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We describe a classification scheme for bursting oscillations which encompasses many of those 
found in the literature on bursting in excitable media. This is an extension of the scheme of Rinzel 
(in Mathematical Topics in Population Biology, Springer, Berlin, 1987), put in the context of a 
sequence of horizontal cuts through a two-parameter bifurcation diagram. We use this to 
describe the phenomenological character of different types of bursting, addressing the issue of 
how well the bursting can be characterized given the limited amount of information often 
available in experimental settings. 

1. Introduction. Bursting is an oscillation in which an observable of the 
system, such as voltage or chemical concentration, changes periodically 
between an active phase of rapid spike oscillations and a phase of quiescence. 
Since bursting was reported in the electrical activity of neuron R15 of the 
abdominal ganglion of Aplysia (Strumwasser, 1967; Alving, 1968) it has been 
found to be the primary mode of electrical behavior in many nerve and 
endocrine cells. Examples include thalamic neurons (Desch6nes et al., 1982; 
Crunelli et al., 1987), hippocampal pyramidal neurons (Wong and Prince, 
1981), AB neurons (Harris-Warrick and Flamm, 1987), dopaminergic neurons 
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of the mammalian midbrain (Johnson et al., 1992), and pancreatic fl-cells 
(Dean and Mathews, 1970; Ashcroft and Rorsman, 1989). In addition, bursting 
oscillations have been observed in chemical systems such as the Belousov- 
Zhabotinsky reaction (Hudson et al., 1979). 

Numerous  models of bursting have been developed (e.g. Plant and Kim, 
1976; Canavier et al., 1991; Bertram, 1993; Smolen and Keizer, 1992; 
Guckenheimer et al., 1994; Rinzel and Troy, 1982; Traub et al., 1991; Wang et 
al., 1991) and a systematic mathematical  analysis of one such model was first 
performed by Rinzel (1985). In this analysis the system variables were classified 
as either "fast", if the variable changed significantly over the duration of a single 
spike, o r  "slow", if significant change occurred only over the duration of the 
burst. The bursting oscillation is generated as the evolution of the slow 
variables switches the fast dynamics between steady state and oscillatory 
dynamics. Analysis of the bursting is carried out by studying the solution 
structure or topology of the fast subsystem, with the slow variables treated as 
slowly varying parameters. 

In the classification scheme of Rinzel (1987) three types of bursting 
oscillations were described (Table 1). We now concentrate primarily on the 
phenomenological aspects of these oscillations, discussing the topological 
structure in subsequent sections. In type I bursting the frequency of spiking 
decreases monotonically through the active phase.(Fig.lA). The monotonic  
spike frequency profile is due to a single passage of the bursting trajectory 
through a saddle loop bifurcation, at the end of the active phase. Also, no spike 

Table 1. Classification scheme first described by Rinzel (1987) and discussed in terms of a 
generic sequence of bifurcations in Fig. 7 in the present paper. SN = saddle node; 

SNP = saddle node of periodics; SL = saddle loop; SNIC = saddle node on an invariant 
circle; UH=unstable (subcritical) Hopf 

Burst classification scheme 

Type Topology Phenomenology 

I Active phase begins at SN Spike frequency monotonic 
Active phase ends at SL 
Fast subsystem bistable Can be reset by brief perturbation 
1 Slow variable sufficient Plateau/no undershoot 

II Active phase begins at SNIC Spike fi'equency parabolic 
Active phase ends at SNIC 
Fast subsystem monostable Cannot be reset 
2 Slow variables n e c e s s a r y  Undershoot/no plateau 

Active phase begins at UH Spike frequency indeterminate 
Active phase ends at SNP 
Fast subsystem bistable Can be reset 
1 Slow variable sufficient Undershoot/no plateau 

III 
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falls below a voltage plateau, corresponding to the voltage of a fast subsystem 
saddle point. That is, there is no spike undershoot.  In addition, this subsystem 
is bistable so that the oscillation may be reset by a brief stimulus (i.e. perturbed 
from a passive to an active state or vice versa). 

Type II bursting (Fig. 1B) is characterized by a spike frequency which is low 
at the beginning, high in the middle, and low again near the end of the active 
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Figure 1. (A) Type I bursting generated by the Sherman-Rinzel model of bursting in 
pancreatic //-cells (Sherman and Rinzel, 1992). (B) Type II parabolic bursting 
generated by the Rinzel Lee model of bursting in neuron R15 of the abdominal 
ganglion ofAplysia (Rinzel and Lee, 1987). (C) Type III bursting generated by the 
Av-Ron-Parnas-Segel model of bursting in cardiac ganglion cells of the lobster 
(Av-Ron et al., 1993). Integration of the systems of ordinary differential equations 
has been carried out here and throughout the paper using a Gear method (Gear, 

1967) as implemented in the LSODE package (Hindmarsh, 1974). 
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phase, prompting the name "parabolic bursting". This behavior is due to 
passage of the bursting trajectory through a SNIC (saddle node on an invariant 
circle) bifurcation both at the beginning and at the end of the active phase. 
Spikes undershoot, some falling below the minimum voltage of the silent phase. 
The fast subsystem is not bistable, so the system cannot be reset by brief stimuli. 

Type III bursting (Fig. 1C) has an indeterminate spike frequency profile 
since no passage is made through a homoclinic bifurcation. This oscillation is 
characterized by large undershooting spikes with no voltage plateau. Brief 
stimuli may reset the oscillation due to fast subsystem bistability. 

Other bursting oscillations have appeared in the literature which do not, by 
their appearance, fall neatly into any of these classes. The first example, 
Fig. 2A, was generated by the model of Pernarowski (1994) and displays a 
monotonic spike frequency profile like Fig. 1A, but spike undershoot like 
Fig. 1B and C. This ambiguity is reflected in Pernarowski's reference to it as 
"nearly" parabolic (Pernarowski, 1994, Fig. 1D). We show that this exempli- 
fies a topologically distinct class of bursting. In common with the oscillation of 
Fig. 1A, a slow variable makes a single passage through a saddle-loop 
bifurcation, so we denote this as type Ib and the former as type Ia bursting. 

The second example, Fig. 2B, was generated by the fl-cell model of Smolen 
and Keizer (1992), and, like Fig. 2A, exhibits a monotonic spike frequency 
profile and spike undershoot. However, we show that this is not another 
example of type Ib bursting, rather, it is type Ia bursting where the spike 
undershoot is a result of the increased dimensionality of the fast subsystem. 

In the present paper we describe in detail the features defining each 
topological class of bursting mentioned above and a new one, type IV. In this 
respect we elaborate on and extend the classification scheme of Rinzel (1987), 
who described types Ia, II, and III. 

Bursting oscillations of all topological classes are generated with the 
Chay-Cook model (Chay and Cook, 1988), described in section 2. We use a 
one-parameter bifurcation diagram to describe the structure of the fast 
subsystem underlying each class of bursting. We locate each one-parameter 
bifurcation diagram as a horizontal cut through a two-parameter bifurcation 
diagram. In section 3 we begin the description of this two-parameter 
bifurcation diagram. We show how a type Ia oscillation can be transformed 
into a type Ib oscillation by lowering the horizontal cut so that it crosses over a 
sequence of points representing codimension-two homoclinic (saddle-node- 
loop) bifurcations. 

In sections 4, 5 and 6 we analyse oscillations of the types shown in Figs 1B, 
1C and 2B. We complete our description of the two-parameter bifurcation 
diagram, again representing each type of bursting by a horizontal cut through 
the diagram. In section 7 we discuss the implications for biological modeling of 
bursting systems, where information is often limited to the time course of a 
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single observable. In such cases, our  analysis reveals that  phenomenological  
features are typically insufficient to reliably classify the oscillation. 

2. The  Chay-Cook  Model. The C h a y - C o o k  model  (Chay and Cook,  1988) 
was developed to simulate the bursting electrical behavior of a pancreatic 
fl-cell. We employ it here for its simplicity and versatility, and for its 
biophysical character. The model  consists of a fast inward or excitatory current 
(Ii) carried by Ca 2 +, a second inward current (Is) carried by Ca 2 ÷ which may 
be fast or slow, an outward  or inhibitory K ÷ current (Ii0 of the delayed rectifier 
type, and a passive leakage current  (IL): 
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Figure 2. (A) Type Ib bursting generated by the Pernarowski model (Pernarowski, 
1994). (B) Type Ia bursting generated by the Smolen-Keizer model of/?-cell 
bursting (Smolen and Keizer, 1992). Parameters as in their Fig. 6, but with 2 = 0.84, 

R=0.65. 
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dv 

dt 
- -  - - [Ica(V, S) + IK(V, n) + IL(V)]/Cm (1) 

d t l  
d t  = 2 (n~ (v ) -  n)/~.(v) (2) 

ds  
dt  = (so~(v, c ) -s ) / zs (v ,  c) (3) 

d c  
= f [  - a/ca(V, s) - k¢c]. (4) 

Here v is the t ransmembrane  potential,  c is the intracellular free Ca 2+ 
concentrat ion,  n and s are activation variables and the ionic currents are given 
by 

/I(V) = gimoo(V) (v --  VCa ) (5) 

Is(~), S)=jsS(V--VCa) (6) 

l~(v, ~) = , j K n ( v -  v~) (7) 

Idv)  = ,gL(v - v d  (8) 

/Ca(V, S) = II(V) ~- IS(/) , S). 

The steady-state functions and activation times are 

1 
x°°(v) = 1 + e x p [ ( V x - v ) / S x ] '  ( x = m ,  n) 

(9) 

(10) 

s~(~, c ) -  
1 + exp(2A(v, c)) 

(11) 

~n 
Tn(/)) = 1 " ~ - e x p [ ( v -  Vn)/gn] (12) 

• s(V, c ) -  gs 
2 cosh(A(v, c)) '  

(13) 
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where 

A(v, c)= Vs + Ss log(~)-v  (14) 
2Ss 

and ~= c/(l#M). The parameters that remain unchanged in our computations 
are gi= 250 pS, gs = 10 pS, gK = 1300 pS, gL = 50 pS, Vc, = 100 mV, V K = 
- 80 mV, V L = -- 60 mV, C m = 4524 fF, fn = 9.09 msec, V m = -- 22 mV, V n = 
- 9 m V ,  V s = - 2 2 m V ,  Sm=7.5mV,  S n = 1 0 m V  and a=5 .727x  
1 0  - 6 f A  - I#M msec-  1. 

The effective time constant for the potassium activation variable n is %/2; 2 is 
the primary bifurcation parameter in our analysis. We also vary fs to modify 
the role played by the Ca 2 + current activation variable s. When fs is small 
(1 sec or less) the system can burst given bistability of the fast subsystem (1-3) 
and appropriate modulation by the slow variable c. When fs is large (10 sec) s is 
a slow variable and bursting can be generated as the two-dimensional slow 
subsystem (3-4) interacts with the fast subsystem to generate a slow oscillation, 
periodically moving the fast dynamics between monostable quiescent and 
oscillatory states. For given values of 2 and f~ we modify slow subsystem 
parameters (f, k c and, when s is slow, S~) to values conducive to bursting. The 
latter changes do not affect the fast subsystem bifurcation structures, on which 
the bursting classification is based. 

3. Transition from Type Ia to Type Ib Bursting. In this section we describe the 
transition from type Ia to type Ib bursting, and begin the description of a two- 
parameter bifurcation diagram which provides a framework for the classifica- 
tion of bursting oscillations. This description is completed in section 4, where 
we discuss type III and IV bursting. 

Most models of bursting involving a single slow variable yield type Ia 
oscillations, with small spikes riding on a voltage plateau. It may appear that 
large undershooting spikes are incompatible with bursting driven by a single 
slow variable. We show that they are compatible, by demonstrating that type 
Ia bursting can be transformed into large-spike type Ib bursting. 

We analyse first a three-dimensional version of the Chay-Cook model 
obtained by setting s=so~(v,c), therefore confining the fast subsystem 
dynamics to the (v, n)-plane. We refer to this as Chay-Cook-(2, 1) (two fast 
variables and one slow). With 2=0.95 a type Ia oscillation is generated 
(Fig. 3A), which is dissected in Fig. 4A. To construct a fast subsystem 
bifurcation diagram, c is treated as a bifurcation parameter and the v-values of 
the equilibrium states are plotted, generating the Z-shaped slow manifold (SM). 
The spikes of the bursting oscillation are periodic solutions of the fast 
subsystem, for which the maximum and minimum v are plotted. 

One can think of c as a slowly-varying parameter, leading the full-system 
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trajectory along solution branches of the fast subsystem. At the beginning of 
the silent phase, the phase point lies on the bottom branch of the slow manifold 
and thus below the slow nulleline, de/dt = 0. Since dc/dt <0, the phase point 
moves leftward until the manifold switches back via a saddle-node bifurcation 
and the phase point is attracted to the periodic branch, initiating the active 
phase of bursting. The phase point now lies above the slow nullcline, so it 
moves rightward as it oscillates. The active phase is terminated when a spike 
reaches the middle branch of the slow manifold, returning the phase point to 
the lower branch to restart the silent phase. 

For any c between the left knee of the slow manifold and the termination of 
the periodic branch, the (v, n)-phase plane contains a stable stationary point, a 
saddle point, and an unstable stationary point which is enclosed by a tear- 
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Figure 3. (A) Type Ia bursting generated by Chay-Cook-(2, 1) with 2=0.95, 
f=0.002. (B) Type Ib bursting with 2=0.17, f = 5 x l 0  -s. In both cases 

k c =0.027 m sec-1 and S s = 10 inV. 



CLASSIFICATION OF BURSTING OSCILLATIONS 421 

shaped stable limit cycle. The stat ionary points are the three intersections of the 
fast subsystem nullclines (Fig. 5). As c is increased the limit cycle grows and 
connects with the saddle point  when both n and v are at their m i n i m u m  values 
over the oscillation, thus forming an infinite-period saddle- loop orbit. As c is 
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Figure 4. Dissection of type Ia and Ib bursting generated by Chay-Cook-(2, 1) with 
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5x  5 10- . The fast subsystem slow manifold (SM) is the Z-shaped curve consisting 
of stable (solid) and unstable (dotted) branches. The periodic branch is represented 
by the minimum and maximum v of the periodic solution. The projection of the 
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smaller range of variation of c in (B). In (C) the left knee of the slow manifold from 
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Bifurcation diagrams are constructed here and throughout the paper using the 

computer program AUTO (Doedel, 1981). 
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increased further the connection breaks and the limit cycle is annihilated. Thus, 
the spike voltage never falls below the saddle, and there is no spike undershoot.  
In addition, because the periodic branch terminates with an infinite-period 
orbit, the frequency of spiking decays monotonically as the end of the active 
phase of bursting is approached (this does not  imply that overall frequency 
profile is monotonic,  but it usually is). 

We contrast this oscillation with that of Fig. 3B, which also exhibits a 
monotonic  spike frequency profile, but displays large undershooting spikes. 
This oscillation is obtained by decreasing the fast subsystem parameter  2 and 
the slow subsystem parameterf .  The latter is a multiplicative constant affecting 
only the rate of change of c. The former also has no effect on the slow manifold 
or nullcline, but affects the periodic branch, which now encloses the lower and 
middle branches of the slow manifold as well as the upper branch (Fig. 4B). 

How can such a transition be made, given that the periodic branch cannot 
pass through the slow manifold without trajectories crossing in the 
(v, n)-plane? As 2 is decreased, the saddle-loop bifurcation point in Fig. 4A 
moves leftward along the middle branch of the manifold until the knee is 
reached. At this point, a saddle-node-loop bifurcation (SNL), the minimum v 
moves vertically downward,  with the average spike v remaining at the knee. 
Eventually a second SNL occurs and the minimum v of the homoclinic orbit 
switches back underneath the bot tom branch of the manifold (like the H M  
curve in Fig. 9B), while the average v moves back along the middle branch. 
While the homoclinic is at the knee the fast subsystem is monostable, so the full 

/ /  

V ~ 

Figure 5. Schematic illustration of fast subsystem nullclines. The sigmoidal and 
cubic-like curves represent the n and v nullclines of Chay Cook-(2, 1). Black and 
white circles represent stable and unstable stationary solutions, while the gray circle 

represents a saddle solution, of the fast subsystem. 
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system can exist in either a quiescent or continuous spiking state, but cannot 
burst with a single slow variable (but see section 6, where type II bursting is 
discussed). 

Once the second SNL has been encountered the fast subsystem is again 
bistable and capable of bursting. However, the spikes are now large, enclosing 
all three branches of the slow manifold (Fig. 4B). This bursting, here denoted 
type Ib, is topologically distinct from the small-spike bursting of Fig. 4A, as 
evident from the schematic representation of the phase portraits in the 
(v, n)-plane, for some c just to the right of the left knee of the slow manifold 
(Fig. 6). When 2=0.95, the phase plane contains a stable stationary point, a 
saddle, and an unstable stationary point surrounded by a stable limit cycle 
(Fig. 6A). As 2 is decreased the limit cycle grows until it forms a saddle-loop 
orbit (Fig. 6B). The SL breaks as 2 is further decreased, leaving the stable point 
as the global attractor (Fig. 6C). With smaller 2 one branch of the saddle's 
unstable manifold coalesces with a branch of its stable manifold, forming a 
second SL (Fig. 6D). This orbit disconnects from the saddle when 2 is made 
smaller and persists as a stable limit cycle encircling all three equilibria 
(Fig. 6E), which is the case when 2=0.17 (Fig. 4B). 

Figure 7 shows a two-parameter bifurcation diagram with parameters o- and 
#, here representing c and 2, which we will use to represent classes of bursting. 
The horizontal parameter o- is the slow variable appearing as a parameter in the 
fast subsystem. The vertical parameter # is a parameter in the fast subsystem 
which remains fixed for the full bursting system. Every one-parameter 
bifurcation diagram of the fast subsystem is represented as a horizontal cut 
through the two-parameter bifurcation diagram. This figure is schematic, 
representing curves constructed with Chay-Cook-(2, 1), as well as other 
versions of the Chay-Cook model (employed in later sections), using the 
computer program AUTO (Doedel, 1981). 

The stable saddle-loop orbits (SSL) of Fig. 6B and D illustrate the phase 
portraits along the two-parameter bifurcation curves B and D in Fig. 7. (We 
refer to a bifurcation as either stable or unstable according to the stability of the 
limit cycle it produces.) The transition from Fig. 6A (small spikes) to Fig. 6E 
(large spikes) starts in region A and terminates in region E after passing 
through region C and the two SSL curves B and D. 

The left and right knees or saddle-node bifurcations (SN) of the slow 
manifold appear as vertical lines in Fig. 7. Curves B and D are tangent to the 
left SN curve at a pair of codimension-two stable saddle-node-loop (SSNL) 
bifurcation points (Schecter, 1987). Between these points on the SN curve the 
homoclinic orbit deforms continuously, forming a line segment of stable 
codimension-one SNIC bifurcations (Guckenheimer and Holmes, 1983, 
p. 149; Ermentrout and Kopell, 1986). Curve B connects tangentially with the 
right SN curve at a codimension-two Takens-Bogdanov (TB) bifurcation 
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point (Guckenheimer and Holmes, 1983, p. 364) where both the trace and the 
determinant are zero. From such points a curve of Hopf bifurcations also 
emerges. These Hopf points are supercritical, giving rise to oscillations which 
terminate on curve B. The curve of supercritical Hopf (SH) bifurcations 
extends past the left SN curve. 

Type Ia bursting is represented in Fig. 7 as a horizontal line segment between 
the left SN curve (where the silent phase terminates) and the SL curve B (where 
the active phase terminates). Between these two endpoints the segment lies in 
region A and thus the active phase has non-undershooting spikes. Type Ib 
bursting also extends between the left SN curve and an SL curve, but lies in 
region E where the spiking oscillation surrounds all three equilibria, giving rise 
to bursting with spike undershoot. 

Types Ia and Ib both have appropriate fast dynamics, including bistability, 
to burst with a single slow variable. In addition, there are constraints on the 
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Figure 6. Schematic fast subsystem phase plane diagrams illustrate topological, but 
not metric, features of orbits accurately. Circles represent equilibrium points, black 
being stable, white unstable, and gray a saddle. Thin directed curves represent 
branches of the saddle's stable and unstable manifolds. Thick directed curves 
represent stable limit cycles. Dotted directed curves represent unstable limit cycles. 
Each frame is identified with a letter corresponding to a region or a curve in Fig. 7. 
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slow dynamics that can be derived formally by averaging the slow dynamics 
over the spikes. For the case of Chay-Cook (2, 1), the averaged slow equation 
is 

T(c) f To (C) lca(V(t, c), c) dt-kcc), (15) 

where T(c) is the period of the fast subsystem limit cycle v(t, c) corresponding to 
each fixed value of c. For  bursting with given fast subsystem parameters, k c 
must be chosen so that c decreases during the silent phase and increases during 
the active phase. For the silent-phase condition, the c nullcline must be above 
the knee since v is at quasi-steady state. For the active-phase, it is sufficient for 
the c nulMine to be below the minimum v curve of the periodic branch 
(Fig. 4A), but not necessary, as seen in Fig. 4B where v goes below the bot tom 
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Figure 7. Schematic fast subsystem two-parameter bifurcation diagram, a is a 
variable of the slow subsystem (c or 1 - s )  and # is a fast subsystem parameter (2). 
Curves represent codimension-one bifurcations. Filled circles represent codimen- 
sion-two bifurcations. The five classes of bursting described in the text are 
represented by dashed horizontal lines. A, C, E, G and H label regions, while B, D, F 

and I label curves. 
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branch of the Z-curve. A graphical way to determine whether the system will 
burst is to define an equivalent voltage, Vequi v, implicitly by 

1 f T(c) Ica(Veq.iv(C), c)=~(~ Ica(V(t, C), C) dt (16) 

and solve numerically for Vequiv(C ) (Fig. 4C). Then (15) becomes 

d c  
= f (  - ~Ica(Vequiv(C), C) - -  kcC ). (17) 

This is positive if (c, Veq,iv(C)) lies above the c nullcline. Thus, the system bursts if 
the c nullcline lies between the knee and the Vequi v curve. 

Note that the curve of average voltage, 

1 ;o T(c) Vavg(C) = T ~  v(t, e) dt, (18) 

lies below the c nullcline. Although the spikes spend much time at low voltages, 
- e l c ,  weights the high voltages more, and the net effect of each spike is to 
increase c. 

Both the Vavg a n d  Vequi v curves terminate on the middle branch of the slow 
manifold in a saddle-loop. The other termination of those curves is at a Hopf 
bifurcation, off the page to the left. 

4. Type III and Type IV Bursting. In both of the bursting oscillations 
discussed thus far the active phase of bursting has terminated via a saddle-loop 
bifurcation, with the consequent decrease of spike frequency as this point is 
approached. In this section we again use Chay-Cook-(2, 1) to discuss two 
additional classes of bursting, which do not involve homoclinic termination of 
the active phase. These oscillations are obtained by further decreasing 2 in (2). 

As 2~0 ,  the relaxation limit, the lowermost equilibrium point of the fast 
subsystem (1-2) destablizes via Hopf bifurcation if and only if it lies on the 
middle branch of the v nullcline (Fig. 5). For c sufficiently close to the left knee 
of the slow manifold this will be the case, since the n nullcline has positive slope. 
Thus, a portion of thelower branch of the slow manifold destablizes as 2 ~ 0  
(Fig. 8B). 

The branch of unstable oscillations born at the Hopf bifurcation, which is 
subcritical, terminates in a saddle loop. As 2 is decreased, the saddle-loop and 
the Hopfpoint move rightward in the (c, v) diagram, forming curves F and UH 
in Fig. 7. These curves emerge from a TB bifurcation point at the left knee of the 
slow manifold. 

The stability of the infinite-period orbit that emerges at a saddle-loop 
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bifurcation is determined by the trace of the linearization about the saddle 
point (Guckenheimer, 1986). The trace is negative on D, so a stable orbit 
emerges. However, the trace switches sign at a codimension-two neutral 
saddle-loop bifurcation (NSL), beyond which, on I, the emergent saddle-loop 
orbit is unstable (Fig. 6I). Therefore, emerging from the NSL is a saddle node 
of periodics (SNP) curve. One can locate the NSL bifurcation by finding the 
point of intersection of the SL curve with the curve of equilibrium points with 
zero trace (not shown), which runs continuously between the TB points, where 
it is tangent to the SN curve and becomes a curve of Hopf  points. 

Finally, the unstable SL curves I and F terminate at the right SN via unstable 
SNL bifurcations joined by an interval of unstable SNIC bifurcations. 
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In type IV bursting, represented in Fig. 7, the silent phase is terminated at a 
knee of the slow manifold while the active phase terminates at a saddle node of 
periodics. Type III bursting runs between a subcritical Hopf bifurcation and a 
SNP bifurcation, its representation in Fig. 7 being any horizontal line segment 
below the TB point connecting the UH and SNP curves. Both oscillations run 
through regions (E, H, and G, E, H, respectively) which involve bistability 
between a stationary point and a limit cycle encircling all three stationary 
points. Hence, only one slow variable is required to generate the oscillations 
(Fig. 8), which exhibit large undershooting spikes and may be reset by 
instantaneous perturbations. In addition, since the active phase is neither 
initiated nor terminated via homoclinic bifurcation, the spike frequency may be 
monotonic, parabolic, or neither. 

In the type III oscillation dissected in Fig. 8B, the phase lies below the c 
nulMine on the stable portion of the slow manifold during the silent phase. 
Since dc/dt <0  the trajectory moves leftward along the manifold and ramps 
through the Hopf bifurcation, oscillating with growing amplitude until it 
reaches the periodic branch. Then, the trajectory moves rightward while 
oscillating until it reaches the saddle node of periodics. Finally, it returns to the 
slow manifold with a few damped oscillations. The ramping that is inherent in 
passage through a Hopf bifurcation (Baer et al., 1989) and that is responsible 
for post silent-phase small oscillations in type III bursting is represented in 
Fig. 7 by placing the silent phase termination point to the left of the UH curve. 
Phenomenologically, type IV differs from type III in that small oscillations 
occur only before, not after, the silent phase. However, if the Hopf bifurcation 
in type III is close to the knee, the trajectory may ramp all the way to the knee, 
and no oscillations will be seen after the silent phase. 

5. Undershooting Spikes With Non-planar Fast Subsystems. Although the 
two-parameter bifurcation diagram (Fig. 7) was motivated by the phase plane 
diagrams of Fig. 6, its basic structure persists in higher dimensions. That is, 
bursting oscillations generated by models with more than two fast variables 
can be classified according to the horizontal line segment in Fig. 7 visited by the 
bursting orbit. However, some of the phenomenological features associated 
with different classes of oscillations when the fast subsystem is planar are no 
longer observed in higher dimensions. In particular, type Ia bursting, which 
does not display spike undershoot when the fast subsystem is planar, can do so 
in higher dimensions. This is observed, for example, in the type Ia oscillation 
generated by the Smolen-Keizer model (Fig. 2B) which has five fast variables. 

To illustrate this we use the full Chay-Cook model (1-4), with "~s = 1 sec, 
referring to this as Chay-Cook-(3, 1). This time constant is sufficiently small 
that s plays the role of an additional fast variable, raising the dimensionality of 
the fast subsystem to three. When 2 = 0.6 the system exhibits type Ia bursting, 
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with the silent phase terminating at a saddle node of the slow manifold and the 
active phase terminating at a saddle-loop bifurcation (Fig. 9A). 

Unlike Fig. 4A the bursting trajectory undershoots the middle branch of the 
slow manifold. As a result, following the last spike a voltage "hump" is present 
as the trajectory approaches, but does not reach, the spike threshold (Fig. 10). 

When s, rather than v, is plotted against c in the bifurcation diagram, it is 
clear that the periodic branch terminates when the minimum-s curve intersects 
the middle branch of the slow manifold (Fig. 9B). Hence, the saddle-loop orbit 
connects with the saddle point when s is at its minimum over a spike, rather 
than when v is at its minimum. This is illustrated in Fig. 11, for c fixed at three 
values close to the homoclinic. There are three clockwise-oriented orbits, 
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co r r e spond ing  to per iodic  spiking solut ions  of  the fast subsystem. W h e n  
c = 0 . 2 8  # M  the orbi t  is far f rom the saddle point ,  while by c - -0 .316  # M  it has 
de fo rmed  and  m a d e  contact .  No t i ce  tha t  the m i n i m u m  vol tage of  this la t ter  
orbi t  is below the v-value of  the saddle po in t  and  tha t  the saddle connec t ion  is 
m a d e  in the ascending phase  of  the spike where  s is at  its min imum.  
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As in Chay-Cook-(2, 1) the fast subsystem's one-parameter bifurcation 
diagram goes through two SNL bifurcations as 2 is decreased. This is 
illustrated in Fig. 9, where the minimum v (or s) of the homoclinic orbit is 
traced out over a range of values of 2 (curve HM). Here we see again that the 
saddle-loop orbit undershoots the middle branch of the slow manifold during 
type Ia bursting. In addition, we see that Chay-Cook-(3, 1) is capable of type 
Ib bursting. 

6. Type II Bursting. In the scenarios discussed thus far a necessary condition 
for bursting has been bistability of the fast subsystem. If there are two or more 
slow variables, however, bistability may not be necessary. In this section we 
review how bursting can be achieved when the fast subsystem is monostable; 
our case is similar to that of Rinzel and Lee (1987). When represented in the 
two-parameter diagram (Fig. 7), this bursting is seen to form an additional 
topological class, type II. Phenomenologically it is characterized by a 
parabolic spike frequency profile and undershooting spikes (Fig. 1B). 

For this analysis we use the Chay-Cook-(2, 2) model; v and n are fast 
variables, and c and s (?s= 10 sec) are slow. The slow manifold is the set of 
equilibrium points of the fast subsystem (1-2), with s and c as parameters. 
However, the fast subsystem is now independent of c, which enters only 
through the function soo(v, c). Hence, we construct the bifurcation diagram in 
the (s, v)-plane rather than the (c, v)-plane (Fig. 12). The slow manifold is now 
S-shaped rather than Z-shaped since s is an excitatory variable; larger values of 
s destabilize the resting solution. The periodic branch terminates at the knee in 
a SNIC bifurcation, so the fast subsystem is monostable. 

The s nullcline is now a two-dimensional surface, so in Fig. 12 we show 
projections for values ofc corresponding to the minimum and maximum taken 
on during a burst. For fixed c, the v-n-s  system can be bistable between silent 
and tonic spiking solutions, but it cannot alternate between the two. The root 
reason is that there is only positive feedback. Negative feedback is introduced 
by allowing c to vary. This shifts the s nullcline up and down so that the phase 
point is alternately attracted toward the silent and spiking states. During the 
silent phase, c is near its minimum, and the slow nullcline lies below the 
manifold, so ds/dt > 0 and the full-system trajectory travels rightward toward 
the spiking solution. When the phase point leaves the manifold and spiking is 
initiated the nullcline rises as Ica, and thus c, increase. The nullcline eventually 
rises enough to change the direction of motion from rightward to leftward, 
moving the trajectory back toward the SNIC. When the SNIC is reached, the 
active phase ends and the phase point is attracted to the bot tom branch of the 
manifold, where it continues to move leftward toward the stationary solution 
of the v-n-s  system. As it does so, c decreases and the slow nullcline drops 
below the manifold, changing the direction of motion of the trajectory and 
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restarting the oscillation. The model of Rinzel and Lee differs somewhat from 
Chay-Cook-(2, 2) in that the slow manifold, rather than the slow nullcline, is 
deformed by the second slow variable (when viewed in the (x, v)-plane). 

In Fig. 13 we show a three-dimensional view of the trajectory in (s, c, v)- 
space. Since the slow manifold is independent of c, all planar slices 
perpendicular to the c axis are identical. From this perspective the trajectory 
moves toward the viewer in the direction of increasing c as it progresses from 
the beginning to the end of the active phase. Towards the end of this phase the 
spikes deform in the s-direction toward the knee and terminate. The trajectory 
then moves slowly along the bottom of the slow manifold in the direction of 
decreasing c, reinitiating the active phase when the knee is reached. 

In Fig. 7 (with tr= 1 - s )  this bursting oscillation is represented as a line 
segment from region C to the region on the other side of the SN curve in which a 
stable limit cycle encircles a single equilibrium point. When in region C the 
system is in a silent phase and becomes active when passage is made through 
the SNIC-curve to the adjacent region. Unlike types Ia, Ib, III, and IV, type II 
bursting traverses regions that are monostable. 

The parabolic spike frequency profile of type II bursting results from the 
passage through a SNIC bifurcation both at the beginning and at the end of the 
active phase. Also, because of monostability, instantaneous perturbations 
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cannot reset the oscillation from a silent (active) to an active (silent) state. 
Finally, the spikes may undershoot the silent phase potential (Chay and Cook, 
1988, Fig. 5). 

When 2 is increased sufficiently, the periodic branch in Fig. 12 no longer 
terminates at the knee, but on the middle branch of the manifold. Because the 
fast subsystem is two-dimensional, there is no spike undershoot (Chay and 
Cook, 1988, Fig. 4). This is an example of type Ia bursting where, in Fig. 7, the 
endpoints of the representative line segment extend to the left of the SN curve 
and to the right of the SSL curve B due to the influence of the second slow 
variable which periodically varies the location of the slow nullcline. This type 
Ia oscillation differs from that described earlier in that the phase point first 
moves away from and then back toward the SL during the active phase, so the 
spike frequency profile is parabolic rather than monotonic. However, the 
parabolicity may be too subtle to be visible in the v time course. 

When 2 is decreased sufficiently, the periodic branch encloses all three 
branches of the slow manifold and the lower branch destabilizes via subcritical 
Hopf bifurcation, giving rise to an unstable periodic branch (as in Fig. 8B). 
When 2 = 0.03 the Hopf point lies beyond the left knee and the two periodic 
branches connect to form a single branch of periodics (Fig. 14B). This fast 
subsystem structure allows type III bursting. Indeed, bursting is generated even 
with c fixed, since only one slow variable is necessary for this type of oscillation 
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(Fig. 14). This oscillation is similar to Fig. 6 of Chay and Cook (1988), which is 
also type III bursting driven by s, but with an inessential oscillation in c. The 
structure of Fig. 14B is identical to that of a model of cardiac ganglion cells of 
the lobster (Av-Ron et al., 1993, Fig. 4) and similar to the example of type III 
bursting due to Rinzel (1987, Fig. 4). Ours can be continuously deformed into 
the latter by varying a fast subsystem parameter that brings the knees of the 
slow manifold together in a cusp. 

7. Discussion. We have described a classification scheme for bursting 
oscillations which extends the scheme of Rinzel (1987) and puts it in the context 
of a sequence of horizontal cuts through a two-parameter bifurcation diagram. 
In addition to the type Ia, II, and III oscillations described by Rinzel, we have 
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identified the "nearly" parabolic bursting of Pernarowski (1994, Fig. 1D) as a 
new type, Ib, and described an additional class, IV. Two additional 
oscillations, described in Fig. 1C, E of Pernarowski (1994) as "parabolic 
amplitude" and "tapered" bursting, are minor variants of type Ia. Parabolic 
amplitude bursting crosses the SH curve as it runs between the left SN and B 
(Fig. 7). This can only occur when the SH and left SN curves intersect at a value 
of # below the maximum of curve B. Tapered bursting can be visualized in 
Fig. 7 by moving the dashed type Ia line up so that it runs from the left to the 
right SN, passing through the SH curve once. Finally, the Smolen-Keizer 
bursting oscillation (Fig. 2B) has been identified as type Ia in spite of large 
undershooting spikes. 

In our example, oscillations of type Ib and IV exist only over a small range of 
values of 2. This is a feature of the Chay-Cook model with a particular set of 
parameter values, and is not a general feature of bursting systems. Type Ib 
bursting, for example, is robust in Pernarowski (1994). Another model- 
dependent feature is that type III and IV bursting exist only for small values of 
2, so that the time constant of the delayed rectifier is large. The time constant 
for the slow variable was increased so that the fast-slow dissection would be 
valid. Type III bursting, however, was demonstrated in Av-Ron et al. (1993) 
with a physiological delayed rectifier time constant of about 10 msec. 

Local bifurcation theory suggests that the two-parameter bifurcation 
diagram of Fig. 7 occurs often in models of neuronal spiking. Specifically, the 
bifurcation diagram of Fig. 7 is found near a certain codimension-three 
bifurcation, a degenerate Takens-Bogdanov bifurcation of focus type (Dumor- 
tier et al., 1991). To find a focus TB bifurcation in a model with nullclines as in 
Fig. 5, first two parameters are varied so that the three fixed points come 
together in a cusp bifurcation. Then, the relative times scale of the two variables 
is adjusted so that the trace at the fixed point is zero. Finally, one must check 
that second and third order terms are within prescribed ranges, which is usually 
done thro ugh a normal-form calculation (Guckenheimer, 1986). Normal-fo rm 
calculations on polynomial models show that the Hindmarsh-Rose fast 
subsystem (Hindmarsh and Rose, 1984), generalized to allow an arbitrary 
cubic nullcline and an arbitrary quadratic nullcline, has sufficient flexibility to 
exhibit a focus TB bifurcation, while the Fi tzHugh-Nagumo model (FitzHugh, 
1961), with its cubic nullcline and linear nullcline, does not. Given their typical 
abundance of parameters, we expect that the fast subsystems of most bursting 
models can undergo a focus TB bifurcation and can therefore support all the 
types of bursting we have classified. However, the slow kinetics in a model may 
also have to be modified to go from one type of bursting to another. 

Oscillations in most of the topological classes, types Ia, Ib, III and IV, can be 
generated by systems with a single slow variable due to bistability of the fast 
subsystem. Only oscillations of type II require two slow variables, which must 
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interact with the fast subsystem to generate an oscillation on a slow time scale, 
driving the fast subsystem back and forth through a silent and an active phase. 
Because the fast subsystem in type II is monostable, while it is bistable in all 
other classes, it would seem that this distinction could be used in an 
experimental setting to aid in the classification of a bursting oscillation. Such a 
classification is helpful if one wishes to construct a model of bursting in an 
excitable membrane, where membrane potential is quite often the only 
observable. One could perturb the system, by applying a brief current pulse 
through the membrane, and if the oscillation cannot be reset from its active 
(silent) to silent (active) phase the bursting is of type II. However, the converse 
is not true. Examples exist of models generating type II bursting in which 
instantaneous perturbations can reset the oscillation. These include the model 
of bursting in R 15 by Bertram (1993, 1994), where one of the slow variables is 
sufficiently fast at some voltages to respond quickly to the perturbation 
(although this model does not fit precisely into the present framework since it 
has a quintic, rather than cubic, slow manifold), and the R15 model by 
Canavier et al. (1991) in which several bursting, beating, and chaotic attractors 
coexist (Canavier et al., 1993). Phase resetting, then, provides only a limited 
experimental tool in the classification of a bursting oscillation. 

Other experimentally observable features are the spike frequency profile and 
the lack or presence of spike undershoot. While the type Ia frequency profile is 
monotonic when the generating system contains one slow variable (this is 
strictly true only near the homoclinic orbit, though the authors are not aware of 
any example where it is not true for the entire active phase), type Ia bursting can 
be generated by a system with two slow variables, in which case the frequency 
profile may be parabolic. Type II bursting is parabolic, but may appear 
monotonic since the passage through the SNIC is often fast at the beginning of 
the active phase. Finally, the active phase of type I l l  and IV bursting is neither 
initiated nor terminated by a homoclinic bifurcation, so the spike frequency 
profile may be monotonic, parabolic, or neither. In any case, the monotonicity 
or parabolicity of an oscillation may be too subtle to discern, particularly in the 
presence of noise. 

The lack or presence of spike undershoot is also a limited indicator of 
topological class. While type Ia oscillations do not display spike undershoot if 
the fast subsystem is two-dimensional, in higher dimensions undershoot may 
be present. Adding to the uncertainty, the dimension of the fast subsystem is 
typically not known in an experimental setting. On the other hand, while type 
II oscillations always exhibit undershoot, spikes may not undershoot the silent 
phase voltage, giving the appearance of a voltage plateau (Rinzel and Lee, 
1987, Fig. 7). We do observe, however, that in type III and IV bursting spikes 
always undershoot the silent phase voltage. Hence, oscillations without this 
property must be of one of the other types. 
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Another property which sets type III and IV bursting apart from the others is 
the presence of small oscillations before and after (type III) or after (type IV) 
the active phase. If, however, the subcritical Hopf  point is close to the knee, 
small oscillations may not be present before the active phase of type III 
bursting. Even if present, such small oscillations may be obscured by noise and 
thus hard to detect. 

The topological classification scheme presented here encompasses a wide 
variety of bursting oscillations. However, there are some bursting models that 
do not fit into the scheme. They include the Smolen-Sherman model (Smolen 
and Sherman, 1994), which has two "slow" variables, though only one is slow 
at any given time, and the models of Bertram (1993) and Rush and Rinzel 
(1994) which have quintic, rather than cubic, slow manifolds (see also Wang 
and Rinzel (1994)). Our classification scheme is developed around the simplest 
biophysical burster models and may not apply to more complex systems, where 
network or other effects may be responsible for driving the burst. 

T.K. was supported by N I M H  grant MH-44809 and NIH grant NS-16803 to 
Avis Cohen. 
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