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a b s t r a c t

Songbirds are the preeminent animal model for understanding how the brain encodes and produces
learned vocalizations. Here, we report a new statistical method, the Kullback–Leibler (K–L) distance, for
analyzing vocal change over time. First, we use a computerized recording system to capture all song
syllables produced by birds each day. Sound Analysis Pro software [Tchernichovski O, Nottebohm F, Ho
CE, Pesaran B, Mitra PP. A procedure for an automated measurement of song similarity. Anim Behav
2000;59:1167–76] is then used to measure the duration of each syllable as well as four spectral features:
pitch, entropy, frequency modulation, and pitch goodness. Next, two-dimensional scatter plots of each
day of singing are created where syllable duration is on the x-axis and each of the spectral features is
represented separately on the y-axis. Each point in the scatter plots represents one syllable and we regard
these plots as random samples from a probability distribution. We then apply the standard information-
theoretic quantity K–L distance to measure dissimilarity in phonology across days of singing. A variant of
this procedure can also be used to analyze differences in syllable syntax.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Zebra finches (Taeniopygia guttata) are a species of passerine
songbird that learns and produces a motif, stereotyped sequences of
3–7 harmonically complex syllables. Analyses of both vocal devel-
opment and experimental manipulation of adult motifs focus on
vocal features that individuate birds; these include the sequen-
tial order and acoustic structure of syllables. Here, we present a
method for quantitative, syllable-level analysis of motif syntax and
phonology. This quantitative analysis combines a commonly used
tool from information theory (Kullback–Leibler distance; Kullback
and Leibler, 1951) with the Feature Batch module in Sound Analysis
Pro (SA+; Tchernichovski et al., 2000) to quantitate comparison of
motifs.

The Similarity Batch module of SA+ is a widely used standard
for quantifying differences in birdsong (Hough and Volman, 2002;
Wilbrecht et al., 2002a,b; Woolley and Rubel, 2002; Funabiki and
Konishi, 2003; Liu et al., 2004; Zevin et al., 2004; Cardin et al.,
2005; Coleman and Vu, 2005; Heinrich et al., 2005; Kittelberger
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and Mooney, 2005; Liu and Nottebohm, 2005; Olveczky et al., 2005;
Phan et al., 2006; Teramitsu and White, 2006; Wilbrecht et al.,
2006; Haesler et al., 2007; Hara et al., 2007; Liu and Nottebohm,
2007; Pytte et al., 2007; Roy and Mooney, 2007; Thompson and
Johnson, 2007; Zann and Cash, 2008). This analysis is typically used
to compare the acoustic properties of the motif across juvenile
development, or before and after an experimental manipulation.
Although Similarity Batch provides an efficient strategy to objec-
tively analyze acoustic similarity across a large number of motifs,
the inability to identify unique syllable contributions to the over-
all similarity score represents a general limitation for motif-based
comparison. For example, if the comparison of two motifs results in
a low similarity score, one does not know whether the low similar-
ity resulted from a mismatch in the temporal order or phonological
structure, or which syllables specifically contributed to the mis-
match.

While other methods exist to quantify the acoustic proper-
ties of individual syllables (e.g., Tchernichovski et al., 2000, 2001;
Deregnaucourt et al., 2005; Sakata and Brainard, 2006; Crandall
et al., 2007; Ashmore et al., 2008), the primary advantage of our
method is the ability to make multi-dimensional comparison of
large numbers of identified syllables, generate an overall motif sim-
ilarity value, and identify individual syllable contributions to motif
syntax and phonology. In order to make syllable-level comparisons,
we also present an empirical strategy to identify syllable clusters
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(i.e., repeated instances of the same syllable). Other methods to
identify syllable clusters are available – for example, the Cluster-
ing Module in SA+ which identifies individual syllables based on
Euclidean distance in acoustic feature space, or the KlustaKwik
algorithm used by Crandall et al. (2007). However, the method pre-
sented here can be applied no matter the syllable cluster strategy
employed.

Our method begins by utilizing the Feature Batch module in
SA+ to partition a large number of motifs (e.g., those produced
by an individual bird during a day of singing) into syllables from
which we generate 2D scatter plots of syllable acoustic features
vs. the syllable duration. We then apply the K–L distance to quan-
tify the degree of dissimilarity between populations of syllables
derived from two different time points (or two different 2D scat-
ter plots): one from a baseline day of singing and the second
from any other sample or day of singing. Thus, the K–L distance
is an effective tool for performing a multi-dimensional compari-
son of syllable acoustic features from one day of singing with song
from any other day. We also describe how the K–L distance can
be used to determine changes in the syntax of syllables within
the motif. Both applications of the K–L distance would be useful
approaches for comparing the motifs produced by a bird at differ-
ent stages of development or prior to and after a manipulation such
as ablation, infusion of pharmacological agents or altered sensory
feedback.

2. Methods

2.1. Subjects and apparatus

Adult (>125 days) male zebra finches were individually housed
in medium-sized bird cages (26.67 cm × 19.05 cm × 39.37 cm)
placed within computer-controlled environmental chambers
(75.69 cm × 40.39 cm × 47.24 cm). The environmental chambers
prevented visual as well as auditory access to other birds. A com-
puter maintained both the photoperiod (14/10 h light/dark cycle)
and ambient temperature (set to 26 ◦C) within each chamber. Birds
were provisioned daily with primarily millet-based assorted seed
and tap water. Birds acclimated to the environmental chambers
for 2 weeks before initiation of baseline recordings. All daily care
procedures and experimental manipulations of the birds were
reviewed and approved by the Florida State University Animal Care
and Use Committee.

2.2. Surgery

HVC microlesion: birds were first deeply anesthetized with
Equithesin (0.04 cc) and then secured in a stereotaxic instru-
ment. The skull was exposed by centrally incising the scalp and
retracting the folds with curved forceps. Following application of
avian saline (0.75 g NaCl/100 mL dH2O) to the exposed area, small
craniotomies were placed over the approximate location of HVC
bilaterally. To determine the locations of these nuclei, the bifurca-
tion at the midsagittal sinus was used as stereotaxic zero. Bilateral
HVC microlesions were performed by positioning an electrode
(Teflon insulated tungsten wire electrode, with a 200 �m diame-
ter; A-M Systems, Everett, WA, www.a-msystems.com) along the
anterior–posterior axis directly lateral from stereotaxic zero with
three penetrations per side beginning at 2.1 mm. The second and
third lesions were at an interval distance of 0.4 mm, each with a
depth of 0.6 mm. For each penetration, current was run at 100 �A
for 30 s. Following the lesion, the incision was treated with an anti-
septic, sealed with veterinary adhesive, and the bird returned to its
home cage.

2.3. Data acquisition

Birds were maintained in complete social isolation for the dura-
tion of recording, thus only “undirected” songs (i.e., not directed
toward a female) were recorded and analyzed. For all birds, song
production was recorded in 24 h blocks using a unidirectional
microphone fastened to the side of the internal cage. Sounds trans-
mitted by the microphone were monitored through a computer that
was running sound-event triggered software (Avisoft Recorder;
Avisoft Bioacoustics, Berlin, Germany).

Song was captured in bouts (2–7 s bursts of continuous singing
during which the motif may be repeated one to five times) and each
song bout was saved as a time-stamped .wav file (44 kHz sampling
rate) onto the computer hard drive where each day of singing by
each bird was saved under a single directory. To insure the collec-
tion of all song bouts, we biased the triggering settings for Avisoft
Recorder in favor of false-positive captures (i.e., .wav files composed
of repeated calls and/or cage noises). Therefore, the file directories
for each day of singing by each bird required selective deletion of
false-positive .wav files.

Detection and removal of false-positive .wav files from the file
directories involved a three-step process. First, we used Spectro-
gram (version 13.0; Visualization Software LLC) to convert all sound
files (.wav) recorded during a single day of singing into frequency
spectrograph image files (.jpg). Second, using an image-viewer
and file management program (IMatch; M. Westphal, Usingen,
Germany), we removed all .jpg images that contained singing-
related spectra from each directory. We used the content-based
image retrieval module in IMatch to streamline the detection
and removal process. Briefly, users select a .jpg image contain-
ing singing-related spectra and this module reorders thumbnail
images of all .jpg files in the directory by similarity; users then
select images that contain singing-related spectra for removal.
Visual inspection allows rapid and unambiguous discrimination
between .jpgs that contain singing-related spectra and those
that do not. Finally, we used a MatLab application (code by
L. Cooper, http://www.math.fsu.edu/∼bertram/software/birdsong)
to convert the file names of remaining false-positive images (i.e.,
.jpg files that did not contain singing-related spectra) from .jpg
back to .wav and to batch-delete those files from the directory
of .wav files. Thus, each day of .wav file production by each bird
was reduced to a directory that contained only .wav files with
song bouts. Although each of these .wav files contained a song
bout, some files also included cage noises (pecking on the cage
floor, wing flaps, or beak-wiping on the perch) and short and long
calls that sometimes occurred in close temporal proximity to the
motif.

2.4. Syllable identification

To parse motifs from song bouts into syllable units we used the
Feature Batch module in SA+ (version 1.04). Feature Batch generates
a spreadsheet representing each syllable and corresponding acous-
tic characteristics. Although SA+ calculates many acoustic variables,
we have determined that a combination of pitch, entropy, pitch
goodness, and frequency modulation (FM) are sufficient to effec-
tively individuate zebra finch syllables (for examples, see Fig. 1).
Thus, with data from these four features we created 2D scatter plots
(each of the four acoustic features vs. syllable duration) to capture
syllable structure across multiple bouts.

Fig. 1 illustrates identification of individual syllable clusters
from each of the four acoustic feature scatter plots created for a day
of preoperative singing. In order to empirically identify individual
syllables within 2D scatter plots we use a ‘syllable cluster template’.



Author's personal copy

W. Wu et al. / Journal of Neuroscience Methods 174 (2008) 147–154 149

Fig. 1. The columns of the 2D scatter plots represent exemplar data for different acoustic features (pitch, entropy, FM, and pitch goodness) generated from a day of preoperative
singing for one bird. The first row of the scatter plots shows the aggregate of all syllables assessed for a day of singing. Each succeeding row shows the acoustic analysis of
individual syllables (i.e., syllable A, B, C, D and a call). Although all syllables can be distinguished by at least one feature, syllables that share similar acoustic feature values
generate clusters that overlap. For example, syllables C and D produce values that fall within the same cluster when assessed on the basis of FM; yellow clusters indicate
undifferentiated syllable clusters. All rows juxtapose exemplar spectrographic representations of measured syllables: one example of the motif and three separate examples
of each syllable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Templates were created by compiling 20 randomly selected exam-
ples of each syllable into single .wav files (one .wav file for each
syllable). We then applied Feature Batch to each .wav file and gen-
erated four scatter plots for each syllable (one for each feature with
syllable duration plotted on the x-axis and the acoustic feature plot-
ted on the y-axis); these syllable-specific scatter plots provide a
template that defines the acoustic properties of individual sylla-
bles. Next, Feature Batch was used to generate four scatter plots
from a single day of preoperative song bouts, (see first row of Fig. 1
for exemplar acoustic feature scatter plots). Within these plots, each
data point represents an individual syllable and thus discrete clus-
ters of data points signify repeated production of a specific syllable
type. We then superimposed the scatter plot for each individual
syllable over the scatter plot of all possible syllables which permit-
ted unambiguous partition and identification of individual syllable
clusters. At this point it was often necessary to fine-tune Feature
Batch threshold settings (amplitude, entropy, minimum syllable
duration and minimum gap duration) to achieve an optimal cor-
respondence between syllable clusters generated from the entire
day of song bouts and the syllable cluster templates. Final syllable
threshold settings were then applied to all days of singing for each
bird.

2.5. Two-dimensional statistical characterization of song
phonology

As indicated earlier, SA+ Feature Batch calculates the duration,
pitch, entropy, pitch goodness, and FM for all selected syllables.
Two-dimensional scatter plots can be constructed using the dura-
tion and each of the four other features. Scatter plots generated
from these acoustic features allow the comparison of large sets
of syllables to determine the rate (rapid or gradual) and structure
(degradation or cohesion) of changes to the vocal pattern over time.
To track changes in the vocal pattern of each bird, feature scatter
plots are treated as random samples from a two-dimensional prob-
ability distribution and compared to one another; this allows use of
the Kullback–Leibler distance, a powerful tool for comparing two
probability distributions. As a first step for converting each feature
vs. duration scatter plot to a probability density function, the scat-
ter plot is estimated using a nonparametric histogram method. We
partition the two-dimensional scatter plot into an M by N array of
bins (syllable duration is partitioned into M equally-spaced bins and
another feature such as pitch is partitioned into N equally-spaced
bins). Thus, there are M × N two-dimensional bins, as shown in red
in Fig. 2A. To have an appropriate and consistent estimation of the
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Fig. 2. Example of probability density estimation. (A) Scatter plot of pitch vs. duration for day 1 of singing of a single bird (Bird 611). To use the scatter plot as an estimate of
a two-dimensional probability density function, an M × N grid (M = N = 15) is superimposed onto the scatter plot. (B) The estimated probability density function. The height
of the rectangular box in each bin denotes its probability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the
article.)

distribution, M and N were kept constant (at 15) throughout all days
of singing. This number of bins resulted in the best balance between
fit to the data and resolution in differentiating syllables. Finally,
we counted the number of data points in each bin and divided
by the total number of points in the plot. This gave an estimate
of the probability density at each location in the plane (Fig. 2B).
Note that we use an estimated density function that is based on the
raw data. However, a certain degree smoothing may be desirable
to better represent the probability distribution, depending on the
distribution of the data.

2.6. Scatter plot comparison using the Kullback–Leibler (K–L)
distance

The K–L distance analysis allows us to compare the probability
density function from two large sets of syllables and quantify the
difference. For the behavioral data set included in this example we
were interested in observing the rate of recovery or change over
time, thus we compared all days of singing to the first baseline day
of preoperative singing. We let P1 represent the two-dimensional
scatter plot generated for the first day of singing and Pk the scat-
ter plot for any subsequent day k. Then to compare the difference
between P1 and Pk we compared the estimated probability den-
sity functions (denoted Q1 and Qk) for the two scatter plots. We
then used the K–L distance (Kullback and Leibler, 1951) to compare
the density functions. If we let q1(m,n) and qk(m,n) denote the esti-
mated probabilities for bin (m,n) for days 1 and k, respectively, then
the K–L distance between Q1 and Qk is defined as:

DKL(Q1||Qk) =
M∑

m=1

N∑
n=1

q1(m, n)log2
q1(m, n)
qk(m, n)

. (1)

Larger values of the K–L distance indicate that two patterns are
more dissimilar, and a K–L distance of 0 indicates a perfect match.

2.7. Quantifying the rate of postoperative song recovery (�)

Given that K–L distance analysis between two probability dis-
tributions provides a single number, we plotted the K–L distance
value for each pre and postoperative day as a function of time in
order to estimate the rate of recovery. We quantified the recovery
of the song using an exponential fit to the K–L distance curve after
the microlesion. To do this, we first normalized the distance DKL to

the K–L distance at day 4 (the day of the surgery),

nDk = DKL(Q1||Qk)
DKL(Q1||Q4)

, (2)

where nDk denotes the normalized K–L distance at the kth session,
k = 4, . . ., 12. The normalized K–L distance equals 1 when k = 4, then
decreases as song recovery occurs. An exponential decay function
is then fit to the normalized nDk curve. That is, we let

nDk = exp
(

−k − 4
�

)
, (3)

where � denotes the recovery time constant (in units of days).
A large � implies a long-time, or slow, recovery, while a small �
implies a short-time, or fast, recovery.

2.8. Syntax analysis

For each bird, we use the syllable cluster template to identify
syllable-types in a scatter plot representing a baseline day of singing
(see Fig. 1). Then we trace a polygonal boundary around each clus-
ter to distinguish one syllable from another (Fig. 3). These syllable
boundaries are then used to identify syllable types produced on
each subsequent day of singing. Any point that falls outside of the
syllable boundaries is defined as syllable type ‘n’, or ‘non-motif’
(these include occasional calls that occur within a bout). Introduc-
tory syllables in a bout are classified as ‘intro’.

For the kth day of singing, we count the number of transitions
between syllable types i and j, denoted as Nk (i, j). We omit any tran-
sition between bouts of singing, counting only syllable transitions
within a bout. Spreadsheets generated by SA+ preserve syntatic
information for bout and syllable order. Using Ntot to denote the
total number of transitions made within bouts, the transition prob-
ability of syllable syntax (i, j) on day k is estimated as(4)rk(i, j) =
Nk(i, j)

Ntot
where i and j represent any of the syllable types (as defined

on the first day of singing) and k = 1, 2, . . ., 12.

2.9. K–L distance applied to syntax results

As in the phonology analysis, we can calculate the K–L dis-
tance between the transition probabilities of two different days to
quantify the dissimilarity of song syntax on those days. Since our
example involves disruption of the song from and recovery back
to the preoperative state, we compared the transition probabil-
ity distribution of each day to that of the first preoperative day
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Fig. 3. (A) There are four motif syllables (a, b, c, and d) in the song spectrograph in
Bird 611. They are denoted by blue, brown, green, and red colors, respectively. (B)
Their corresponding syllable clusters in the scatter plot of entropy vs. duration are
color-matched to show how syllables were identified for syllable transition probabil-
ities. The syllable types are easily distinguished as individual clusters in the scatter
plots. A cluster of black dots outside the syllable boundaries is indicated by “call”
and represents an infrequent call produced during singing. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
the article.)

(day 1). Let R1, R2, R3 denote the estimated transition probability
distributions in the three preoperative days, respectively, and R4,
R5, . . ., R12 denote the distributions in the nine postoperative days,
respectively. For k = 1, 2, . . ., 12, the K–L distance between R1 and Rk
is:

DKL(R1||Rk) =
∑

sequence
(i,j)

r1(i, j)log2
r1(i, j)
rk(i, j)

(5)

The summation is over all possible two-syllable transitions (e.g.,
ab, ac, bc, etc.). Note that because the transition distributions are
already between discrete states, there is no need to use a grid
to discretize, as was done in the phonology study. The MatLab
applications on K–L distance (density estimation, phonology anal-
ysis, syntax analysis, and recovery quantification) are available at
http://www.math.fsu.edu/∼bertram/software/birdsong.

3. Results

To illustrate results obtained by applying our method we use
behavioral data from an adult male zebra finch (Bird 611) included
in a recent study (Thompson et al., 2007). This bird received bilat-
eral microlesions (see Section 2) targeted to the song region HVC
(proper name), a manipulation that produces a transient destabi-
lization of the motif (Thompson and Johnson, 2007; Thompson et
al., 2007).

3.1. Scatter plot comparison using the K–L distance

Fig. 4A shows scatter plots for two consecutive preoperative days
of singing for Bird 611. The gray dots are from day 1 and the black
dots are from day 2. There is a great deal of overlap of the clusters
on the two days, indicating that the motifs are similar. The rela-
tive similarity in phonology of two preoperative days resulted in
a low K–L value of 0.1 bits. In contrast, Fig. 4B shows scatter plots
for the preoperative day (gray) and the first day of singing follow-
ing HVC microlesions (black; resulting in highly destabilized song).
The phonological degradation evidenced in day 4 singing bears lit-
tle resemblance to the clustering pattern of day 1. This is reflected in
a very large K–L distance of 4.9 bits. After three additional days (day
7), the match between the pre-lesion and post-lesion scatter plots
is much closer, as shown in Fig. 4C with a K–L distance of 1.6 bits.
At the final recording session (day 12), the match is almost at the
preoperative level with a K–L distance of 0.6 bits (Fig. 4D).

3.2. Quantifying the rate of postoperative song recovery (�)

Fig. 5A shows an example of vocal change following an HVC
microlesion as revealed by K–L distance analysis: days 1–3 are pre-
operative days of singing, and days 4–12 are days of postoperative
singing. For each pair of features (duration vs. pitch, duration vs.
entropy, duration vs. pitch goodness, and duration vs. FM), the K–L
distance between day 1 and day k is calculated and plotted vs. time,
for k = 1, 2, 3, . . ., 12. Preoperative comparisons are highly similar, so
the K–L distance between days 1 and days 2 or 3 is near 0. On the first
day of singing following surgery (day 4) the K–L distance increases
dramatically. On subsequent days of postoperative singing the K–L
distance tracks the gradual return in similarity between post HVC
microlesion scatter plots and the scatter plot for the first day of
preoperative singing.

Fig. 5B shows the recovery quantification of the same data
by the commonly used Kolmogorov–Smirnov (K–S) distance
(Tchernichovski et al., 2001). Here we calculated the K–S distance
between the 1D distribution of each spectral feature (pitch, entropy,
pitch goodness, and FM) in day 1 as well as in day k for k = 1, 2, 3, . . .,
12. Consistent with the K–L results, the K–S distances are near 0 at
days 2 and 3, increase at day 4, and then gradually decrease during
the recovery process. The added constraint of syllable duration in
the calculation of K–L distance may account for the clean baseline
and clear postoperative trends observed in Fig. 5A.

To assess the rate of recovery for this bird we calculated � (time
constant in Eq. (3)) to measure the recovery rate. For example, we
found that � = 4.0 for the 2D distribution of pitch vs. duration (Fig. 6).
Likewise, we found � = 5.3, 4.5, 6.5, and days for the other three
pairs of features (FM vs. duration, entropy vs. duration, and, pitch
goodness vs. duration, respectively). These values indicate that the
normalized K–L distance fell to 1/e of its original value of 1 in
approximately 4–6.5 days, depending on the feature. The same nor-
malization procedure can also be applied to the K–S distance, that
is, the recovery time constant � can be calculated for the K–S val-
ues in Fig. 5B. We found that � = 5.0, 6.8, 5.8, and, 4.5 days for pitch,
FM, entropy, and, pitch goodness, respectively. Therefore, K–S dis-
tance time constants are comparable to those obtained using K–L
distance.

3.3. Syntax analysis

Fig. 7 shows transition probability distributions for Bird 611
over four days. In particular, we refer to the transitions that occur
between the syllables in a motif as “motif transitions”. The first
day represents a preoperative day of singing. There are four differ-
ent motif syllables in this bird (see Fig. 3). Many of the transitions,
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Fig. 4. Examples of K–L distance quantification. (A) Scatter plot of pitch vs. duration for day 1 (Pre1, gray dots) and day 2 (Pre2, black dots) of singing of Bird 611. The K–L
distance between the scatter plots is 0.1 bits. (B) Scatter plot of pitch vs. duration for day 1 and day 4 (Post1). The K–L distance is 4.9 bits. (C) Scatter plot of pitch vs. duration
for day 1 and day 7 (Post4). The K–L distance is 1.6 bits. (D) Scatter plot of pitch vs. duration for day 1 and day 12 (Post9). The K–L distance is 0.6 bits.

such as an a to d transition, occur only rarely or not at all, so in the
figure we grouped all such transitions (with probability less than
0.05 in each of the recording days) into one category called ‘oth-
ers’. Preoperative day 1 shows a high probability for motif syllable
transitions and a low probability for non-motif syllable transitions.
In contrast, the first day of singing following HVC microlesions
(day 4) shows the exact reverse, with a low probability for motif
transitions and higher probability for transitions associated with
non-motif syllables or syllables that fall outside the boundaries of
the syllable clusters. A later postoperative day of singing (day 6)
shows some recovery of motif syllable transitions, yet there remains

Fig. 5. Comparison of K–L distance and K–S distance values for phonology. (A) K–L
distances of each spectral feature vs. duration from day 1 for Bird 611. These values
describe a marked increase in phonological dissimilarity from day 1 (at day 4) that
gradually declines during the recovery process (day 4 to day 12). (B) K–S distances of
each spectral feature from day 1 for Bird 611. These values also describe an increase
in dissimilarity at day 4 that gradually declines during the recovery process.

an increased probability for transitions associated with non-motif
syllables. At day 8, one week postoperative, the overall pattern
of syllable transition probabilities appears similar to preoperative
syntax structure: high probability for motif syllable transitions and
low probability for transitions associated with other syllables and
non-motif syllables.

3.4. K–L distance applied to syntax results

Eq. (5) was used to compute the K–L distance between the transi-
tion probability distribution of day 1 with those of subsequent days.
Fig. 8 shows that on days 2 and 3 (additional preoperative days) the
song syntax is very similar to that of day 1, so the K–L distance is
near 0. On day 4 (first day of singing following the microlesion) the
distance increases dramatically to near 8 bits, but then decreases as
the song syntax recovers. Thus, the return of the song syntax that
is apparent in Fig. 7 is clearly apparent in the time course of the
K–L distance in Fig. 8. We also assessed the rate of syntax recovery
using � and found that � = 1.8 days.

Fig. 6. Song recovery following a perturbing event such as HVC microlesion can be
characterized by a recovery time constant �. The dashed line shows the K–L distance
values in the recovery process (day 4 to day 12) of Bird 611, and the solid line in the
center denotes their optimal exponential fit with � = 4. The other two solid lines
denote exponential decay with other values of � for comparison. The upper one
indicates a slower recovery (� = 6), and the lower one indicates a faster recovery
(� = 2).
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Fig. 7. Syllable transition probability for four days (1, 4, 6, and 8) of Bird 611. The
motif transitions are aa, ab, ac, ba, cd, da, which nearly disappeared right after the
HVC surgery (day 4), then gradually recovered in the following days. The sums of all
motif transitions on each day are 0.74, 0.12, 0.24, and 0.60, respectively.

To determine how production of non-motif syllable transitions
affected the rate of recovery, we also characterized syntax recov-
ery excluding non-motif syllable transitions (i.e., ‘n’; non-motif).
That is, we computed the K–L distance using only the transitions of
syllables that fell within the boundaries traced around each motif
syllable cluster. Excluding non-motif syllable transitions resulted
in a � of 1.5 days (Fig. 8), which indicates a slightly faster recov-
ery than when non-motif syllable transitions were included (where
� = 1.8 days). This analysis shows that recovery of motif syllable syn-
tax occurred slightly before the production of non-motif syllable
transitions had returned to baseline levels.

4. Discussion

We have presented a method for analyzing birdsong phonol-
ogy and syllable syntax measured with the Feature Batch module
in Sound Analysis Pro (SA+; Tchernichovski et al., 2000). This
method compares motifs at the syllable-level using a standard mea-
surement from information theory, the Kullback–Leibler distance
(Kullback and Leibler, 1951). We have shown that the new method
successfully describes differences in multi-dimensional syllable
features using dissimilarity values (the K–L distance in units of bits)
for motif phonology and syntax, respectively.

The Similarity Batch function in SA+ is a commonly used method
in birdsong analysis to measure song similarity. For example, the
method has been used to assess the vocal imitation of pupils from
tutors (Tchernichovski et al., 2000) or recovery of song follow-
ing brain injury (Coleman and Vu, 2005; Thompson and Johnson,

Fig. 8. K–L distance values for syllable syntax. The solid line with circles shows the
distances using all transitions. The dashed line with squares shows the distances
using transitions that do not include non-motif syllable transitions ‘n’. These values
describe a marked increase in syllable syntax dissimilarity from day 1 (at day 4) that
declines during the recovery process (day 4 to day 12).

2007). The Similarity Batch function is typically used to search
for similarity between a single ‘target’ motif and a .wav file com-
prised of multiple motifs or a set of uncategorized song units (e.g.
destabilized singing following HVC microlesions). This motif-based
comparison does not determine syllable-level contributions to sim-
ilarity. In contrast, the K–L distance is based on the distributions
of acoustic features of individual syllables or of their temporal
sequence, and thus, dissimilarity between two probability distri-
butions can be traced back to individual syllable contributions.
Moreover, by examining the scatter plots used to generate K–L dis-
tance values one can determine whether dissimilarity is due to
increased variability in the phonology of motif syllables (change
in size or shape of syllable clusters), the production of non-motif
syllables (syllables that fall outside of motif polygonal clusters), or
some combination of the two.

An alternative statistical method to the K–L distance is the
Kolmogorov–Smirnov (K–S) test. This is a classical statistical
hypothesis test for comparing distributions of two samples. The
associated K–S distance, the largest distance between two cumula-
tive distribution functions, is a key component of acoustic analyses
performed by Sound Analysis Pro (Tchernichovski et al., 2001).
Indeed, we have shown that K–S distance and K–L distance produce
similar results for the recovery of each acoustic feature. However,
in practice K–S distance, which measures dissimilarity of cumula-
tive distribution functions, is generally limited to one-dimensional
quantitative variables. This limitation tends to preclude differentia-
tion between all syllables within the data set for any given acoustic
feature. For example, in Fig. 1 most syllables overlap on the y-axis
(spectral feature dimension); however the addition of duration (x-
axis) to pitch, entropy, and pitch goodness allows clear separation
and differentiation between all syllables, which is necessary for our
method of syntax analysis.

In addition, unlike K–L distance, K–S distance cannot be applied
to categorical variables. For example, in this study we used K–L
distance to measure phonology (two-dimensional distributions of
quantitative spectral features) as well as the recovery of syllable
syntax, which identifies each cluster with a syllable label and is thus
a categorical variable. When � was calculated for the K–L distance
values for syntax and phonology we found that the two had differ-
ent rates of recovery (i.e., ∼5 days for phonology when all acoustic
features are averaged and ∼1.5 days for syntax). Therefore, K–L dis-
tance provides a unified measurement strategy for both phonology
and syntax.

4.1. Limitations and considerations

The K–L distance measurement is based on estimated statistical
distributions, and a large number of syllables are therefore needed
in the density estimation. The method would not be appropriate
for situations where only a few samples of singing are available
for comparison. For example, the data presented above were gen-
erated from the first 300 song bouts that Bird 611 produced each
day, resulting in the analysis of ∼3500 syllables per day. However,
we have found that the method remains surprisingly robust when
substantially smaller samples are used – a reanalysis of Bird 611
using 350 syllables per day (a sub-sample of one-tenth the size of
the original sample of syllables) still provided a reasonable estima-
tion of the recovery of phonology (� = 4.7 days vs. � = 4.0 days from
the original sample).

Investigators using our method must also decide on the num-
ber of bins aligned against each axis of the 2D scatter plots, which
effectively determines the precision of the analysis. We have used
a constant, 15, for all the comparisons. However, we find that other
constants (varying from 10 to 20) produce similar results. Inves-
tigators should choose a reasonable number based on the range
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of the data, pattern of the distribution, and the number of sample
points. In order to employ the syntax analysis, the investigator must
determine the number of syllable clusters unique to an individual
bird. We present an efficient approach to classify syllable clusters
using well-separated polygons, in which repeated instances of the
same syllable are easily identified (Fig. 1). Other methods are avail-
able to identify syllable clusters, such as the Clustering Module in
SA+ (Tchernichovski et al., 2000), and the KlustaKwik algorithm
(Crandall et al., 2007) and the K–L distance on the syntax can be
applied to any of these methods.
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