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Abstract. The mathematical model described in Bertram 
(1993) is used to carry out a detailed examination of the 
manner in which the neurotransmitter serotonin modifies 
the voltage waveform generated endogenously by burster 
neuron Rls of Aplysia. This analysis makes use of a 
reduced system of equations, taking advantage of the 
slow rate of change of a pair of system variables relative 
to the others. Such analysis also yields information 
concerning the sensitivity of the neuron to brief synaptic 
perturbations. 

1 Introduction 

Neuron Rxs, located in the abdominal ganglion of the 
marine mollusc Aplysia, is one well-known member of 
a class of cells known as burster cells. Other examples 
include the neurons L2-L6, also located in the Ap[ysia 
abdominal ganglion (Kramer and Zucker 1985a,b), sev- 
eral neurons from the parietal ganglion of Helix (Eckert 
and Lux 1976), and insulin-secreting t-cells found in the 
pancreas (Atwater et al. 1980). Some burster cells, such as 
pancreatic t-cells, typically burst only when coupled with 
other cells (Rorsman and Trube 1986). Others, including 
neuron R15, generate a bursting voltage oscillation endo- 
genously. This oscillation is periodic, each period consist- 
ing of a burst of voltage spikes followed by a quiescent 
interburst during which membrane potential is hyper- 
polarized and changes slowly. 

A mathematical model of the bursting in Rx5 is de- 
scribed in Bertram (1993). This model, consisting of ten 
coupled nonlinear ordinary differential equations, incor- 
porates all the major ionic currents known to exist in the 
axon hillock region of the neuron and generates a burst- 
ing voltage waveform with all the features of the actual 
waveform. Unlike earlier models (Plant and Kim 1975; 
Plant 1978), the present model includes the ionic mech- 
anisms now thought to drive the bursting in the neuron 
and differs from the recent model of Canavier et al. (1991) 
primarily in the treatment of the two subthreshold 
"burst" currents. 
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Laboratory studies (Drummond et al. 1980; Levitan 
and Levitan 1988) have shown that exogenous applica- 
tion of serotonin (5-hydroxytryptamine or 5-HT) to 
R15 results in major changes in the voltage waveform. 
Depending upon the concentration of 5-HT applied, the 
bursting may be enhanced, terminated, or transformed 
into a beating oscillation in which the neuron spikes 
tonically. The effects of 5-HT last for several hours. 

The appfication of 5-HT to Rls was modeled in 
Bertram (1993), where it was found that besides the 
effects of 5-HT on the voltage waveform described above, 
5-HT alters the sensitivity of the neuron to synaptic 
perturbations. In the present paper, a reduced system of 
equations which makes use of the slow rate of change of 
two system variables is used to analyze first the control 
bursting oscillation (i.e. no 5-HT), then the way in which 
5-HT modifies this oscillation, and finally the effects of 
voltage perturbations applied to the system under the 
influence of various concentrations of 5-HT. 

2 Mathematical models 

2.1 The RIs  model 

We give here a brief account of the mathematical model 
of R 1 s which is described in detail in Bertram (1993). The 
model incorporates eight ionic currents, yielding a sys- 
tem of ten differential equations. Of these currents, five 
are spike currents and three are subthreshold currents. 
The former generate the action potentials while the latter 
are responsible for driving the bursting oscillation. The 
equation describing the rate of change of membrane 
potential is 

dV 
dt = -- (I~,~ke + I~,b -- I , , ,) /CM (1) 

where 

Isplke = IN, + Ic, + Ixa + I r 2  -b IL (2) 

I,ub = I~SR + Iu + IR (3) 

and CM is the membrane capacitance. IN, and Ica are 
excitatory sodium and calcium currents, while It1 and 



50 IK2 a r e  inhibitory potassium currents. IL is a small leak- 
age current and the applied current, lapp, is set to zero in 
the discussions which follow. 

The bursting oscillation is generated by the interac- 
tion of the two subthreshold excitatory currents INSR and 
Io. INSR is a calcium current which initiates the burst and 
then inactivates during the burst as calcium ions accumu- 
late inside the cell. Io is a cation-nonspecific current 
which summates during the burst. When the sum of these 
two current falls below threshold the burst terminates 
and membrane potential falls to a hyperpolarized value 
following a voltage excursion known as the depolarizing 
after-potential (DAP). The model bursting oscillation is 
shown in Fig. 1. 

The equations used to describe INsR and Io are 

INsg = gNSRq4yoo(V)( V -- Vca ) (4) 

Io = -- z (5) 

where 
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Fig. 1. Model bursting oscillation. The DAP, or voltage "hump" fol- 
lowing each burst of spikes, is a common feature of the Rls 
oscillation 

dq 
d t =  [q~o(c)- qJ/zq(V) (6) 

dz 
- -  = k=m3h -- z/z=. (7) 
dt 

The maximal conductance of IssR is denoted by gNSR, 
while Vc, is the calcium equilibrium potential. The factor 
y~(V) represents steady-state activation, while q is a cal- 
cium-dependent inactivation variable. The variable c de- 
notes intracellular free calcium concentration and the 
function zq(V) is large compared to the time constant of 
most other variables, ensuring that q will approach its 
equilibrium value qoo slowly. The term k=mah in (7) en- 
sures that Io increases with each spike, while - z / %  
ensures that the current decays exponentially between 
spikes. The constant z= is large, so that z will change 
slowly between spikes and between bursts of spikes. 

2.2 Simulated application of serotonin 

When 5-HT is applied exogenously to R15 at least two 
things happen: the maximal conductance of INSR is in- 
creased, and the maximal conductance of the subthresh- 
old inward rectifier (I1~) is increased (Drummond et al. 
1980; Benson and Levitan 1983; Lotshaw et al. 1986; 
Levitan and Levitan 1988). In the present model, the 
latter current is given by 

Ig = ~Rr~(V)(V--  Vx) (8) 

where gR is the maximal conductance and r~(V) is the 
steady-state activation function. IR is a potassium cur- 
rent which is activated only at voltages near the potass- 
ium equilibrium potential VK. In the absence of 5-HT, the 
outward current generated by IR is SO small that it plays 
no significant role in the generation of the bursting oscil- 
lation. However, in the presence of 5-HT this current 
becomes significant. 

Application of 5-HT was first simulated in Canavier 
et al. (1991) by varying the maximal conductance of an 
inward-rectifying potassium current and, for large 5-HT 

concentrations, the conductance of a slowly inactivating 
current similar to INSR. In Bertram (1993)the application 
of 5-HT was modeled by defining a functional relation- 
ship between the maximal conductance of IR and 
INSR and a dimensionless parameter S, which is 
a measure of serotonin concentration. The currents then 
become 

INSR = dNSRq4y~(V)(V-- Vca) (9) 

IR = dRroo(V)(V- IlK) (10) 

where GNsR(S) and dR(S) are functions defined for 
S �9 [0, 1] having the following properties: 

1. GNsR(O) ~ ~JNSR, dR(O) ~ gR 
2. Both GNSR and dR are saturated at S = 1 
3. GNSR and dR are sigmoidal 
4. dR increases and saturates earlier than dNSR 

Expressions for these functions are given in Bertram 
(1993). 

2.3 The reduced R15 model 

Since variables z and q change slowly compared with 
other variables in the Rx5 model, it is helpful to examine 
the asymptotic solution structure of a reduced system of 
equations, where z and q are treated as parameters. The 
entire bursting oscillation can then be constructed from 
the reduced system by slowly varying these two para- 
meters. A similar approach has proven sucessful in sev- 
eral earlier studies of bursting oscillations (Chay and 
Rinzel 1985; Rinzel and Lee 1987; Decroly and Goldbeter 
1987; Canavier et al. 1991). 

The full system may be expressed formally in vector 
form as 

d = S) (11) 
dt 



where fJ is a ten-dimensional vector and F, is a ten- 
dimensional vector function. The role played by S as the 
single system parameter subject to variation is high- 
lighted�9 Following a similar formalism, the reduced sys- 
tem may be expressed as 

d • = ~(~r; S, z, q) (12) 
dt 

where ~" and ~ are now eight-dimensional and z and 
q are additional parameters. The complete set of equa- 
tions is included in the Appendix. 

3 Analysis of the modulated voltage waveform 

3.1 Dissection of the control bursting oscillation 

Each period of the bursting oscillation consists of an 
active phase of spiking followed by a passive phase of 
slow voltage variation. Intuitively, this corresponds to 
passage from a periodic "spiking" attractor to a station- 
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ary attractor as the two "slow" parameters z and q 
are varied�9 The control (S = 0) bursting oscillation 
generated by (11) is dissected in Fig. 2. Immediately prior 
to the first spike of the burst, z ~ 0.045 nA ~ zoo (where 
z~ = %kzm~h~). For this value of z the stable and 
unstable solution branches of the reduced system (12) are 
traced out in Fig. 2a, using q as the bifurcation para- 
meter. The stationary branches are constructed using the 
automatic branch continuation and bifurcation program 
AUTO (Doedel 1981). The periodic spiking branch is 
constructed using a combination of AUTO and direct 
numerical integration of (12). 

Superimposed on this bifurcation diagram is the pro- 
jection onto the q -  V phase plane of the first spike 
generated by (11). From location A the orbit moves to the 
right along the lower reduced-system stable stationary 
branch (labeled NSo, 0.o45) as q approaches its equi- 
librium value, q~ = 1/(1 + 2co~). Since no stable equilib- 
rium solution to (11) exists for S 0, s = N o ,  o.o45 
terminates before q~ is reached�9 Thus, there is a 
saddle-node bifurcation located at q < q~ in which the 

A 
> 

E 
v 

> 

5 0  

2 5  

- 2 5  

- 5 0  

" - '  ' " I . . . .  I . . . .  I . . . . . . . .  

. 

depolar i zed  stat ionary " " "r~l . . . . .  H " ' ' ' jB  "1 

hyperpolar ized stat ionary 

? 

N~,.~s 

> 

> 

5 0  

a) q b) 

2 5  

- 2 5  

- 5 0  

' ' ' ' 1  . . . .  I . . . .  I . . . .  

J 
S 

N O ,  l O 

. . . .  | 

- 7 5  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  - 7 5  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .0  0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .0  

q 

A 
> 

E 
> 

5 0  . . , . ,  �9 �9 , �9 , �9 , ,  . , , �9 �9 . , , �9 , . , 

2 5  

- 2 5  

- 5 0  

- 7 5  
0 . 0  

I I I I ' 

� 9149149  

J 
N~ 293 

..= l l l l  . . . .  I . . . .  I . . . .  I . . . .  

0 . 2  0 . 4  0 . 6  0 . 8  

q 

> 

E 
> 

2 5  

- 2 5  

- 5 0  

- 7 5  

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . � 9149149  

. . . .  I . . . .  I . . . .  I . . . .  I , , ,  

1 �9 0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .0  

c) d) q 

Fig. 2a-d. Dissection of the control (S = 0) bursting oscillation. Reduced-system stationary and periodic spiking branches are shown along with 
portions of the full-system orbit (directed curves) projected onto the q - F plane. Periodic solutions are represented by the maximum voltage over an 
oscillation. Solid curves represent stable solutions, while dashed curves represent unstable solutions, a z = 0.045 nA; b z = 1.0 nA; c z = 2.93 nA; 
d z = 2.33 nA 
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hyperpolarized stable stationary solution of (12) coales- 
ces with an unstable stationary solution. The phase point 
moves beyond this saddle node, after which it is attracted 
to the reduced-system spiking attractor. In this way the 
passive phase is ended and the active phase begun. 

After the first spike, at V = - 25 mV in the ascending 
phase of the second spike, z ~ 1.0 nA. The reduced-sys- 
tem solution branches at this value of z, along with the 
projection onto the q -  V phase plane of the second 
spike generated by (11), are displayed in Fig. 2b. With the 
increase in z the hyperpolarized stationary branch has 
deformed and moved to the left. The value of q during the 
ascending phase of the spike is approximately 0.8, and 
since the only attractor existing at this value of q is the 
spiking attractor, the entire second spike will be gener- 
ated. Notice, however, that the phase point moves to the 
left during the descending phase of the spike, thus travel- 
ling in the same direction as the stationary solution 
branch. 

At V = - 25 mV in the ascending phase of the eighth 
spike, z ~ 2.93 nA. The stationary solution branch has 
continued to narrow and move to the left, as has the 
projection of the eighth spike (Fig. 2c). Again, since the 
orbit does not intersect s N o , 2 . 9 3  in the ascending phase, 
the complete spike is generated. 

At V = - 25 mV in the ascending phase of the tenth 
spike, z has decreased to approximately 2.33 nA. This 
decrease occurs because the increase of z with each spike 
is exceeded by the exponential decrease of z between 
spikes at this late stage in the burst. As we see from 
Fig. 2d, the full system orbit has now "caught up with" 
the reduced stationary branch and the two intersect at 
location B. Thus, the orbit is attracted to a point on the 
stationary branch and the tenth spike is terminated 
prematurely, with voltage decaying after rising to ap- 
proximately - 2 5  mV. In this way the system passes 
from the active to the passive phase of the oscillation. 

The rise and premature termination of the spike 
shown in Fig. 2d is the rising phase of the DAP. The 
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Fig .  3. F a l l i n g  p h a s e  o f  t h e  D A P  a n d  t he  r e m a i n d e r  o f  t h e  i n t e rbu r s t .  
A t  l o c a t i o n s  B, C, D o n  t h e  f u l l - s y s t e m  o rb i t  z = 2.33 nA ,  1.0 n A  a n d  
0.045 n A  r e spec t i ve ly  

falling phase, along with the rest of the interburst, is 
dissected in Fig. 3. At location B, z ~ 2.33 nA and the 

s phase point lies close to N o , 2 . a 3 ,  having been captured 
by a point on this attracting branch. Since the system is 
no longer spiking, z decays and at location C has fallen to 
approximately 1.0 nA. By location D the falling phase of 
the DAP is complete, as z has decreased to 
0.045 nA ~ zoo. It is evident that the phase point is fol- 
lowing the reduced-system stationary curves down and 
to the right as they deform with the decrease in z. From 
location D the phase point travels along NSo. o.o~5 until its 
point of termination, at which time the phase point leaves 
the branch and is attracted once again to the spiking 
attractor, reinitiating the active phase. 

The reduced-system depolarized stationary branch 
and the periodic spiking branch (Fig. 2) will now be 
described. The latter bifurcates branches off the former 
via a Hopf bifurcation. Otherwise, the depolarized sta- 
tionary branch plays no clear role in the system dy- 
namics. The spiking branch is unstable upon its emerg- 
ence, but gains stability through a saddle-node bifurca- 
tion and a pair of period-doubling bifurcations. These 
bifurcations occur outside the physical range of q and are 
not illustrated. For q ~< 1 the branch keeps its stability 
until its termination via an infinite-period homoclinic 
bifurcation. That is, if q/z denotes the value of q at which 
the rightmost saddle-node bifurcation occurs on the hy- 
perpolarized stationary branch for some fixed z, then as 
the spiking branch is traversed the period of the reduced- 
system oscillation grows without bound as q ~ qn. This 
rightmost limit point is thus a homoclinic point of (12). 

3.2 Reduced-system analysis of the modulatory effects 
of serotonin 

The effects of 5-HT on the model bursting oscillation are 
shown in Fig. 9 of Bertram (1993). At low concentrations 
the depth and duration of the interburst are increased, as 
is the number of spikes in the active phase. At higher 
concentrations spiking is terminated and the cell remains 
silent at a hyperpolarized voltage. At even higher concen- 
trations the cell spikes tonically. Thus, 5-HT has both 
inhibitory and excitatory effects when applied to the 
same neuron, contrary to what is typically expected of 
a neurotransmitter. These effects are perhaps best under- 
stood in terms of alterations made to the solution struc- 
ture of the reduced system (12). Separate analysis is 
carried out below for low concentrations and medium to 
high concentrations of applied 5-HT. 

3.2.1 Low concentrations of serotonin 

In Fig. 4 hyperpolarized stationary solution branches to 
(12) are shown for several values of z taken on during the 
passive phase of the bursting oscillation. S is set to 0.3, 
representing a low concentration of 5-HT. Superimposed 
is the projected orbit of the full system during the inter- 
burst. The orbit initially rises to form a spike, but is 
stopped prematurely due to attraction to a stable point 
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Fig. 4. Reduced-system hyperpolarized stationary branches for 
S = 0.3. Also projected onto the q -  V plane is the slow manifold 
(z = zoo) and the orbit of the full system during the interburst (directed 
curve). Marked points indicate locations on the orbit at which 
z = 2.8 nA, 1.0 nA, 0.3 nA and 0.05 nA 

on the z = 2.8 nA branch [i.e. N s, 2.s (0.412), the point on 
NS2.s at which q = 0.412]. From here the phase point 
follows the reduced-system stationary curves down and 
to the right as voltage decreases and q approaches its 
steady-state value. Eventually the system reaches 
a pseudo-equilibrium state at which all variables other 
than q have reached equilibrium. The collection of these 
states for all applicable values of q forms a one-dimen- 
sional "slow manifold" along which the orbit travels after 
completion of the DAP. The slow manifold is traversed 
until its termination via saddle-node bifurcation, after 
which the phase point is again attracted to the spiking 
solution and the active phase reinitiated. 

The projection of the slow manifold onto the q - V 
plane is labelled "z = zoo" in Fig. 4, where zoo = 
rzk=m~(Voo)hoo(Voo) and where Voo is a function of q. 
The lower knee of the manifold, as well as the lower knee 
of stationary branches corresponding to z near zoo, is 
greatly exaggerated with respect to the lower knee of any 
of the branches in Fig. 3, both in extent and depth. Since 
the phase point travels along this exaggerated manifold 
during the latter part of the passive phase, both the depth 
and duration of the interburst will be greater for the 
S = 0.3 oscillation than for the control oscillation. The 
effects of 5-HT on the interburst are, therefore, due ex- 
clusively to this exaggeration of the lower knee of the 
reduced-system stationary branches. 

The other effect of low concentrations of 5-HT, the 
increase in the number of spikes per burst, is again largely 
a consequence of the exaggeration of the lower knee of 
the slow manifold, which places the phase point further 
to the right in the q - V plane at the initiation of the 
active phase. An additional factor is the deformation of 
the upper knee (which, for some z, is the only knee) of the 
family of stationary branches. At any value of z, the 
location of the upper knee is further to the left when 
S = 0.3 than at control. This is because, with the increase 

in gNSR, q must reach a lower value before INS R will 
become sufficiently small for the spiking to be termin- 
ated. As a result of these two factors, more spikes are 
generated as more of the spiking branch must be traver- 
sed during the active phase. 

3.2.2 Medium to high concentrations of serotonin 

As S is increased, the lower knee of the slow manifold 
moves to the right in the q - V  plane, until at 
S = $1 = 0.305 the knee intersects the projection of the 
curve C1 at q = qoo = 0.990. This latter curve is the inter- 
section of nine nullclines, excluding the V nullcline, and is 
parameterized by V. The intersection of the slow mani- 
fold with C~ is located at the point of intersection of the 
ten nullclines of the full system, and thus is a stationary 
solution of (11). As S is increased beyond S~ the two 
curves intersect at two hyperpolarized locations rather 
than one, so the single hyperpolarized stationary solution 
splits into an unstable and a stable solution. The slow 
manifold and C~ also intersect at a depolarized location 
for each S, corresponding to an unstable solution of (11). 
For  the asymptotic stationary solution structure of the 
full system, see Fig. 10 in Bertram (1993). 

With the birth of the stationary solution at S~ the 
bursting oscillation is replaced for all larger values of 
S by a stable stationary solution coexisting with a stable 
beating solution. Poincar6 sections are employed to in- 
vestigate this region of bistability. A Poincar6 section is 
constructed for the control bursting oscillation by sampl- 
ing the oscillation (after the removal of transients) at 
V = - 2 5  mV in the ascending phase of each action 
potential (as well as the DAP), recording both z and q. 
This data is plotted in the z - q plane in Fig. 5a. Along 
with the Poincar6 section, a curve is included which is 
a graph of the q value of the upper knee of the reduced- 
system stationary branch for each value z at which it 
exists. That  is, the curve is a branch of limit points which 
tells us, for instance, that as z increases, q decreases, so 
that the location of the upper knee moves to the left in the 
q - V plane as z increases during the first portion of the 
burst (compare with Fig. 2). The curve is also a branch of 
homoclinic points since, when S = 0, the upper knee is to 
the right of the lower knee in the q - Vplane for each z at 
which the lower knee exists. For  z sufficiently large, 
the upper knee ceases to exist, in which case no 
hyperpolarized stationary solution of (12) exists for any 
value of q. 

The location of the upper knee is important, since, as 
was observed in Fig. 2, a burst terminates when the orbit 
falls to the left of the upper knee in the q - V plane. In 
the z - q  plane, this corresponds to the orbit falling 
below the upper-knee limit point (LP) branch. At control, 
there are nine spikes in the burst and one DAP. The 
spikes correspond to the Poincar6 points above the LP 
branch in Fig. 5a, while the DAP corresponds to the 
single point below the LP branch. From the location of 
this latter point, the orbit (not shown) is directed up and 
to the left until the leftmost Poincar6 point is reached and 
the spiking resumed. 
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the ascending  phase  of the ac t ion  po ten t i a l  o r  D A P  

At S = 0.5, at which the system does not burst, the 
corresponding Poincar6 section and LP branch are 
shown in Fig. 5b. Here a suprathreshold voltage per- 
turbation has been applied to the resting equilibrium 

system, producing a long transient burst of action poten- 
tials. The point in the upper-left corner of the figure 
corresponds to the first spike following the perturbation, 
while the point below the LP branch corresponds to the 
DAP which follows the transient burst. From this latter 
point the orbit (not shown) moves up and to the left until 
the stable equilibrium point is reached. The location of 
this point in the z - q  plane ( z = 5 . 2 3 x 1 0 - 4 n A ,  
q = 0.995) is above the LP branch, yet the system does 
not reenter the active phase. This is not surprising, since 
the location of the upper knee is important only in the 
passage from the active to the passive phase. It is the 
lower knee which is important in the passage from the 
passive to the active phase. 

A similar voltage perturbation is applied to the rest- 
ing system with S = 0.65 (Fig. 5c). This time no Poincar6 
point crosses the LP branch, and the spiking never ter- 
minates. Instead, the sequence of Poincar6 points ap- 
proaches a stable fixed point above the LP branch, cor- 
responding to a beating oscillation. 

Due to the all-or-nothing nature of the action poten- 
tial, if a voltage perturbation is applied to the resting 
system of magnitude sufficient to induce a spike, the 
precise magnitude of the perturbation is unimportant. In 
other words, all suprathreshold voltage perturbations 
have the same effect on the system. With this considera- 
tion, we see evidence in Fig. 5 that it is not possible 
to reach the basin of attraction of the beating oscillation 
by applying a voltage perturbation to the stationary 
solution when "medium" concentrations of 5-HT 
($1 < S < $3, where $3 ~ 0.65) have previously been ap- 
plied. However, any suprathreshold voltage perturbation 
is sufficient to move the system off the stationary point 
and into the beating basin after previous application of 
a "high" concentration ($3 ~< S ~< 1.0) of 5-HT. There- 
fore, at medium 5-HT concentrations the neuron will 
generally be observed in the silent state, while for larger 
concentrations it will often be found in the beating state. 

As was mentioned earlier, when S = 0 and for any z, 
the rightmost limit point of the reduced-system hyper- 
polarized stationary branch is a homoclinic point for the 
system (12). For  most S > 0, however, the lower knee 
extends beyond the upper knee for a range of values of z, 
in which case the upper-knee limit point is not a homo- 
clinic point. However, neither is the lower-knee limit 
point a homoclinic point. This is demonstrated in Fig. 6, 
where the hyperpolarized stationary branch is plotted for 
S = 0.3, z = 0.05 nA along with the minimum voltage of 
the spiking oscillation for each value q at which the 
oscillation exists. The oscillation clearly exists at values 
of q to the left of the lower knee, finally terminating at 
a homoclinic point located on the stationary branch 
between the lower knee and the "switchback" limit point 
separating the lower and upper knee. 

In Fig. 7a the upper-knee, lower-knee, and switch- 
back LP branches are illustrated for S = 0.3. Superim- 
posed is the Poincar6 section of the active phase of the 
periodic burst and the projection onto the z - q plane of 
the orbit during the interburst. Notice that the lower- 
knee and switchback limit points coalesce at z ~ 0.5 nA, 
q ~ 0.6, so that only one knee exists for all larger values 
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of z. When a Poincar+ point crosses the upper-knee 
branch the active phase is terminated. Because the upper 
knee is a homoclinic point at this location in the z - q 
plane, the spikes of the active phase are generated at 
a relatively low frequency near this point of termination. 
During the DAP the orbit travels almost horizontally in 
the z - q plane as Io, and thus z, discharges. Following 
the DAP, z ~ z~ so that the orbit travels almost verti- 
cally in the z - q plane as IusR loses its inactivation. The 
passive phase is terminated when the orbit crosses the 
lower-knee branch and a new spike is generated. For  
$1 < S, the orbit reaches an equilibrium point before the 
lower-knee branch is crossed and the active phase is not 
reentered. 

The portion of Fig. 7a containing the lower-knee 
branch is enlarged in Fig. 7b. The upper-knee branch 
consists of homoclinic points up until the point at which 
the lower knee extends beyond the upper knee in the 
q -  V plane. The homoclinic points from this point on 
are included in Fig. 7b. Because of the close proximity of 
the first few Poincar6 points to the homoclinic branch, 
the first few spikes of the active phase are generated with 
low frequency. 

4 Sensitivity to synaptie perturbations 

4.1 Passive-phase perturbations 

How does 5-HT affect the sensitivity? This question was 
briefly addressed above and will be investigated here in 
more detail, beginning with the effects of perturbations 
applied during the passive phase of the bursting oscilla- 
tion and, when S > $1, to perturbations applied to the 
resting system. The reduced system of equations will 
again be employed and instantaneous depolarizing volt- 
age perturbations applied as an approximation to excita- 
tory synaptic events. 

At each value of z during the passive phase of the 
control oscillation the reduced-system stationary branch 
has at least one stable component, s No.z, and one unsta- 
ble component, N~,= (Fig. 3). At any such z and at any 
value of q taken on during the passive phase, the point 
NSo,=(q) draws the full-system orbit to it, while N~o,=(q) 
repels the orbit. If a depolarizing voltage perturbation is 
applied to the orbit of sufficient magnitude to displace 
the phase point to a location above N~,=(q), then at least 
one spike is generated, terminating the passive phase. 
The later in the interburst the perturbation is applied, the 
greater the number of spikes which will be generated as 
a result of the perturbation. This is consistent with ex- 
perimental data (Benson and Adams 1987). However, at 
all times during the interburst, particularly in the post- 
DAP interburst, the threshold N~,z(q) is at a voltage 
significantly higher than the voltage of the phase point, 
so that only large perturbations can terminate the passive 
phase and, in effect, reset the phase of oscillation. This 
has also been observed experimentally (Carpenter et al. 
1978). 

Because 5-HT exaggerates the lower knee of the fam- 
ily of stationary branches, it lowers the spike threshold 
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during the post-DAP interburst (Fig. 4). Therefore, while 
large perturbations are still required to terminate the 
passive phase when applied during the DAP, much 
smaller perturbations suffice when applied after the 
DAP. In this way, the application of 5-HT increases the 
sensitivity of the neuron to excitatory synaptic perturba- 
tions applied during the passive phase�9 

We now turn to an examination of perturbations 
applied to the system at rest. In Fig. 8 a portion of the 
slow manifold is shown for the case S = 0.65. Also shown 
is the curve C~, which was described earlier for the case 
S = 0. Any point of intersection of this curve with the 
slow manifold corresponds to a point of intersection of 
all ten nullclines, and hence to a stationary solution of the 
full system (11). Two such points exist at hyperpolarized 
voltages�9 The lower point of intersection, at NS.65, z~ (qoo), 
is the single stable solution, while the intersection at 
N~.65.z| is an unstable solution [an additional un- 
stable solution of (11) occurs where the curve C1 inter- 
sects the reduced-system depolarized stationary branch]. 
Note that q~ ~ 0.992 at the stable point of intersection, 
while qoo ,~ 0.936 at the unstable point. 

If a voltage perturbation is applied at s N0.65,~(qoo) of 
sufficient magnitude to displace the phase point above 
the N ~ 0.65,=~ curve [more precisely, across the stable 
manifold of the point in eight-dimensional space whose 
projection onto the q - V plane is on  N ~ . 6 5 , z  ~ directly 
above NS.65,z| then a spike will be generated and 
the system will continue to spike as the orbit approaches 
the stable beating solution (see Fig. 5c). A similar scen- 
ario occurs for lower values of S, although the perturba- 
tion-induced spiking is transient in such cases (Fig. 5b). 
Hence, the point on N ~ directly above N s 

0 . 6 5 , Z ~  0.65,z~(q~o) 
is a threshold point, lying close to the invariant manifold 
(or separatrix) through N~ 65 z ( q o o )  which separates the 

�9 . . "  ' o O  . . 

stationary basin of attraction and the beating basra of the 
full system�9 

4�9 Active-phase perturbations 

The effects of voltage perturbations applied during the 
active phase of a bursting oscillation or during a beating 
oscillation are investigated next. Analysis is made in the 
z - q plane with the aid of a Poincar~ section of the 
oscillation and the appropriate upper-knee LP branch�9 
Inhibitory synaptic events are simulated by perturbing 
the membrane potential at - 2 5  mV in the ascending 
phase of the action potential to a more negative voltage. 
Phase plane analysis (not shown) indicates that perturba- 
tions applied in such a manner are among the most 
successful in prematurely terminating the active phase of 
the burst�9 

In Fig. 9 perturbations are applied to various spikes 
in the active phase of the control bursting oscillation�9 In 
each case, the membrane potential is perturbed from 
- 25 mV to - 35 mV. The spike to which the perturba- 

tion is applied is terminated prematurely, so that z con- 
tinues to decay exponentially without being recharged. 
As a result, the orbit initially moves to the left in the z - q 
plane before switching directions as a new spike finally 
develops�9 The initial leftward segment of the orbit follow- 
ing a perturbation is plotted in Fig. 9, emanating from 
the appropriate Poincar6 point�9 If the perturbation is 
applied to the ascending phase of spike 2 there is little 
subsequent leftward movement in the orbit, since z is 
small early in the burst and thus the exponential decay in 
z following the perturbation is small�9 In contrast, if the 
perturbation is applied in the ascending phase of spike 8, 
then the orbit will be displaced far to the left in the z - q 
plane�9 In fact, the phase point is displaced across the LP 
branch and the active phase terminated without any 
additional spikes�9 

This analysis reveals a couple of points. First, per- 
turbations applied early in the active phase of the burst 
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must be very large to terminate this phase. Indeed, it is 
not even possible to terminate the active phase with 
hyperpolarizing perturbations applied during the first 
few spikes, since the LP branch does not exist to the left 
of the corresponding Poincar6 points. Later in the burst, 
much smaller perturbations are sufficient to prematurally 
terminate the active phase. One may also conclude from 
this analysis that upon the application of 5-HT the sys- 
tem becomes less sensitive to perturbations applied dur- 
ing the active phase. This is because the Poincar6 points 
of the serotonin-modulated system lie further from the 
LP branch than do those for the control system (see, for 
example, Fig. 5c). 

If a hyperpolarizing perturbation is applied to a beat- 
ing oscillation (represented by a single point in the Poin- 
car6 section), the oscillation will be terminated and the 
system will approach its stationary equilibrium as long as 
the perturbation is large enough so that the perturbed 
orbit crosses the LP curve. Otherwise, the beating oscilla- 
tion will persist. 

5 Summary and discussion 

In this paper the endogenous bursting oscillation gener- 
ated in the somal region of molluscan neuron R15 is 
dissected using a mathematical model consisting of a sys- 
tem of ten coupled nonlinear ordinary differential equa- 
tions. Using tools from dynamical systems theory, along 
with a reduced system of equations formed from the 
original system by treating two variables as slowly vary- 
ing parameters, the bursting oscillation is shown to be 
generated as the fast subsystem sweeps back and forth 
between spiking attractors and stationary attractors with 
variation of the two slow variables. This analysis reveals 
that the control system is relatively insensitive to synap- 
tic voltage perturbations applied during the passive 
phase. In addition, we see that suprathreshold perturba- 
tions applied later in the passive phase induces an active 
response consisting of more spikes than one applied early 
in the passive phase. Both of these observations are 
consistent with experimental data (Benson and Adams 
1987; Carpenter et al. 1978). Finally, we see that per- 
turbations applied later in the active phase are more 
likely to terminate the spiking than those applied early in 
the active phase. 

When the neurotransmitter serotonin is applied 
exogenously to neuron R15 it modulates the endogenous 
voltage waveform in a manner which is somewhat un- 
characteristic of neurotransmitters. This waveform 
modulation is investigated and the dynamics behind the 
modulation illuminated using the same tools employed 
in the analysis of the control oscillation. This analysis 
indicates that the application of serotonin makes the 
neuron more sensitive to synaptic perturbations applied 
during the passive phase of bursting as the spike thresh- 
old is lowered during the post-DAP interburst. Serotonin 
also makes the system less sensitive to perturbations 
applied during the active phase, with perturbations ap- 
plied later in the active phase again being more effective 
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than those applied early in prematurally terminating the 
active phase. 

With sufficiently large applications of serotonin the 
bursting oscillation may be terminated and the system 
found in a quiescent state, or the oscillation may be 
transformed into a continuous spiking or beating oscilla- 
tion. These qualitative changes in waveform are analyzed 
and recast in terms of competition between a stationary 
and a beating attractor. A voltage threshold is found 
above which perturbations from the resting state will 
lead to either a transient burst of spikes or a continuous 
train of spikes. Additionally, a condition is given which 
must be satisfied in order for a hyperpolarizing voltage 
perturbation to perturb the system from its beating at- 
tractor to its stationary attractor. 

These results should be interpreted in light of the role 
played by R1 s in regulating water balance in Aplysia.  
R15 is a neuroendocrine cell which releases, with each 
voltage spike, a hormone which induces the intake of salt 
and water through the skin of the animal. By increasing 
the sensitivity of the neuron to excitatory synaptic per- 
turbations applied during the passive phase of the burst- 
ing oscillation or to the neuron in its quiescent state, 
serotonin increases the ability of neurons synapsing onto 
R~5 to increase salt and water intake, thus strengthening 
the coupling between the electrical activity of surround- 
ing neurons and water balance in the animal. Since 
serotonin mimics the effects on R15 of egg-laying hor- 
mone, which is secreted by a pair of neuroendocrine cell 
clusters known as bag cells for up to 40 min during egg 
laying (Kandel 1979; Mayeri et al. 1985; Levitan et al. 
1987), the modulations in voltage waveform and system 
sensitivity can be expected to persist throughout the 
egg-laying process. 
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Appendix: The model R15 system 

The voltage equation is 

dV 
dt  

- -  -- -- (I~pik~ + I~b -- I~pp)/CM 

where 

Isvlke = IN. + Ic .  + I t1  + IK2  -[- ! L ,  

I,,,b = INSR + ID -'k l g  

and 

IN,, = ~N,,mah(V - VNa), 

I t1  = ~ K l n 2 j ( V - -  VK), 

It. = g L ( V - -  VL), 

I D ~- - -  Z, 

Ic .  = O c . x 2 ( V -  Vc~,) 

IK2 = 0 K 2 ( v -  vK)/(~ + 1) 

INsg = GNsRq4 yoo(V)(V - Vca) 

I,~ = 8 R r o ~ ( v ) ( v -  ~) .  
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Othe r  var iables  change  with t ime accord ing  to 

dm dn 
- -  = I m p ( V )  - -  m]/'~m(V), 
dt  
dh 
d t  = [hoo(V) --  h ] / z h ( V ) ,  

dx  
d t  = [ x o ~ ( V ) -  x ] / z x ( V ) ,  

dq 
d t  = [q~(c) - q ] / z q ( V ) ,  

dc 
d t  = -- k i[  lca + INSR] -- kec 

All p a r a m e t e r  values,  infini ty funct ions and t ime con- 
s tants  are  given in Be r t r am (1993), as are express ions  for 
CrNsR(S) and  dR(S). 

d t  [ n o ~ ( V ) -  n] /zn(V)  

dj 
d t  = [ j o o ( V ) - j ] / z j ( V )  

d / ~  

d t  = [p~o(V) - #]/z~  

dz 
d t  = kz m 3 h - z/z~ 
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