terminated

glycolytic oscillations by elevating the cytosolic ATP concentration (44).

The opposite occurs in response to muscarinic activity. In this case, IP3

formed in response to the occupation of muscarinic receptors and G-protein

FIGURE 1 This figure demonstrates the feedback between each compo-

nent in the b-cell model. (Top left) Glycolytic component: cytosolic FBP

concentration promotes PFK activity while inhibition arises from increasing

ATP levels. In our model, ATP-induced PFK inhibition is the pathway

through which muscarinic stimulation results in synchronization. (Top right)
Electrical/calcium component: K(ATP) ion channel open probability is

affected by ADP and ATP levels. When ATP levels are reduced sufficiently,

the islet hyperpolarizes. Ca2þ-ATPase pumps (CAP) shuttle Ca2þ from the

cytosol at the expense of ATP. (Bottom) Mitochondrial component: glycol-

ysis produces pyruvate (model assumes FBP ends in pyruvate production)

that feeds into the mitochondria and fuels the oxidative production of

ATP from ADP.
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mediated phospholipase C (PLC) activation results in the release of Ca2þ

from the endoplasmic reticulum (ER). Consequently, the elevation of cyto-

solic Ca2þ due to release is cleared by Ca2þ-ATPases in the cell. The work

done to pump Ca2þ utilizes b-cell ATP, lowering its cytosolic concentration.

Since ATP inhibits PFK directly, increasing Ca2þ pump activity links cell

electrical activity (via Ca2þ) to glycolysis.

When studying the glycolytic component in isolation we apply a sinu-

soidal ATP forcing function,

ATP ¼ ATP0 þ A sinðu tÞ; (3)

where ATP0 is the mean concentration of ATP, A is forcing function ampli-

tude, and u is the frequency of the oscillation. This function provides a rough

description of periodic pulsing produced by the neural ganglia. A more

physiological, periodic square-wave forcing function was also investigated,

but the results were similar and are thus not shown.

To study the effects of ACh on the full model, an electrical compartment

must be included. The equations describing this compartment are modeled

as in previous articles (43,44). The compartment includes voltage and acti-

vation variables for Kþ and Ca2þ ion channels, the cytosolic and ER Ca2þ

concentrations, and the cytosolic ADP concentration. No modifications have

been made to equations used previously to describe these variables, except

where noted. The free Ca2þ concentrations are described as

dCac

dt
¼ fc

�
Jmem þ J

0

er þ k Jm

�
; (4)

dCaer

dt
¼ �ferðVc=VerÞ J

0

er; (5)

where Cac and Caer are the free Ca2þ concentrations of the cytosol and ER,

respectively; fc and fer are the fractions of free Ca2þ ions in the two compart-

ments; Jmem is the flux of Ca2þ through the plasma membrane; Jm is the

Ca2þ flux out of the mitochondria; Jer is the flux out of the ER; and k is

the mitochondria/cytosol volume ratio. When inositol 1, 4, 5-trisphosphate

(IP3) is produced in response to the activation of muscarinic ACh receptors,

it binds to IP3 receptors in the ER membrane, releasing Ca2þ into the cytosol

(Fig. 1). The only change from Bertram et al. (44) was the addition of a Ca2þ

flux term JIP3 in Jer, so that Jer
0 ¼ Jer þ JIP3. We used the model of Li and

Rinzel (52) for JIP3, where it is assumed that the activation and inactivation

processes are at equilibrium and that all binding steps involving IP3 and

Ca2þ are symmetrical. Thus,

JIP3
¼ UNðCaer � CacÞ; (6)

UN ¼
�

Cac

dact þ Cac

�3�
IP3

dIP3
þ IP3

�3�
dinact

dinact þ Cac

�3

; (7)

where UN is the fraction of open IP3 receptor/channels, dact, dIP3, and dinact

are constants, and IP3 is the IP3 concentration in the cytosol. When the Ca2þ

concentration in the cytosol rises, insulin secretion is evoked. The following

equations were used for insulin secretion,

dI

dt
¼ ðIN � IÞ=ti; (8)

IN ¼
�

Ca2
c

Ca2
c þ K2

i

�
; (9)

where IN is an increasing, but saturating function of Cac. The insulin secre-

tion shown is averaged over 1-min intervals, simulating insulin measure-

ments made in the peripheral circulation.

To test the ability of the ganglia (which innervate the islets (30,37,38)) to

synchronize islet-to-islet oscillations, we initially assumed that ganglia

contact all of the islets and provided periodic impulse activity. This results

in the release of ACh and activation of the b-cell’s muscarinic receptors.
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Muscarinic activation occurs through the Gq pathway to promote IP3

production via PLC. Thus, we modeled ganglionic input to the collection

of islets as a periodic IP3 square-wave function, using the parameters listed

in Table 1.

Communication between the different compartments is key to synchroni-

zation of the model islets. The output of glycolysis provides the input to the

mitochondrial compartment where the bulk of the ATP is produced. Mito-

chondria produce ATP at the expense of ADP (Fig. 1), which can influence

PFK activity. The mitochondrion’s inner membrane potential is affected by

Ca2þ flux across the membrane, and some dehydrogenases are stimulated

by Ca2þ. The mitochondria communicate with the plasma membrane

through the actions of ATP and ADP on K(ATP) potassium ion channels

(53,54).

Differential equations were solved numerically with the explicit adaptive

Dormand Prince eighth-order integrator with a tolerance of 10�9, imple-

mented in the XPPAUT software package (55). Other programs were written

in Cþþ to implement iterative XPPAUT models and analyze the resultant

frequencies. The analysis programs, some of which employed the software

package FFTW (56) in Linux and Cygwin distributions, were used to

generate the Arnold tongue and devil staircase diagrams. All XPPAUT

programs can be downloaded freely from http://www.math.fsu.edu/

~bertram/software/islet.

Cytosolic Ca2þ measurements

Measurements of intracellular [Ca2þ] oscillations from multiple islets were

carried out as in Zhang et al. (48). Briefly, islets from Swiss-Webster mice

were loaded with 5 mmol/L fura-2/AM and the 340 nm/380 nm fluorescence

ratio was measured using an inverted epifluorescence microscope (model

No. IX-50; Olympus, Tokyo, Japan) and dual ratio imaging system (Scana-

lytics, Ft. Lauderdale, FL). Fluorescence ratios were determined from three

or more islets simultaneously. Recordings were made at 32–35�C in a 1 mL

recording chamber that was continuously perfused at 1 mL/min at 11.1mM

glucose.

RESULTS

A single, large amplitude pulse of IP3 transiently
synchronizes model islets

In a previous report, we found that a single, large pulse of IP3

was able to synchronize a population of model islets. This

was consistent with our experimental data showing synchro-

nization in response to a large bolus of the muscarinic

agonist carbachol (48). In the model, the synchronization

produced was due to a ‘‘ringing’’ or damped oscillator

phenomenon. When the model islets were exhibiting ringing,

the period of the resulting oscillation was less than before the

IP3 pulse occurred. However, such a change in period was

not observed in the experimental data—suggesting that this

mechanism may not be responsible for islet synchronization.

We have subsequently found that by reducing the

maximum conductance of the K(ATP) current from

gK(ATP) ¼ 16,000 pS to 12,600 pS, transient synchronization

TABLE 1 Model parameters

ATP0 ¼ 2000 mM IP3 amplitude (single pulse) ¼ 0.333 mM

dact ¼ 0.35 mM IP3 amplitude (train of pulses) ¼ 0.1 mM

dIP3 ¼ 0.5 mM IP3 duration of pulse ¼ 0.5 min

dinact¼ 0.4 mM ti ¼ 1 s, Ki ¼ 0.15 mM

http://www.math.fsu.edu/~bertram/software/islet
http://www.math.fsu.edu/~bertram/software/islet
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can also be achieved but without ringing or a decrease in

period. This is shown in Fig. 2 A. Before the IP3 pulse the

model islets, which have identical individual properties,

are out of phase. An IP3 pulse of 0.5 min duration occurs

at t ¼ 35 min resulting in a large release of Ca2þ from the

ER, which floods the cytosol with Ca2þ (i). The cytosolic

Ca2þ is quickly cleared and then a brief, slow oscillation

(ii), followed by a long silent phase (iii), are seen. After

this (at ~t ¼ 40 min), an extra-long burst occurs (iv). Subse-

quently, the islets return to their normal oscillatory behavior

and remain synchronized, which is expected, because they

are identical islets. There is some drift observed due to the

chaotic nature of the system when gK(ATP) ¼ 12,600 pS.

Similar experimental results are seen when islets are

infused with a 15-s pulse of carbachol (Fig. 2 B). In partic-

ular, note the transient response which occurs following

the carbachol application (here, carbachol is a surrogate for

IP3), from t ¼ 35–50 min. There is an initial sharp rise in

Ca2þ due to Ca2þ release from the ER (i) and very shortly

afterwards, a fast compound burst begins at ~t ¼ 36 min

(ii). Then, a long silent phase occurs (iii) followed by an

extra-long burst starting at ~t ¼ 40 min (iv). After the burst,

the islets remain synchronized for the remainder of the

recording period. It is clear from Fig. 2 that the model predic-

tion, which is a direct consequence of the glycolytic oscilla-

tions, well reproduces the experimentally observed islet

response to carbachol application.

A train of small-amplitude IP3 pulses also
generates long-lasting synchronization

We next turn to what we would expect to represent a more

physiologically relevant form of long-term synchronization

consisting of periodic neuronal input to a collection of model

FIGURE 2 (A) Single large IP3 pulse synchronizes three identical model

islets. (B) A 15 s application of the muscarinic agonist carbachol synchro-

nizes three islets in 11.1 mM glucose. Ca2þ concentration is measured

through the Fura2 ratio.
islets. In Fig. 2 A, a saturating IP3 pulse synchronized

homogenous model islets. Next, we investigated the possi-

bility that heterogeneous islets may be synchronized by a

periodic train of small IP3 pulses (amplitude of 0.1 mM).

This is more representative of the physiological situation

where a large number of islets are innervated by an intact

pancreatic nervous system in vivo than the single large pulse

applied in the in vitro experiments (48).

We first attempted to entrain the glycolytic compartment in

isolation by periodic input. Since a pulse of IP3 in the full

model ultimately reduces the ATP concentration via ATP

hydrolysis by b-cell Ca2þ pumps, we simulated the actions

of neural input on the glycolytic compartment by episodic

reductions of ATP. Fig. 3 shows the FBP concentration

observed when pulsed with a periodic train of downward

square-wave ATP pulses. Entrainment of the glycolytic

model is evident, as for each ATP pulse applied there is

a concomitant FBP pulse. We were also interested in other

frequency locking ratios, such as 3:2 or 2:1 entrainment.

Thus, we systematically varied features of the ATP input

function to examine this. For simplicity, we used a sinusoidal

ATP function, which was fully characterized by two parame-

ters—amplitude and period. Fig. 4 A shows the so-called

devil’s staircase for an ATP amplitude (A) of 225 mM. The

diagram shows the winding number (input function period/

model response period) plotted as a function of the forcing

period. The horizontal line segments indicate period ranges

for which the model is entrained to the input function. The

primary entrainment region, 1:1 entrainment (black curve),

was achieved over a wide range of forcing periods, ~3–10

min. For other input periods, regions of 1:2 (red), 1:3 (green),

1:4 (blue), 1:5 (yellow), 2:1 (cyan), and 3:2 (orange), entrain-

ment are evident.

Fig. 4 B shows an Arnold tongue diagram, which is

a summary of all the devil’s staircases produced using

different forcing amplitudes. Similar results were found

using a periodic ATP square wave (not shown). For small

amplitudes, the Arnold tongues are triangular. However,

for larger amplitudes, the outer edges of the tongues bend,

and eventually the 1:1 behavior dominates the entrainment.

Between each tongue, the glycolytic model is not entrained.

FIGURE 3 Train of periodic ATP pulses (3-min period) entrains the

model glycolytic oscillator, which has a natural period of 5.5 min. The

ATP time course (red, top curve) has been scaled to facilitate comparison

with FBP.
Biophysical Journal 97(3) 722–729
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Further, the no entrained regions become smaller as the ATP

pulse amplitude is increased. The entrainment bands in the

3:2 Arnold tongue seen below A ¼ 75 mM could not be

resolved in our simulations, and thus are not shown. We

note that when the periodic pulsing was through glucose

application, the insulin oscillations in human islets were

shown to be entrainable to 1:1 and 2:1, but in diabetics,

3:1 (57).

We next moved from the glycolytic subsystem alone to the

full b-cell model to investigate whether a periodic train of IP3

pulses can synchronize a population of heterogeneous model

islets. Fig. 5 shows pooled, simulated insulin secretion (arbi-

trary units; black curve) from 51 different model islets,

whose natural periods ranged from 3 to 5 min. The heteroge-

neity in this case was introduced by uniformly varying the

glucokinase rate (Jgk) from Jgk ¼ 0.4–0.5 mM/s (the period

increased approximately linearly with Jgk). Islets were

allowed to equilibrate before data collection was commenced.

A

B

FIGURE 4 (A) Entrainment windows for one amplitude (A ¼ 225 mM) of

the ATP forcing function. Each bar represents a range of periods for which

the glycolytic model is entrained to a sinusoidal oscillation. When the

winding number is an integer, or a ratio of two integers for a range of forcing

periods, entrainment occurs. (B) Entrainment windows for a range of ATP

amplitudes. The points at the A¼ 0 mM were calculated as fraction multiples

of the natural period.

FIGURE 5 Summed insulin secretion from 51 heterogeneous model

islets. Once IP3 pulsing begins, the insulin oscillation increases in magnitude

and adopts a regular frequency.
Biophysical Journal 97(3) 722–729
Each islet was subject to the same IP3 pulse protocol, simu-

lating a ganglionic pacemaker responsible for innervating all

islets. IP3 was zero until t¼ 40 min when pulsing began (red
curve). Before t ¼ 40 min, the islets were mostly out of

phase; although there was some coherence seen in the pooled

insulin, the amplitude of the oscillation was small and highly

variable. At t¼ 40 min, the IP3 pulsing began and the pooled

insulin exhibited oscillations of growing amplitude as the

model islets became progressively synchronized by the

applied IP3 pulsing. It took ~20 min for the maximum

number of islets to synchronize. As noted earlier, the IP3

concentration in these simulations was reduced from those

in Fig. 2 A. This resulted in smaller reductions of ATP levels,

from 0 to 200 mM, where the saturating pulse resulted in an

~475-mM excursion. In comparison with the Arnold tongues

in Fig. 4, a 200-mM reduction of ATP is sufficient to

synchronize glycolytic oscillators with natural periods of

3–8 min.

Fig. 6 shows the power spectral density (PSD) obtained

using two different IP3 pulse protocols applied to 51 model

islets simulated for 100 min. The red curve shown is the

PSD for pooled insulin secretion observed in response to

a periodic IP3 forcing. The PSD has a significant peak at

5 min, demonstrating that a considerable number of insulin-

secreting model islets have largely synchronized to the 5 min

IP3 pulse period, despite heterogeneity in the natural periods.

The black curve is the PSD of pooled insulin secretion

observed for zero IP3 amplitude (i.e., no IP3 pulsing applied).

Compared to the red curve, the black curve showed little or

no frequency dominance with spectral decomposition. Thus,

without IP3 pulsing, the summed insulin time course exhibits

no significant dominant frequency, demonstrating that

pooled pulsatility does not occur unless the model islets

are synchronized.

It is unlikely that the postganglionic cholinergic fibers

innervate every islet of the intact pancreas. We thus asked

whether a coherent signal, a significant pooled insulin oscil-

lation, could still be observed if only a fraction of the islets

received input from the postganglionic neurons of the

pancreas. Fig. 7 shows a series of PSDs of pooled insulin

observed for different fractions of innervated islets. From

inspection of the figure, it appears that all islets need not

FIGURE 6 Normalized power spectral density of the pooled insulin secre-

tion with (red, upper curve) and without (black, lower curve) periodic IP3

forcing (amplitude ¼ 0.1 mM; duration ¼ 0.5 min, period ¼ 5 min).
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be synchronized to produce a significant oscillatory insulin

response when compared to no innervation. In fact, even

with only 30–40% of islets innervated, a coherent insulin

oscillation was observed at the forcing period. This supports

the hypothesis that a pulsatile insulin pattern in the peripheral

blood can be produced even if only a fraction of the pancre-

atic islets receives pulsatile input.

The islets were found to synchronize under other IP3

periods, but due to computational costs we only investigated,

in depth, IP3 periods in the range of 3–5 min. It is reasonable

to assume, however, that the islets will synchronize to a larger

band of frequencies since glycolysis, the driver of the slow

oscillation in the model, entrains to a larger band of ATP

frequencies for small (ATP < 150 mM) ATP amplitudes

(Fig. 4). The IP3 amplitude for the continuous pulse train

was chosen to maximize the Ca2þ response while mini-

mizing effects on the Ca2þ trace. When the IP3 amplitude

was chosen too high, responses such as seen in Fig. 2

resulted. When the amplitude was too low, only weak

synchronization occurred.

DISCUSSION

We have shown that a periodic train of acetylcholine pulses

can synchronize model islet oscillators driven by glycolytic

oscillations. We first showed that it is possible to entrain

the glycolytic oscillator with a sinusoidal ATP input func-

tion. We then showed that a population of model islets can

be synchronized by ACh-induced IP3 pulses, which lead to

downward ATP pulses due to ATP utilization by Ca2þ-

ATPases. Although the ability to entrain the glycolytic oscil-

lator is necessary for entrainment of the full model, it is not

sufficient. The entrainment of the full model occurs

through a multisegmented pathway that may not produce

sufficient effects on ATP to entrain the oscillator. However,

we found that entrainment did occur with a continuous train

of IP3 pulses that only mildly perturbed the Ca2þ concentra-

tion. Also, assuming that the ACh pulses reflect activity of

the pancreatic ganglia, our modeling study showed that it

is not necessary for the whole islet population of a pancreas

to be innervated to produce a significant oscillatory insulin

FIGURE 7 Pooled insulin signal from 51 islets is analyzed with different

fractions of innervated islets. The PSDs demonstrate that a coherent 5-min

insulin oscillation is visible even if only a small fraction of islets is inner-

vated.
response. In fact, only ~35% innervation was required to

produce a regular oscillatory insulin signal having a period

similar to that measured in vivo in mice (17) and humans

(4,57).

Early studies have been performed in canine and human,

where either vagotomy or muscarinic antagonists were

used to study the effects of cholinergic stimulation on insulin

pulsatility. Most of these studies failed to convincingly

demonstrate changes in pulsatility (58,59). Other studies

showed that the Naþ channel blocker TTX disrupted plasma

insulin pulses (60). Cholinergic agonists (23) and nicotinic

antagonists (61) were also effective. In another study, pulsa-

tile insulin from a perfused canine pancreas was examined

after muscarinic receptor blockade and after the application

of TTX. In both cases, insulin pulsatility persisted, and pulse

amplitude even increased after nerve activity was blocked by

TTX (61). These results are difficult to understand, since it is

hard to reconcile blockage of neural input to islets with an

increase in insulin pulsatility from a perfused pancreas.

Finally, we note that all of these studies were done on canine

or human, rather than on the mouse. There may be species

differences in islet synchronization mechanisms (62).

Two previous studies examined the ability of a single pulse

of agonist to synchronize clusters of mouse b-cells (63) and

islets (48) in vitro. In one study, attempts at synchronizing

clusters of b-cells using a 5-min pulse of glucose, amino

acids, or the K(ATP) channel blocker tolbutamide (on a back-

ground of 12 mM glucose) were unsuccessful (63). In the

other study (48), a single tolbutamide pulse of 2-min duration

also failed to synchronize b-cells, this time in separate islets

rather than in cell clusters. However, in this study brief repo-

larization with the K(ATP) channel opener diazoxide (2 min

pulse) or depolarization with KCl (30 s pulse) did transiently

synchronize islets. Most significantly, a single pulse of the

muscarinic agonist carbachol consistently produced transient

synchronization. It is not evident why brief depolarization

with KCl or diazoxide was effective at transiently synchro-

nizing islets whereas depolarization with tolbutamide was

not, since in all cases the cytosolic Ca2þ concentration would

be perturbed. Interestingly, Zarkovic and Henquin (63)

showed that a train of tolbutamide pulses was successful at

synchronizing b-cell clusters, but in this case the pulses

were quite large, so the intrinsic rhythm of the b-cell cluster

was disturbed (Fig. 5 of (63)). In the simulations of this

article, care was taken to ensure that the magnitude of the

pulses in the IP3 train is sufficiently small so that the endog-

enous oscillation was only slightly perturbed.

Studies using ATP applied to b-cells and b-cell aggregates

in vitro have led to suggestions that synchronization of islets

may also occur via a noncholinergic pathway. One set of

experiments showed that ATP-induced Ca2þ responses in

a small population of b-cells (49) occurred, even in the pres-

ence of PLC or SERCA pump inhibitors, suggesting that ER

Ca2þ release due to IP3 might not be involved (49).

However, data arguing against ATP as the sole
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synchronizing agent include the demonstration that a popula-

tion of b-cells can remain synchronized after purinergic

receptors are blocked (64), and our own recent data showing

that a single large pulse of carbachol synchronizes a small

population of islets (48).

Regardless of the detailed mechanism(s) involved in

agonist-induced Ca2þ transients, our synchronization mecha-

nism only requires that Ca2þ-ATPases utilize ATP to pump

Ca2þ from the cytosol after an initial rise. The change in

ATP levels, regardless of the exact cause of the Ca2þ changes

produced, is what perturbs glycolysis to synchronize the slow

oscillations among islets. Therefore, irrespective of the iden-

tity of the agent promoting the Ca2þ changes, whether it is

ACh, extracellular ATP, or other signals, glycolytic flux can

be reset and the system synchronized by periodic pulsing.

In fact, ACh itself has been shown to directly activate a depo-

larizing current in the plasma membrane, resulting in Ca2þ

influx through voltage-dependent Ca2þ channels (62). Thus,

an ACh pulse increases the cytosolic Ca2þ concentration

through both store release and Ca2þ influx.

Pulsatile insulin secretion has been shown to be more effec-

tive on insulin target tissues than a constant, elevated insulin

level. Thus, it is likely that nature has designed more than one

synchronizing pathway to ensure that pulsatility is preserved

in the pancreas. Indeed, this could explain why insulin oscil-

lations have been observed in vivo (1–4,17,57), in perfused

pancreas (23,24), and in islet populations (24). In a previous

modeling article, we showed that islet interaction with

a simple insulin feedback system, which simulated the liver,

was also capable of synchronizing a population of islets

(22). That is, insulin secreted from the islets induces the liver

to store more glucose and release less into the plasma.

The resulting reduction in blood glucose concentration acts

on all the islets, tending to synchronize their oscillatory

activity. This synchronizing influence could complement

the synchronizing effects of neural ganglia that we examined

in this study.

The goal of our study was to examine the feasibility of

a mechanism of islet synchronization that was based on peri-

odic cholinergic input from neurons of intrapancreatic

ganglia. The viability of this mechanism was not obvious a pri-

ori, since the oscillations in our model islets are driven by

oscillations in glycolysis, a biochemical pathway not believed

to be directly affected by plasma membrane electrical activity

or intracellular Ca2þ levels in pancreatic b-cells. We have

demonstrated that this novel mechanism is indeed feasible,

and it may work alone or in conjunction with other mecha-

nisms to ensure synchronization of oscillations among islets.

It is currently not known whether ganglia neurons are

affected by glucose or insulin levels, or what the origin of

periodic ganglia activity might be. It is interesting to specu-

late, however, that if insulin acts on ganglia, then there

would be two-way interactions between ganglia and islets.

Thus, islets could help set the pacing of ganglion neurons,

which, in turn, coordinate islet oscillations.
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