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Understanding the sensorimotor control of the endless variety
of human speech patterns stands as one of the apex problems
in neuroscience. The capacity to learn — through imitation - to
rapidly sequence vocal sounds in meaningful patterns is clearly
one of the most derived of human behavioral traits. Selection
pressure produced an analogous capacity in numerous
species of vocal-learning birds, and due to an increasing
appreciation for the cognitive and computational flexibility of
avian cortex and basal ganglia, a general understanding of the
forebrain network that supports the learning and production of
birdsong is beginning to emerge. Here, we review recent
advances in experimental studies of the zebra finch
(Taeniopygia guttata), which offer new insights into the network
dynamics that support this surprising analogue of human
speech learning and production.
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Serial order in behavior — the ability to link several
distinct motor gestures to produce a purposeful sequence
of behavior — is perhaps best exemplified by human
speech. For example, if you read this sentence aloud
your vocal tract will effortlessly transition through a
sequence of distinct motor configurations on a millisec-
ond time scale. How the human brain accomplishes such
feats remains largely unknown. However, by harnessing
the unique behavioral and neural features of song learning
by the zebra finch, several underlying principles are
beginning to emerge. Notable parallels to human speech
include: 1.) a brain and vocal tract that are the result of

selection pressure to hear and produce rapid sequences of
vocal sounds; 2.) a dedicated forebrain network that
supports auditory processing and motor sequencing of
learned vocal sounds; 3.) the origins of adult vocal pat-
terns are found in developmental sensitive periods for
auditory learning and sensorimotor learning.

Auditory learning in a ‘motor’ pathway
Although only male zebra finches learn to produce song,
juveniles of both sexes experience auditory learning,
forming an auditory memory of the song of the adult male
‘tutor’ that raises them. For juvenile males, the auditory
memory of tutor song serves as an internal reference —
accessed via auditory feedback — to guide the sensorimotor
learning of song. T'o understand how auditory memory is
encoded, a first step is to characterize the neural loci and
pathways involved in memory formation.

While much work has focused on the formation of juve-
nile auditory memories within higher portions of the
ascending auditory stream (reviewed in Ref. [1°°]), recent
evidence suggests that a juvenile auditory memory of
tutor song also forms within HVC, a premotor region long
known to direct song production in adults (see Figure 1a,
all acronyms defined in Figure 1 legend). Briefly, the
formation of an auditory memory can be blocked by
targeting HVC with pharmacological or optogenetic
manipulations, but only when these manipulations coin-
cide with exposure to a tutor song [2]. So too when
manipulations target cortical (NIf) or dopaminergic
(PAG) input to HVC [2,3], but not when manipulations
target avian auditory cortex, Field L [2]. An important
role for the NIf-HVC pathway is further demonstrated by
‘optogenetic tutoring’ of juvenile males by stimulating
NIf input to HVC with patterned light [4].

Formation of an auditory memory of tutor song within
HVC appears to involve both synaptic and non-synaptic
plasticity. Here, note that HVC is a mosaic of at least 4 cell
populations — interneurons, and distinct populations that
project to Av (association cortex), RA (vocal motor cor-
tex), and Area X (basal ganglia). Exposure to a tutor song
stabilizes HVC spine turnover [5], shifts the balance of
HVC inhibitory and excitatory synapses [6], and exerts
intriguing effects on the intrinsic physiology of HVC
neurons [7]. That is, exposure to tutor song promotes
creation of transient ‘juvenile-typical’ intrinsic physiology
in HVC neurons [8], whereas tutor deprivation results in
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Sagittal/horizontal views of selected brain regions and pathways that underlie the learning and performance of zebra finch song. Compared to
mammals, note that the avian forebrain possesses a distinct and arguably more ‘flight-worthy’ (weight and space efficient) organization. Avian
cortex eschews lamination in favor of modularity, permitting a greater density of neurons per unit of enclosed volume [69°°] and supporting
cognitive and computational functions that rival or exceed those of much larger primate brains [70]. (a) Selected brain regions and pathways
involved in the juvenile formation of an auditory memory of an adult tutor song. For clarity, ascending auditory pathways — where there is also
evidence of auditory memory formation [1**] - and descending vocal-motor pathways are not shown. (b) During sensorimotor learning, distinct
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premature adult-like phenotypes [7]. Unlike the slower-
developing efferent connectivity of HVC-RA neurons,
HVC-X neurons establish robust connectivity with the
basal ganglia before auditory learning [9]. Given the key
role of the basal ganglia in sensorimotor learning (see
below), HVC-X neurons seem an attractive candidate for
encoding or conveying a memory of tutor song.

Do female zebra finches also form auditory memories in
HVC? Although they do not sing, psychophysical evi-
dence indicates that juvenile female zebra finches form
an auditory memory of tutor song [10,11]. Despite
evidence that HVC plays a role in song perception in
females of other songbird species [12,13], HVC in
female zebra finches has received modest experimental
attention as it was initially believed to be vestigial,
lacking male-typical network connectivity. However,
we recently demonstrated that female zebra finches
possess a fully networked HVC [14] and preliminary
data show that female HVC neurons have intrinsic
physiological properties that are quite similar to those
of males. For example, HVC-X neurons respond to
depolarizing current with tonic spiking, while HVC-
RA neurons typically respond with one or a few spikes
(Figure 2). These similarities suggest a conserved func-
tion between sexes and, since the females do not sing,
one possibility is that HVC may also be a site of
auditory memory formation in female zebra finches.
These findings, however, say nothing about the local
synaptic connectivity of female HVC neurons, or the
behavioral function of the female network, which could
be quite different from that of males [15,16].

Sensorimotor learning - distinct neural
pathways for variation, acquisition, and
evaluation of song

Three behavioral stages characterize sensorimotor
learning in males — subsong, plastic song, and crystal-
lized adult song. Figure 1b shows the configuration of
the network at the onset of juvenile subsong, when the
activity of vocal motor cortex (RA) is dominated by
input from the Anterior Forebrain Pathway (AFP,
green). AFP premotor activity, conveyed to RA from
LMAN®", results in rambling vocal sequences that
resemble infant babbling [17]. By driving the vocal
organ throughout its dynamic range, subsong may act
as a calibration step, allowing the juvenile bird to form
associations between different vocal gestures and

Network dynamics of birdsong Bertram et al. 121

different sounds. Recent work suggests that the unpat-
terned acoustic structure of subsong is regulated by
Area X of the avian basal ganglia [18,19], where activity
is modulated by descending input from HVC and
LMAN and ascending dopaminergic input from the
midbrain. Note that ablation of either LMAN or Area
X in juveniles disrupts sensorimotor learning [20,21].

Rudiments of the tutor song first appear during plastic
song, often beginning with repetitions of a single syllable
[22]. Plastic song reflects the growing influence of a
second premotor pathway (magenta in Figure 1b) that
culminates in HVC input to vocal motor cortex. Multiple
sources of afferent input to HVC, organized in a fascinat-
ing orthogonal topography [23], influence the motor
acquisition of song by HVC. Among these inputs to
HVC, thalamic input (Uva) drives HVC premotor activity
[24°] and ablation evidence shows the importance of NIf
[25,26], Av [27], and MMAN [28] for sensorimotor learn-
ing (for clarity MMAN input to HVC not shown in
Figure 1). As sensorimotor learning unfolds, vocal output
is shaped by the combined activity of the two premotor
inputs to RA — HVC and LMAN [29]. However, as HVC
influence grows, due in part to the addition of HVC-RA
neurons via neurogenesis [30], LMAN®™ influence on
vocal motor cortex diminishes, but does not completely
extinguish, as crystallized adult song is achieved (com-
pare Figure 1b and ¢ and see Ref. [31]).

A longstanding question is how the juvenile zebra finch
brain evaluates and shapes vocal output toward a facsimile
of the tutor song. Although two distinct premotor pathways
control vocal output during sensorimotor learning [29],
recent data suggest that only one — the AFP —1s targeted
by brain regions that evaluate the developing song pattern
(purple in Figure 1b). In this regard, AFP function in zebra
finches supports the broad consensus that midbrain dopa-
minergic input to the mammalian basal ganglia is critical for
goal-directed learning. T'o summarize work across multiple
laboratories, dopaminergic (VT'A) input to Area X of the
avian basal ganglia, possibly acting on D1 receptors located
on Area X interneurons, influences that ability of auditory
feedback to guide adaptive changes in vocal output
[32,33,34,35,36,37]. Further evidence of mammal-bird
homology comes in the form of basal ganglia expression
of members of the FoxP family, transcription factors essen-
tial for human speech development [38]. Area X expression
of FoxP genes also influences zebra finch sensorimotor
learning [39°°,40°°].

brain regions and pathways drive juvenile vocal variation and exploration, vocal acquisition of a facsimile of the tutor song, and feedback-based
evaluation. (c) Adult recitation of song requires a small subset of the brain regions and pathways necessary to learn song. Interestingly, many of
the regions and pathways involved in juvenile sensorimotor learning retain the ability to evaluate and modulate the fine spectral-temporal structure
of adult song (see text for additional details). Brain Region Acronyms: Aiv — ventral intermediate Arcopallium; Area X — Area X of the avian basal
ganglia; Av — nucleus Avalanche; DLM - Dorsal Lateral nucleus of the Medial thalamus; HVC - acronym is name; LMAN - Lateral Magnocellular
nucleus of the Anterior Nidopallium; MMAN - Medial Magnocellular nucleus of the Anterior Nidopallium; NIif — Nucleus Interfacialis; PAG -
Periaqueductal Gray; RA — Robust nucleus of the Arcopallium; Uva - nucleus Uvaeformis, VP — Ventral Pallidum; VTA - Ventral Tegmental Area.
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Physiological phenotypes of HVC projection neurons in adult female zebra finches. HVC projection neurons in adult males have distinct
physiological phenotypes [7,8] and this is true for adult female HVC neurons as well. Those projecting to Area X (identified by prior injection of a
retrograde tracer) tend to show multiple spikes in response to depolarizing current injection and a subtle ‘sag’ in response to hyperpolarizing
current injection. They also tend to have a depolarization after release from hyperpolarizing current that sometimes results in a rebound action
potential. Putative RA-projecting cells, contrastingly, often show a limited number of action potentials in response to depolarizing currents and no

sag or rebound in response to hyperpolarizing currents.

Two regions, Aiv and VP, appear to control perfor-
mance-based dopamine release in Area X via opposing
glutaminergic and GABAergic inputs to VT'A, respec-
tively [41°°,42°°]. Juvenile ablation of either region
disrupts sensorimotor learning [42°%,43,44]. Interest-
ingly, it appears that the integrated activity of Aiv
and VP may ‘guardrail’ (constrain and shape) AFP
premotor activity in the direction of the target song.
That is, the pitch of a syllable will be moved away from
an ‘error’ or toward a ‘correct’ production depending on
whether the Aiv or VP input to VTA is activated
[41°°,42°°]. It should be noted that these conclusions
are based on studies of adult birds and it remains to be
seen whether the circuits needed for adult birds to shift
the pitch of a previously learned syllable are the only
ones used for developmental learning of song. For
example, a third region, LMAN®*"" which surrounds
LMAN®" shows differential auditory responses to
tutor song versus a juvenile bird’s own developing song
that gradually dissipate as song is learned, potentially
reflecting an ongoing consolidation of progress made
toward a facsimile of the tutor song [45].

Although important questions remain — such as how
HVC acquires the song [46] when performance-based
feedback appears to be directed toward Area X — studies
of zebra finch sensorimotor learning have already
revealed the deep conservation of basal ganglia function
across vertebrate species. In demonstrating the con-
served function of the FoxP family of transcription
factors in human and zebra finch vocal development
[39°°,40°°] and by fulfilling predictions of actor-critic
models of mammalian basal ganglia function [41°°,42°°]
this work marks an important step toward a general
understanding of vertebrate brain function.

Adult song - a small portion of the forebrain
network required to learn song is needed to
recite it

The adult songs of male zebra finches contain 3-5 spectrally
distinct syllables produced in a serial order. Songs are
produced several hundred times per day in a variety of
social settings, the most salient being female-directed sing-
ing for the purpose of courtship. One of the fascinating
aspects of adult song is that only a small portion of the
forebrain sensorimotor network needed to learn the song
pattern is required to recite it (magenta in Figure 1c).
Remarkably, recent work suggests that this extends to the
cell populations that comprise HVC itself. HVC-X neurons,
essential for juvenile song learning, can be selectively
ablated in adult birds without affecting recitation of song
[47,48]. This is not to say that the other portions of the
network (green and purple in Figure 1c) have no effect on
adult vocal production, but these effects are fine spectral-
temporal modulations of the vocal pattern, brought about by
operant means (as in Refs. [27,32,41°°,42°°]) or by presenta-
tionof a female zebra finch (as in Ref. [49]). In the case of NIf
and Av, note that these sources of HVC afferentinput, critical
for the juvenile acquisition of song (Figure 1b), retain a
modulatory role during the recitation of adult song
(Figure 1c).

Interestingly, the vocal influence of the AFP (green in
Figure 1c) can also be ‘awakened’ under the condition of
adult deafness. As in adult human speech, auditory feed-
back is required for maintenance of the adult song. In
zebra finches, this occurs because auditory feedback
maintains the functional dominance of HVC over LMAN
in the control of vocal motor cortex (reviewed in Ref.
[31]). Deafness results in the increasing influence of
variable premotor input from LMAN, impairing the
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ability to recite the learned song in a structured manner

[50] even as HVC premotor activity remains largely
unchanged [51°].

Given the limited forebrain architecture needed to
recite adult song — for clarity Figure 1 does not show
the descending pathways from vocal motor cortex nor
ascending pathways to Uva — theories for the neural
circuitry that encodes adult song have focused on HVC,
where chains of interconnected HVC-RA neurons, so-
called ‘synfire’ chains, are thought to control the timing
and serial ordering of song syllables. Recent anatomical
work helps constrain these theories, showing a highly
modular HVC architecture, with individual modules
defined by isolated patterns of extrinsic and intrinsic
connectivity [23,52]. However, some HVC neurons
show expansive intrinsic axon collaterals that could
coordinate activity across individual modules [52].
Because HVC-X neurons are not needed to recite the
adult song [47,48], attention has focused on elucidating
the connectivity between HVC-RA neurons, revealing
extensive connectivity among HVC-RA neurons via
synaptic connections at distal dendrites, supporting
the plausibility of HVC-RA synfire chains [53]. Such
chains could provide syllable timing control housed
entirely within HVC [54], or they could be supplemen-
ted by ascending timing input from Uva [55,56°]. Evi-
dence that cooling HVC lengthens song syllables more
than the gaps between syllables [57] motivated a model
in which HVC chains code for syllables and gaps sepa-
rately [58]. In addition, recent data showing indepen-
dent learning of syllable phonology and syllable
sequence [59], different vocal deficits following partial
ablations of medial versus lateral HVC [60], and distinct
populations of HVC-RA neurons that respond at char-
acteristic moments before, during, and after song [61]

support a functional heterogeneity across multiple
HVC-RA chains [58].

Not all circuit models assume HVC-RA synfire chains,
however. One model suggests that HVC-RA activity is
propagated via functional syllable units, which do not
require direct HVC-RA to HVC-RA coupling [62].
Another suggests that each HVC-RA neuron excites
the next through a brainstem loop [56°], and vet another
proposes that HVC projection neurons code only for
vocal-gesture trajectory extrema and are not the basis
of song timing [63]. These last two models are hard to
reconcile with data showing that the population of HVC-
RA neurons is continuously active throughout the song
[64°,65°].

A different question, how stereotyped syllable produc-
tion can persist in the face of variable premotor firing
patterns [66,67], was recently addressed through neural
network simulations [68]. This study demonstrated that
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firing variability increases the ability of the neural
system to adjust to intrinsic perturbations such as
HVC neuron death and replacement as well as environ-
mental perturbations, with only minimal reduction in
the accuracy of the system’s output. One intriguing
possibility is that the variable premotor activity of the
AFP, necessary for song learning but not for song
recitation, may play a long-term role in song homeosta-
sis in the adult.
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