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Abstract. Mixed mode oscillations (MMOs) are complex oscillatory wave-

forms that naturally occur in physiologically relevant dynamical processes.

MMOs were studied in a model of electrical bursting in a pituitary lactotroph
[34] where geometric singular perturbation theory and bifurcation analysis were

combined to demonstrate that the MMOs arise from canard dynamics. In this
work, we extend the analysis done in [34] and consider bifurcations of canard

solutions under variations of key parameters. To do this, a global return map

induced by the flow of the equations is constructed and a qualitative analysis
given. The canard solutions act as separatrices in the return maps, organ-

ising the dynamics along the Poincaré section. We examine the bifurcations

of the return maps and demonstrate that the map formulation allows for an
explanation of the different MMO patterns observed in the lactotroph model.

1. Introduction. Nerve and endocrine cells exhibit complex oscillatory waveforms
known as bursts [9]. These electrical patterns are characterized by periods of elec-
trical spikes riding on top of an elevated voltage plateau, followed by periods of
quiescence during which the cell is repolarized. We distinguish between two classes
of bursting oscillations: plateau and pseudo-plateau bursting [21, 24, 28, 29, 32, 33].
Plateau bursting is characterized by periods of large amplitude fast spiking activity
in the active (depolarized) phase whilst pseudo-plateau bursting is characterized
by small amplitude spikes in the active phase. The bursting pattern is usually
associated with higher levels of hormone or neurotransmitter secretion and there
is evidence it may have important roles in neuronal signalling [22, 25]. In most
bursting models in endocrine cells, the bursting oscillations are driven by the slow,
systematic variation in the calcium concentration [21, 28, 32, 39]. However, in the
pituitary lactotroph model that we consider [31], the pseudo-plateau bursting os-
cillations persist almost unaltered when the calcium concentration is fixed. This
suggests an intrinsic bursting mechanism independent of the calcium.
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Parameter Value Definition
C 0− 10 pF Membrane capacitance
gK 0− 10 nS Maximal conductance of delayed rectifier K+ channels
gA 0− 25 nS Maximal conductance of A-type K+ channels
gCa 2 nS Maximal conductance of Ca2+ channels
VCa 50 mV Reversal potential for Ca2+

Vm −20 mV Voltage value at midpoint of m∞
sm 12 mV Slope parameter of m∞
VK −75 mV Reversal potential for K+

Vn −5 mV Voltage value at midpoint of n∞
sn 10 mV Slope parameter of n∞
τn 40 ms Time constant for n
Va −20 mV Voltage value at midpoint of a∞
sa 10 mV Slope parameter of a∞
Ve −60 mV Voltage value at midpoint of e∞
se 10 mV Slope parameter of e∞
gL 0.3 nS Maximal conductance of leak current
τe 20 ms Time constant of e

Table 1. System parameters for the pituitary lactotroph model (1)

The model is a minimal description of the electrical activity in a pituitary lac-
totroph with the Ca2+ concentration clamped [31]. The equations governing the
evolution of the system are

C
dV

dt
=− (ICa + IK + IA + IL) ≡ gmaxf(V, n, e),

dn

dt
=
n∞(V )− n

τn
,

de

dt
=
e∞(V )− e

τe
,

(1)

where gmax = 10 nS is a typical conductance scale. The ionic currents are defined
via Ohm’s law by

ICa =gCam∞(V − VCa),

IK =gKn(V − VK),

IA =gAa∞e(V − VK),

IL =gL(V − VK),

and the steady state activation functions have the form

x∞ =
1

1 + exp
(
Vx−V
sx

) ,
where x represents an activation variable (m,n and a). The steady state inactivation
function is

e∞ =
1

1 + exp
(
V−Ve

se

) .
Parameter values and definitions are listed in Table 1. The state variables (V, n, e)



BIFURCATIONS OF MMOS 2881

represent the membrane potential and gating variables for the activation of IK and
inactivation of IA, respectively. The key parameters of interest are the membrane
capacitance C, the conductance of delayed rectifier channels gK and the conduc-
tance of A-type channels gA. Together, these parameters control the amplitude and
number of spikes per burst [34].

By introducing a dimensionless time scale ts = t/kt with reference time scale
kt = τe = 20 ms, system (1) transforms to

C

gmaxkt

dV

dts
≡ εdV

dts
=f(V, n, e),

dn

dts
=
kt
τn

(n∞(V )− n) ≡ g1(V, n),

de

dts
=
kt
τe

(e∞(V )− e) ≡ g2(V, e),

(2)

and we are able to identify the typical time scales of the lactotroph model [34].1

The membrane potential V evolves on a fast timescale (given to leading order by
C/gmax < 1 ms) whilst (n, e) evolve on slow timescales (τe = 20 ms and τn = 40
ms). In particular, decreasing C increases the timescale separation which is reflected
in the singular perturbation parameter ε = C

ktgmax
� 1. Thus, system (2) is a

singularly perturbed problem with slow variables (n, e) and fast variable V and
perturbation parameter ε evolving on the slow (dimensionless) timescale ts.

Switching to a dimensionless fast timescale tf = ts/ε yields an equivalent repre-
sentation of (2):

dV

dtf
=f(V, n, e),

dn

dtf
=εg1(V, n),

de

dtf
=εg2(V, e).

(3)

Using geometric singular perturbation theory [10, 17], one of the key results shown
in [34] is that the pseudo-plateau bursting is actually a canard-induced mixed-
mode oscillation (MMO) [2] where a MMO pattern corresponds to a switching
between small amplitude oscillations (spikes) and large amplitude relaxation type
excursions (Figure 1). The basic classification of MMOs is based on the number of
small oscillations s and the number of large oscillations L, typically denoted Ls and
called the MMO signature. The MMOs are the result of the interaction between
local and global mechanisms. The small amplitude oscillations are caused by a local
twisting of trajectories near a folded singularity [26, 35, 38]. The large spikes arise
from the global return of trajectories. For an extensive survey of canard induced
MMOs, we refer to [6].

A primary goal of this study is to understand the dynamics of spike adding in
pseudo-plateau bursting. That is, to understand why the spike number in a burst
increases or decreases as one of two key parameters (maximal conductances of two
ionic currents) is varied. Such studies have been performed previously on plateau

1 In general, one also has to define a typical voltage scale kv and define the dimensionless
voltage v = V/kv to obtain a dimensionless system and, hence, the typical time scales of the

system (see [34] for details). Here, kv does not influence the order of the time scales and we keep
the original voltage variable V for easier comparison with data.
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Figure 1. 14 MMO pattern observed in (1) for C = 2 pF, gK =
4.1 nS and gA = 4 nS.

bursting [30] and, more recently, on pseudo-plateau bursting [24, 33]. In Section 2
we provide a detailed investigation of the bifurcation structure of pseudo-plateau
bursting (MMOs) similar to [24] to determine the regions in parameter space where
spike transitions occur. Following the work done in [36, 37] for a stellate cell model,
we focus primarily on 1s and related MMO patterns. In Section 3 we give a summary
of the geometric analysis presented in [34] where the 3D system (1) is formally de-
composed into a 2D slow subsystem coupled to a 1D fast subsystem. This slow/fast
analysis helps us to understand the pattern of spike additions and the dynamics
underlying them. We also review the pertinent canard theory [2, 26, 35, 38] and
examine the geometry of the system for C 6= 0 in detail. In particular, we calculate
the intersections of invariant manifolds [3, 4, 5] to identify the exact locations of
canards which are boundaries of different MMO patterns. The comparison of the
singular limit predictions with the observed MMO boundaries shows that the sin-
gular limit analysis is able to predict these different MMO boundaries sufficiently
well.

In Section 4, we introduce a suitable 1D Poincaré (first return) map [13, 15, 19,
23, 36, 37] which covers the essential dynamics, as an alternative method for under-
standing the spike adding transitions. In Section 5 we investigate the bifurcations
of the return maps which explain the bifurcation structure of MMOs observed in
Section 2. Again, certain topological features of the return maps can be predicted
from the corresponding singular limit return maps and, hence, explain certain bifur-
cation structures. Thus, the bifurcation analysis of system (1) provides a view of the
sequence of spike-adding transitions and the associated periodic bursting solutions,
while the slow/fast analysis and 1D return maps help us to understand why the
spike-adding transitions occur. Finally, we conclude with a discussion in Section 6.

2. Bifurcations of MMOs. In [34], the authors identified the region in (gK , gA)
parameter space where MMOs exist for C = 2 pF. A discussion of the boundaries
delimiting the bursting regime was provided and an argument given for how the
MMOs change in the interior of the bursting region. Here, we extend that work
and perform a full system bifurcation analysis of (1) with particular emphasis on
identifying a common sequence of bifurcations from a stable 1s MMO pattern to a
stable 1s+1 MMO pattern, s ≥ 0.
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Figure 2. Bifurcations of system (1) along the horizontal line
gA = 4 nS for C = 2 pF. (a) The left inset shows a neighbour-
hood of the saddle-node of periodics of the bursting families for
s ≥ 2. Only the branch s = 1 connects to the Hopf branch at a PD
bifurcation point. The right inset shows that the s = 2 bursting
family is a closed isola of periodic orbits. This is true for all burst-
ing families s ≥ 2. (b) Region between the spiking (s = 0) and first
bursting (s = 1) families where an isola of orbits with signature
1011 have been computed. Note that the s = 1 branch connects to
the s = 0 branch at a PD bifurcation point. (c) Transition region
between s = 1 and s = 2 MMOs.

2.1. Horizontal bifurcations. By fixing C = 2 pF, gA = 4 nS, we consider only
those bifurcations that arise from variations in gK , the biophysical parameter that
controls the repolarizing current IK . Using AUTO [7, 8], a bifurcation diagram was
calculated as shown in Figure 2, where gK is the principal continuation parameter
and L2 norm refers to the standard Euclidean norm (for equilibrium points) or the
L2 norm (for periodic solutions).
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The spiking family (labelled s = 0 in Figure 2) connects to the depolarized equi-
librium curve 2 (black ED) at subcritical Hopf bifurcations (HB) at gK ≈ 3.67 nS
and gK ≈ 36.99 nS (only one Hopf bifurcation is shown). The first bursting family
(labelled s = 1) connects to the spiking family at period doubling (PD) points at
gK ≈ 6.127 nS and gK ≈ 3.592 nS. The rest of the MMO families are isolated closed
curves of periodic orbits. These isolas are born in saddle-node of periodic orbits
bifurcations in a neighbourhood of gK ≈ 3.592 nS and possess stable plateau regions
which never overlap. Between each pair of MMO families s = n and s = n + 1 for
n = 0, 1, 2, . . ., there is a small interval where neither branch is stable. In these gK
intervals, we find isolas of more complicated MMO patterns. The MMO signature
in these parameter intervals is always some mixture of 1n and 1n+1. Figure 2(b)
shows only one of these isolas with signature 1011. The stability plateau of the
MMOs in these parameter intervals decreases rapidly with the complexity of the
MMO signature.

Figure 2(b) shows the gK window where the s = 0 spiking and s = 1 bursting
curves meet along with the 1011 MMO. In order of decreasing gK , there are 4
significant bifurcations for the s = 0 spiking and s = 1 MMOs. The saddle-node of
periodic orbits (SN) point on the spiking branch at gK ≈ 6.127 nS labelled SNs=0

1

marks the location where the first bursting family and additional isolas of mixed
MMO type are born. There is also a period doubling (PD) bifurcation labelled
PDs=0

1 at almost the same gK value. The spiking branch s = 0 remains stable
until the SN point marked by SNs=0

2 at gK ≈ 6.1235 nS is reached. Then there is
a PD point labelled PDs=1

2 at gK ≈ 6.1213 nS where the s = 1 bursting branch
becomes stable. The parameter window between PDs=1

2 and SNs=0
2 is filled with

stable branches of isolas with mixed MMO signature (only branch shown is 1011).
The transition from the s = 1 bursting branch to the s = 2 bursting branch differs

slightly from the spiking to bursting transition as the s = 1 and s = 2 families do
not connect to each other (Figure 2(c)). Nevertheless, the bifurcation sequence is
similar. The 12 isola is born as an unstable family of orbits for decreasing gK in a SN
point (labelled SNs=2

3 ) whilst the 11 branch remains stable. The s = 1 branch then
loses stability at the SN point indicated by SNs=1

4 and another parameter window
of complex isolas is encountered where the stable MMOs have signatures which are
mixtures of 11 and 12. As gK decreases further, the s = 2 branch becomes stable
in a PD point corresponding to the label PDs=2

3 .
There are additional bifurcations of the s = 1 and s = 2 curves that have been

omitted from the discussion as they have little bearing on later results. For the
remaining transitions between MMO families, the sequence of bifurcations is the
same. Thus it is sufficient to consider only the transition from spiking to bursting
and from s = 1 to s = 2 to understand the bifurcation structure of the MMOs away
from the saddle-node of periodic orbits region (near gK ≈ 3.59 nS; inset Figure
2(a)).

2.2. Vertical bifurcations. By fixing gK = 4.1 nS, we consider only bifurcations
that arise due to variations in gA, the biophysical parameter that controls the
sub-threshold current IA. The resulting bifurcation diagrams for C = 2 pF and
C = 0.1 pF are shown in Figures 3 and 4, respectively. As before, we consider (and
label) only those bifurcations which are crucial to our discussion.

2The equilibrium is a depolarized steady state for small gK . After the first Hopf it becomes a
saddle and after the second Hopf it becomes a hyperpolarized steady state.
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Figure 3. (a) Bifurcations of MMOs along the vertical line gK =
4.1 nS for C = 2 pF where smax = 4. (b) Blown-up view of the
transition from spiking to bursting. (c) Transition region between
s = 1 and s = 2 MMOs: we observe regions of bistability.

For C = 2 pF, the s = 1 bursting family connects to the spiking branch at a PD
point and the remaining MMO branches are disconnected. Unlike the horizontal
case, there are no parameter windows in which more complex MMO patterns can be
found (Figure 3(b) and (c)). Instead, there are regions in which the stable plateau
of neighbouring MMO branches may overlap and the system exhibits bistability
between two different bursting states. These bistable parameter windows are C
dependent. As C decreases, the widths of the intervals of the bistable regions
decreases. For sufficiently small C, the stable branches no longer overlap (Figure 4
inset shows this for C = 0.1 pF) and parameter windows with more complex MMO
patterns can be found (not shown). All bursting families terminate in homoclinic
orbits (not shown) for gA values well outside the physiologically meaningful domain
(gA > 500 nS).
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Figure 4. Bifurcations of MMOs along the vertical line gK =
4.1 nS for C = 0.1 pF where smax = 4: The inset shows that there
is no overlap between the stable portions of the MMO branches
(compare with Figure 3).

For C = 2 pF, the sequence of bifurcations in the transition from spiking to
bursting MMOs (in the direction of increasing gA) is commenced by the SNs=1

5 point
where the 11 orbit is created (Figure 3(b)). The stable upper branch immediately
loses stability in a PD bifurcation PDs=1

4 at virtually the same gA value. The s = 1
MMO curve becomes again stable at another PD point PDs=1

5 whilst the spiking
branch also remains stable. This bistability endures until a PD point PDs=0

6 is
reached on the s = 0 branch where the 11 family connects with the 10 family.
Beyond this point, the 11 family is stable and the 10 branch is unstable.

For the change from s = 1 to s = 2 for C = 2 pF, the s = 2 family is born in
the SNs=2

6 point with a stable upper branch and an unstable lower branch. The
stable upper branch rapidly loses stability at a PD point PDs=2

7 in Figure 3(c)
(so that both the SN and PD points virtually coincide). The upper branch of
the s = 2 curve eventually regains stability at another PD point PDs=2

8 . There
is a small bistable window before the s = 1 MMO becomes unstable in a PD
bifurcation PDs=1

9 . Subsequently, the s = 1 MMO remains unstable and the s = 2
MMO remains stable until the next MMO transition. In general, the sequence of
bifurcations between MMO families s = n and s = n+1 (n = 1, . . . , smax−2, where
smax denotes the maximum number of small oscillations observed) follows a similar
pattern to the s = 0 to s = 1 transition. In our case, we have smax = 4 and the
above description of bifurcation sequences also covers the transiti on from the s = 2
to the s = 3 branch.

The last transition from the smax − 1 branch to the smax branch requires special
attention. The smax branch is born in a SN point in the usual way, but the upper
branch is born stable and remains so. Bistability between smax − 1 and smax exists
until the smax − 1 family loses stability via a PD bifurcation. The smax branch
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remains stable until it terminates in a saddle-node on invariant circle (SNIC) bifur-
cation (Figures 3 and 4), after which the attractor of the system is a hyperpolarized
state (labelled EH in Figures 3 and 4).

2.3. The MMO regime. In light of Sections 2.1 and 2.2, Figure 5(a) shows a
refined version of the C = 2 pF (gK , gA)-parameter bifurcation diagram from [34].
We also include a refinement of the C = 0 pF (gK , gA)-parameter bifurcation di-
agram (Figure 5(b)) from [34] (for easier comparison between the C = 2 pF and
C = 0 pF figures), but defer the discussion to Section 3.

For the C = 2 pF diagram in Figure 5(a), we calculated the bursting boundaries
using numerical continuation [7, 20]. The rightmost boundary of the bursting region,
which follows SNs=0

2 (Figure 2(b)), is a curve of SN points and marks the location
where the spiking family loses stability. Note that a (gK , gA)-continuation of the
point SNs=0

1 generates a similar curve to the right of SNs=0
2 (not shown). In fact,

the SNs=0
1 and SNs=0

2 curves coalesce at a limit point near the corner of the bursting
regime. The left and lower boundaries of the bursting regime form a single curve
of PD points. These arise from a 2-parameter continuation of the PDs=0

6 point
(Figure 3(b)). The PDs=0

6 point also generates a nearly vertical right border (not
shown) which sits virtually on top of the SNs=0

1 border (compare with Figure 2(b)).
Moreover, the right boundary generated by PDs=0

6 passes through the curve of SN
points. To clarify, in Figure 5(a) we depict the right and lower boundaries of the
MMO region as the SNs=0

2 branch and the PDs=0
6 branch up to its intersection with

the SNs=0
2 branch.

There is a very thin strip in the smax = 1 sector where the MMO signature is
some combination of 10 and 11. This thin strip is delimited on the right by the
SNs=0

2 branch and on the left by a PD branch obtained from continuation of PDs=1
2

(not shown). For gA away from the lower PD border, the PDs=1
2 branch sits to the

left of the SNs=0
2 branch (hence the complex MMO region). For smaller gA, the

situation is reversed and the PDs=1
2 branch sits to the right of the SNs=0

2 branch
thus indicating bistable MMO regions (see Figure 3(b)).

As shown in Section 2.1, a 1n MMO loses stability at a SN point whilst the
adjacent 1n+1 MMO becomes stable shortly after at a PD point. Two parameter
continuation of these PD points generates a first approximation to the boundaries
between MMO regimes. For instance, continuation of the PDs=2

3 point (Figure 2(c))
gives the border between smax = 1 and smax = 2. Continuation of the SNs=1

4 point
(not shown) would of course generate a boundary very close to (and to the right of)
the PDs=2

3 border. We could then use this to identify the thin wedges in parameter
space where the complex MMO patterns appear. Similarly, continuation of the PD
points in Figure 3 where the s = n branch loses stability and the s = n+ 1 branch
gains stability generate thin strips in (gK , gA) space where bistability holds. In
either case (complex MMOs or bistability), the strip covered in the (gK , gA) plane
is extremely thin. As such we concern ourselves mainly with the boundaries where
a spike is added to the MMO pattern.

From the bifurcation analysis we have identified the regions in parameter space
where the spike transitions occur in the pseudo-plateau bursting. We turn our at-
tention now to the question of what underlying mechanisms cause these transitions.
We use geometric singular perturbation theory as the basis of our understanding.

3. Geometric singular perturbation analysis of MMOs. Here we review the
geometric singular perturbation analysis of system (1) [34] and the appropriate
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Figure 5. Boundaries of MMO patterns in (gK , gA) parameter
space: (a) observed in the full 3D system (1) and (b) predicted from
the singular limit (see Section 3.2). Vertical lines in (b) between
µ = 0 and µ = 1 indicate candidate boundaries for the rotational
sectors in the fully perturbed problem (1) corresponding to odd
integer values of µ−1. Horizontal dashed lines correspond to gA =
4 nS (see Figure 2). Vertical dashed lines correspond to gK = 4.1 nS
(see Figure 3).

canard theory [2, 26, 35, 38]. Dynamically, the lactotroph model can be partitioned
into slow and fast subsystems by taking the singular limit C → 0 (ε → 0) on the
slow and fast timescales, respectively. The 2D slow limiting system, C → 0 (ε→ 0)
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in system (2),

0 =f(V, n, e),

dn

dts
=g1(V, n),

de

dts
=g2(V, e),

(4)

is called the reduced system and the 1D fast limiting system, C → 0 (ε → 0) in
system (3),

dV

dtf
=f(V, n, e),

dn

dtf
=0,

de

dtf
=0,

(5)

is called the layer problem. Geometric singular perturbation theory [2, 10, 17, 27]
pieces together the information obtained from the lower dimensional subproblems
(4), (5) to provide a unified global description of the lactotroph model (1), as we
will explain in the following.

3.1. The reduced and layer problems. The set of critical points of the layer
problem (5) is called the critical manifold, defined by

S :=
{

(V, n, e) ∈ R3 : f(V, n, e) = 0
}
. (6)

It was shown in [34] that this manifold of equilibria is a folded surface with respect
to the fast variable V as shown, e.g., in Figures 6 and 7. This follows directly from
the stability analysis of the two-dimensional set of equilibria in (5) which possesses
a subset of equilibria with a zero eigenvalue. In the physiological range of (n, e) this
subset consists of two disjoint sets, the one-dimensional fold curves

L± := {(V, n, e) ∈ S : fV (V, n, e) = 0} (7)

which divide S into attracting (S±a ) and repelling (Sr) sheets. There also exists
parameter sets of (gK , gA) where the two fold curves L± join in the physiological
domain. In this case, the critical manifold forms a cusp (not shown here; see [34]).

The critical manifold S is not only the manifold of equilibria for the layer problem
(5) but it also represents the phase space of the reduced problem (4) which is a
differential algebraic system describing the evolution of the slow variables (n, e)
constrained to S. Since n (and e) enter f(V, n, e) linearly, S has, e.g., a graph
representation n = n(V, e). As a result, a complete description of the reduced
problem (4) is obtained by projecting onto the single base (V, e) of S. The resulting
equations are

−fV
dV

dts
=fng1 + feg2,

de

dts
=g2,

(8)

where n = n(V, e) satisfies (6). System (8) is singular at the fold curves L±. The
finite time blow-up of the system at the folds can be removed by rescaling time
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(a) (b)

Figure 6. Critical manifold S and singular relaxation orbit for
gK = 4.1 nS, gA = 0.2 nS: (a) 3D view and (b) projection onto
(e, V )-space. The fast jumps (double arrow) join with the slow
segments (single arrow) on the attracting sheets S±a . The fold
curves L± and their projections P (L±) indicate where the reduced
flow jumps and where it lands, respectively. The grey shaded region
between L+ and the strong canard (green, γ0) is the funnel of the
folded node (FN).

(ts = −fV td) to give the desingularized system

dV

dtd
=fng1 + feg2 ≡ F,

de

dtd
=− fV g2,

(9)

the flow of which is equivalent to (8) on the attracting sheets S±a but is reversed on
the repelling sheet Sr due to the rescaling of time. Thus the reduced flow (8) can
be understood by analysing the desingularized system (9).

The desingularized system (9) possesses, in general, two types of equilibria: or-
dinary (g1 = 0, g2 = 0) and folded (F = 0, fV = 0). Ordinary singularities are
equilibria of the desingularized flow (9), of the reduced flow (8) and of the original
system (1). Folded singularities on the other hand are generally not equilibria of
(8) or (1). They are classified as equilibria of (9) and can generate counter-intuitive
behaviour, essentially due to the cancellation of a simple zero in (8) [26]. More
specifically, they enable solutions of the reduced flow (8) to cross the fold curve
in finite time with non-zero speed from Sa (through the folded singularity) to Sr
(except folded foci).

A folded node singularity is especially important to the bursting model (1) and
occurs in generic slow-fast systems with two (or more) slow variables [26, 35, 38].
Folded nodes allow for an entire sector of trajectories to pass from the upper attract-
ing branch S+

a of the critical manifold to the repelling branch Sr, and to follow that
repelling branch for an O(1) time on the slow timescale. Such solutions are called
singular canards. The sector of canard solutions (the singular funnel) is bounded
by the fold curve L+ and by the strong canard γ0, which is the unique trajectory
tangential to the strong eigendirection of the folded node (see Figures 6 and 7).
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(a) (b)

Figure 7. Critical manifold S and singular MMO for gK = 4.1 nS,
gA = 2 nS: (a) 3D view and (b) projection onto (e, V )-space. The
fast jumps (double arrow) join with the slow segments (single ar-
row) on the attracting sheets S±a . The fold curves L± and their pro-
jections P (L±) indicate where the reduced flow jumps and where
it lands, respectively. The grey shaded region between L+ and the
strong canard (green, γ0) is the funnel of the folded node (FN).

All other points on the folds L± are called jump points since solutions of (8)
which reach L± experience a finite time blow-up and cease to exist.

3.2. Singular periodic orbits, relaxation oscillations and MMOs. Using the
reduced and layer flows, singular periodic orbits can be constructed as continuous
concatenations of reduced and layer flow trajectories (Figures 6 and 7). Singular
periodic orbits which hit the upper fold curve L+ at a jump point (Figure 6) corre-
spond to relaxation oscillations [27, 34]. Singular periodic orbits which are filtered
into the folded node (Figure 7) are singular representations of MMOs [2, 34].

An important diagnostic of the folded node is the eigenvalue ratio µ := λw

λs
of the

linearization of (9), where |λw| ≤ |λs|. Using this quantity, an upper bound can be
computed for the number of small oscillations seen in a MMO pattern [2, 26, 35]:

s ≤ smax := bµ+ 1

2µ
c. (10)

The distance from the phase point of global return trajectories on P (L−) to the
strong canard is denoted by δ and is another important diagnostic of MMOs [2].
The convention is that a negative δ denotes orbits that land outside the funnel
(Figure 6) and a positive δ denotes orbits that land inside the funnel (Figure 7).
The border δ = 0 marks the boundary between MMOs and relaxation oscillations
and indicates that a part of the singular orbit is a segment of the strong canard.

Variation of the biophysical parameter gK affects the repolarizing current in the
active phase, the dynamics of which are associated with the local oscillations in the
MMOs. Consequently, gK controls (almost exclusively) the eigenvalue ratio µ of the
folded node. Similarly, variation of the biophysical parameter gA affects the sub-
threshold current in the silent phase, the dynamics of which are associated with the
global resetting properties. As a result, gA controls (almost exclusively) the distance
δ of the global return trajectories from the strong canard [34]. Because of this, we
use (gK , gA) and (µ, δ) interchangeably. Moreover, we can now justify our choice
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of the special horizontal and vertical directions in Section 2. By fixing gA = 4 nS
and C = 2 pF in Section 2.1, the distance δ of the global return trajectories is also
essentially fixed.3 The only bifurcations that arise as gK varies are due to changes
in the eigenvalue ratio µ. By fixing gK = 4.1 nS and C = 2 pF in Section 2.2,
the eigenvalue ratio µ is fixed and the only quantity that varies is the global return
of trajectories δ (through variations in gA). In particular, there is a maximum
number of small amplitude oscillations; for gK = 4.1 nS and C = 2 pF resepectively
C = 0.1 pF, we find smax = 4 (see Figure 3 resp. ??), which matches our singular
limit prediction, i.e. we also obtain smax = 4 in (10) for this specific example where
µ ≈ 0.122.

In general, we wish to demonstrate that the singular limit systems ((4) and (5))
predict the behaviour of the full system (1) sufficiently well. Figure 5(b) shows a
2-parameter bifurcation diagram based on our singular limit analysis. The right
µ = 1 border of the MMO regime corresponds to a degenerate folded node where
2 nonzero eigenvalues merge. To the right of the µ = 1 border we have folded foci
which possess no canards and hence we predict relaxation oscillations. The left
border µ = 0 denotes a folded saddle node (type II) of the reduced flow [18, 26]. To
the left of the µ = 0 border we have a folded saddle on L+ and a stable node on
S+
a , corresponding to a stable depolarized state of (1).

The δ = 0 border indicates whether or not the global return mechanism projects
the phase point of the singular orbits into the funnel. Below the δ = 0 line, orbits
land outside the funnel and relaxation oscillations are produced. Increasing δ to
positive values moves the phase point into the funnel so that MMOs are produced.
The upper boundary of the MMO regime is a curve of SNIC bifurcations. Crossing
this curve towards increased gA annihilates the singular periodic orbit and a stable
hyperpolarized state becomes the attractor. The predictive power of geometric
singular perturbation theory for the boundaries of the MMO regime is evident from
Figure 5.

3.3. The geometry of MMOs. We now examine the geometry of (1) away from
the singular limit to explain the appearance of the small amplitude oscillations
within a MMO pattern. Fenichel’s invariant manifold theorems [10, 17] guarantee
that the regions of S±a , Sr that are O(1) away from L± perturb to invariant slow
manifolds S±a,C , Sr,C which are O(C) close to their singular counterparts. The flow

on these perturbed manifolds is also a smooth O(C) perturbation of the flow on the
critical manifold.

Extending the invariant slow manifolds by the flow of (1) into the vicinity of
a folded node (where normal hyperbolicity is lost) results in a local twisting of
the attracting and repelling sheets, S+

a,C and Sr,C , [26, 35]. This geometric feature
produces the small spikes that can be seen during the active phase of the burst. Rep-
resentative invariant slow manifolds calculated up to a plane Σe : e = eFN passing
through the folded node are depicted in Figure 8. The procedure for computing
S+
a,C and Sr,C follows [3, 4, 5] and is outlined in Appendix A.

These rotational properties of the slow manifolds are closely related to the ex-
istence of the folded node singularity and hence to the existence of canards in (1).
Away from the singular limit, a canard refers to any trajectory that passes from
an attracting to a repelling slow manifold and is O(C) close to a repelling slow

3To be more precise, δ is essentially fixed if we stay away from the lower MMO boundary
(period-doubling curve) in Figure 5(a).
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Figure 8. Slow manifolds S+
a,C and Sr,C for gK = 4.1 nS, gA =

1.2 nS and C = 2 pF extended to cross section Σe : e ≈ 0.083
through the folded node. The intersections are maximal canards:
the primary strong canard γ0 and the secondary canards γl, l =
1, . . . , 3. Each canard is consecutively separated by a full rotation.
The attractor Γ of system (1) is a 12 MMO and lies between γ1
and γ2 in rotational sector I2. Also shown is a saddle equilibrium
ED on Sr,C (teal filled circle).

manifold for an O(1) time on the slow timescale. A maximal canard corresponds to
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a transverse intersection of the slow manifolds S+
a,C and Sr,C extended beyond the

fold curve L+. For sufficiently small perturbations C (i.e. for ε � 1), there exist
smax+ 1 maximal canards which connect the flow from S+

a,C to Sr,C and associated

to each maximal canard is a whole family of canards [35].
The 1st and (smax+1)th maximal canards are called the primary strong canard γ0

and the primary weak canard γw, respectively. The primary strong (weak) canard
corresponds to the strong (weak) eigendirection of the folded node. The remaining
smax − 1 maximal canards γl, l = 1, . . . , smax − 1 positioned between the primary
canards are called secondary canards. The primary strong canard γ0 makes one
twist (half-rotation) about the primary weak canard. Each successive secondary
canard γl makes l full rotations about the primary weak canard which serves as the
axis of rotation for both the canards and invariant manifolds S+

a,C and Sr,C .
The funnel region between the primary canards is partitioned by the secondary

canards into smax subsectors Ik, k ∈ [1, . . . , smax] each with different rotational
properties. Initial conditions in sector Ik make (2k + 1) twists (half-rotations)

about the primary weak canard. These rotations occur in a O(
√
C) neighbourhood

of the folded node. At a O(1) distance from the fold L+, the secondary canards are
O(C(1−µ)/2) close to the strong canard whilst the width of the maximal rotation
sector is O(1). In the singular limit, the secondary canards all collapse onto the
strong canard [2, 35]. The vertical bifurcation diagrams (Figures 3 and 4) give an
indication of the width of the rotational sectors Ik. For gK = 4.1 nS, C = 2 pF
(Figure 3), the maximal rotation sector I4 is significantly larger than sectors I1, I2
and I3. As C decreases the secondary canards approach the strong canard and the
corresponding sectors decline in width (Figure 4), except for the maximal rotation
sector I4 which covers (almost) the entire MMO regime.

Figure 8 shows the maximal canards which connect S+
a,C and Sr,C . The purple

trajectory is the primary strong canard γ0 and it makes one twist (half-rotation).
The dark slate grey orbit is the first secondary canard γ1 which makes 3 twists. The
green canard is γ2 which makes 5 twists about the axis of rotation and the olive
canard γ3 is the third secondary canard which makes 7 twists. Also shown are the
saddle equilibrium ED (teal point) of the system which lies on Sr,C and the unique
trajectory Γ (black) of the system for the given parameter values corresponding to
a 12 MMO which lies in rotational sector I2 bounded by γ1 and γ2.

These secondary canards explain now the boundaries shown in the interior of the
MMO region in Figure 5. In the singular limit diagram, Figure 5(b), the vertical
lines in the interior of the bursting region which occur at resonant values of µ−1

indicate candidate boundaries for the rotational sectors since a maximal canard
bifurcates from the weak canard at odd integer values of µ−1 [35]. In order of
decreasing gK , the first vertical line in the interior of the MMO regime in Figure
5(b) corresponds to µ−1 = 3. The next vertical line occurs at the gK value for which
µ−1 = 5 and so on. Clearly any bifurcation diagram we draw is incomplete, but a
comparison of the singular and non-singular diagrams (Figures 5(b) and (a)) reveals
a one-to-one correspondence between boundaries of the different MMO regions.
Recall, all secondary canards collapse onto the strong canard (δ = 0) in the singular
limit. Thus the almost linear segments of the interior MMO boundaries in Figure
5(a) collapse onto the δ = 0 curve in Figure 5(b) and we are left with only the
vertical segments in Figure 5(b).
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We turn now to more qualitative methods based on the singular perturbation
analysis to further our understanding of the spike adding transitions in the MMO
patterns.

4. Return maps of MMOs. Poincaré (first return) maps provide a tool to ana-
lyze periodic orbits and their stability [11]. In the setting of singularly perturbed
problems, return maps can be used to understand the dynamics in a simple and ele-
gant way. The essential ingredient of singularly perturbed problems that the return
map formulation developed here depends upon, is the exponential contraction of the
system along the attracting slow manifold Sa,C [6, 13, 15, 19, 23, 36, 37]. Cross sec-
tions to Sa,C quickly evolve to exponentially thin strips that can be approximated
by curves. Thus, the flow map through an appropriately chosen section is strongly
contracting and hence the flow map is almost 1D. Here we detail the formulation
of singular and non-singular return maps which cover the essential dynamics. Our
work is an amalgamation of the work done by [19, ?, 37] and [15] who use singular
and non-singular return maps, respectively. In contrast to [15, 36, 37] who use a
cross-section through the folded node (i.e. use the blow-up technique), we choose a
cross-section that keeps the analysis simple and retains the essential dynamics for
both ε = 0 and ε 6= 0. We show that vital information can be extracted from the
singular limit return map. Hence we can use the singular limit as a predictor for
the non-singular case.

4.1. Singular return maps. Following the work of [19, 36], we first construct a
singular return map to characterize the dynamics of the singular orbits [12, 16, 27].
In the singular problem (systems (4) and (5)), periodic orbits are formed from
continuous concatenations of slow and fast orbit segments. For the reduced and
layer flows of the lactotroph model, we define the following maps which track local
and global properties of the flow:

• Trajectories of the reduced problem (4) starting from P (L−) outside the funnel
can reach L+ at a jump point and follow the layer flow (5) to S−a . Trajectories
then follow the reduced flow on S−a to L− where they jump and return to
P (L−). This map tracks the returns of jump points (see, e.g., Figure 6) and
we denote it by

ΠJ : P (L−)→ L+ → P (L+)→ L− → P (L−).

• All trajectories of the reduced problem (4) starting from P (L−) inside the
funnel reach L+ at the folded node point, FN ∈ L+. Since these trajectories
do not represent canards for C 6= 0 they jump in an O(

√
C) neighbourhood

of the folded node point [2, 35]. This explains why we do not extend these
singular canards onto Sr in the singular limit but let them jump at the folded
node to S−a . They then follow the reduced flow on S−a to L− where they
jump again and return to P (L−). This map tracks the returns of points in
the interior of the funnel (see, e.g., Figure 7) and we denote it by

ΠF : P (L−)→ FN → P (L+)→ L− → P (L−).

• The strong canard γ0 represents all rotational canards for C = 0 and hence,
trajectories of (4) can track the strong canard γ0 on Sr. These canard trajec-
tories can jump off γ0 at any point on γ0 ∩ Sr to S−a and flow into L− before
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Figure 9. The reduced flow for gK = 5 nS and gA = 4 nS: panels
(b) and (c) are zooms. Note that the reduced flow has a tangency
with P+(γ0) (red asterix TPB) and P−(γ0) (green circle TPA,
panel (c)).

jumping to P (L−). The returns of these ‘jump-away’ canards are monitored
via this map, denoted by

ΠA : γ0 ∩ Sr → S−a → L− → P (L−).

• Trajectories of (4) tracking the strong canard γ0∩Sr can also jump up to S+
a ,

flow into L+ and subsequently return to the section P (L−). This map follows
the returns of the ‘jump-back’ canards and we denote it by

ΠB : γ0 ∩ Sr → S+
a → L+ → P (L+)→ L− → P (L−).

We construct the first return map Π0 : Σ0 → Σ0 as the union of the maps
ΠJ ,ΠF ,ΠA and ΠB . We take Σ0 = P (L−) as the section so that the map is
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naturally parametrized by the coordinate e. To completely understand Π0, the
geometry of the reduced system must be examined in detail. Figure 9 shows the
projection of the reduced flow (4) on the (V, e) plane for the specific parameter
values gK = 5 nS, gA = 4 nS with the strong canard γ0 on both attracting and
repelling sheets of the critical manifold. The reduced flow along P (L−) is towards
L+. On the other hand, the reduced flow along P (L+) is away from L− for small
values of e (see Figure 9(c)) and towards L− for larger values of e.4

Consider two jump points P1(V1, e1) and P2(V2, e2) on L+ with 0 < e1 < e2 <
eFN . On jumping down to P (L+) the orientation e1 < e2 < eFN is preserved.
However, since the reduced flow is away from L− for small e and towards L− for
larger e, this orientation is reversed when P1 and P2 are flowed forward to L−. That
is, the e coordinate of P2 under the flow of (8) is to the left of the e coordinate of
P1 under the flow of (8). Thus if we track points described by the map ΠJ then
this implies a decreasing segment in the return map Π0 due to the orientation flip
caused by the reduced flow on the lower branch S−a . The corresponding (slightly)
decreasing branch labelled I0 is shown in Figure 10(a). Next, note that the map
ΠF maps the whole funnel segment on P (L−) to a single value. This implies a
horizontal segment in the return map Π0 which we observe as the branch I1 in
Figure 10(a).

The maps ΠA and ΠB create vertical segments in the map Π0 due to canards
[1, 37]. Thus, the singular map Π0 is multi-valued and not well-defined. We track
the first returns of γ0 ∩ Sr to deduce the vertical extent of these segments. Both
start at the point FN which is obviously the beginning of the canard segment onto
Sr. We start with the jump-away canards. As we follow the strong canard on the
repelling sheet the returns initially increase from FN until they reach the point TPA
(Figure 9(c)). There the projections of the jump-away canards, denoted P−(γ0),
have a tangency with the reduced flow. This point defines the maximum of the
green vertical segment in Figure 10(a). As we follow the strong canard further on
the repelling sheet the returns decrease monotonically until we reach the endpoint
of γ0 ∩ Sr at L−, labelled γ0 ∩ L−. The endpoint γ0 ∩ L− jumps-back to S+

a ,
landing exactly on P (L−). The associated point on the map Π0 is the minimum of
the canard branch (Figure 10(a)). Simply put, the jump-away canards that follow
γ0 ∩ Sr the longest have the greatest vertical extent in the return map.

The projections of the jump-back canards, denoted P+(γ0), also have a tangency
with the reduced flow (labelled TPB in Figure 9). This introduces a corresponding
turning point (also labelled TPB in Figure 10(a)) in the return map Π0. We track
the returns of γ0 ∩Sr once more, along with the return of the tangency. The jump-
back canards start again at the canard point where all branches of Π0 intersect
(labelled FN in Figure 10(a)). As we travel along γ0 ∩ Sr towards the endpoint
on L−, the returns increase until we encounter the tangency (TPB) between the
projection P+(γ0) and the reduced flow on S+

a . This tangency corresponds to the
maximum of the returns of the jump-back canards (TPB in Figure 10(a)). As we
trace the canard further, the returns then start to decrease from the maximum.
If the projection P+(γ0) lies outsi de the singular funnel, then the return of the
endpoint γ0 ∩ L− is above the canard point of the map. On the other hand, if
P+(γ0) falls inside the singular funnel then the jump-back canards start at the
canard point, increase to a maximum and then decrease back to the canard point.
The issue is compounded by the fact that the initial point γ0 ∩P (L−) which tracks

4This implies a point of tangency of the reduced flow with P (L+) at some e > eFN .
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the strong canard may jump off γ0 ∩ Sr precisely to γ0 ∩ P+(γ0), indicated with
an open circle in Figure 9(a) and (b), thus generating a periodic jump-back canard
cycle which cannot be detected by Π0. This return of canards to the funnel has the
potential to generate chaotic invariant sets [37]. A detailed study is left for future
work.

Note that for µ = 1, the strong and weak canards coincide. As µ decreases, the
primary canards separate. In spite of this, neither of them connect to the saddle ED
on Sr (not shown) and both travel along Sr towards L−. Consequently, the singular
returns for the weak canard γw are very similar to those of the strong canard γ0. In
particular, the returns of γw form vertical branches in Π0 attached to some point
ew in the singular funnel. The further µ decreases from 1, the further ew moves
away from FN into the funnel. Analogous to the strong canard, the endpoints of
the vertical branches associated with γw are the turning point corresponding to the
jump-back weak canard and the termination of γw on the lower fold L−.

4.2. Non-singular return maps. For the fully perturbed problem (1) we define
a similar first return map ΠC : Σ → Σ, where Σ is a suitably chosen cross section
transverse to the flow and far from the fold and ε = C

ktg
. The typical choice in

numerical simulations was to take the section as a line of initial conditions on the
attracting slow manifold with fixed coordinate n:

Σ =
{

(V, n, e) ∈ S+
a,C : n = nσ, nσ constant

}
.

We choose nσ so that we are close to the landing point of trajectories that jump up
to S+

a,C from S−a,C . In most instances, we take nσ = 0.04. As in the singular case,
this choice of Σ leads to a return map naturally parametrized by e. Note that such
a section will cross P (L−). Thus it only covers the return map between 0 and emax

where emax < 1. Nonetheless, the essential dynamics are covered. In particular, we
observe all the attractors (relaxation and mixed mode oscillators) of the system.
The procedure for computing the return map ΠC is detailed in Appendix B.

Panels (b) and (c) of Figure 10 show the map ΠC for C = 0.2 pF and C = 2 pF,
respectively. As C increases, the vertical extent of the maps decreases rapidly but
the structure of the singular return map Π0 itself is preserved. The maximum
associated with the turning point TPB in Π0 persists under small perturbations as
a local maximum of ΠC . The fixed point (indicated by black markers) of the maps
lies in rotational sector I1 and the associated MMO pattern is indeed a 11 MMO
(Figure 10(d)).

The apparent jump in the perturbed maps is the strong canard which divides
trajectories between relaxation oscillations and MMOs. These regions of rapid ex-
pansion in the maps reflect the instability of trajectories flowing along the canards
on Sr,C for various times before jumping to S±a,C [15]. The vertical extent of these
near vertical segments is not clear from the simulations due to the stiffness of the
problem. To clarify, each seemingly disjoint branch of the map ΠC is in fact con-
tinuously connected to each other. Limitations in the numerical integration scheme
prevents these segments of rapid variation from being computed using initial value
solvers. We use boundary value solvers instead to compute the canard segments as
indicated in Appendix B.

5. Bifurcations of the return maps. We now use the singular and non-singular
return maps Π0 and ΠC to track the bifurcations of MMOs in the lactotroph model
(1) and show that the return maps cover the essential dynamics. Our work differs
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Figure 10. Return maps ΠC for gK = 5 nS, gA = 4 nS and (a)
C = 0 pF with inset showing the jump-back (red) and jump-away
(green) canards. (b) C = 0.2 pF with inset showing a caricature
of the vertical segment at the strong canard. (c) C = 2 pF. Panel
(d) shows the corresponding attractor for C = 2 pF, a 11 MMO
(as predicted). Fixed points are indicated by black markers. Note
in (b) the fixed point lies outside the regime covered by the map.

from [15] who employ kneading theory and numerical analysis for a qualitative and
quantitative description of the bifurcation sequence related to a folded saddle node
(type II). Here, we describe (qualitatively) the bifurcation sequences associated with
the primary and secondary canards of a folded node. To our knowledge, there have
been no prior studies of the bifurcation sequences of folded node type canards using
return maps, especially near their creation (birth) at µ = 1. As in Section 2, we
focus on the horizontal and vertical directions in the 2-parameter diagram (Figures
2, 3 and 5). That is, we track the bifurcations which arise from variations in µ and
δ via the ret urn maps.

5.1. Horizontal bifurcations - variation of µ and birth of canards. Fixing
gA = 4 nS, the distance δ from the strong canard is essentially fixed as gK varies
and so the bifurcations of interest in this scenario are the ones that arise from the
creation of canards.
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Figure 11. Return maps ΠC for gA = 4 nS: (a) C = 0 pF, gK =
6.2 nS, (b) C = 0 pF, gK = 5.8 nS, (c) C = 2 pF, gK = 6.2 nS, (d)
C = 2 pF, gK = 5.8 nS. Fixed points are indicated by black dots.

For large gK the reduced system (4) has folded foci on L+ (Figure 5), there are no
canards and the singular limit map Π0 is well defined (Figure 11(a), gK = 6.2 nS).
The dynamics are strongly attracting to a stable fixed point of Π0, representing
relaxation oscillations. The associated perturbed map ΠC (Figure 11(c)) preserves
this structure of Π0. Namely, ΠC is regular, well defined and has a single fixed
point representing a relaxation oscillator.

As gK decreases so that µ becomes real, i.e. µ < 1, the singular system has a
folded node. There are two fixed points of the associated return map Π0 with the
stable one falling in the funnel region I1 (Figure 11(b), gK = 5.8 nS). For C = 2 pF,
the corresponding ΠC map is multimodal with two distinct branches, separated by
near vertical jumps (Figure 11(d)). The left branch is the spiking branch (I0).
Initial conditions on this part of the map exhibit a relaxation oscillation in their
transient solution. The right I1 branch of the map corresponds to a 11 bursting
oscillation which is observed for gK = 5.8 nS (Figure 2(a)) and is expected from
the singular limit prediction.

To understand the whole bifurcation sequence shown in Figure 2(b), we exam-
ine the unfolding of the map as gK decreases (Figure 12). Before the degenerate
folded node, the return map ΠC is regular with a local minimum occurring in a
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Figure 12. Return maps ΠC for C = 2 pF and gA = 4 nS: (a)
gK = 6.2 nS, 10 spiking, (b) gK = 6.12824 nS, 10 spiking, (c)
gK = 6.1225 nS, 1011 MMOs, (d) Zoom of right vertical segment
in (c), (e) gK = 6.05 nS, 11 MMOs, (f) gK = 5.8 nS, 11 MMOs.
The strong (weak) canard corresponds to the left (right) vertical
segment. Fixed points (black dots) move from I0 to I1. In (d), the
1011 MMO is represented in the maps as a 2-cycle.

neighbourhood of the folded singularity (Figure 12(a)). As gK decreases (with µ
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Figure 13. Trajectories with different rotational properties for
C = 2 pF, gK = 6.1225 nS and gA = 4 nS. (a) Zoom of S+

a,C ∩ Σe
and Sr,C ∩ Σe. (b) Orbit segments Γ1,Γ3 ∈ I0 and Γ2 ∈ I1.

still complex), this local minimum sharpens becoming almost cusp-like and sig-
nalling the formation (bifurcation) of a canard (Figure 12(b)). When gK reaches
the degenerate folded node, µ = 1, the slow manifolds S+

a,C and Sr,C are tangential

signalling the birth of two canards, the primary strong and weak canard (left and
right ‘vertical branches’ in Figure 12(c)-(d)) which quickly separate as µ decreases
further (Figure 12(e)-(f)).

Note that just after the bifurcation the return maps have 3 distinct branches,
labelled I0, I1 and I0 (Figure 12(c)-(e)). The leftmost I0 branch corresponds to
points outside the funnel, hence the label I0. The middle I1 branch is the set
of points in the funnel between the primary canards and the rightmost I0 branch
corresponds to points between the primary weak canard and the fold. Figure 13(a)
shows the intersection of the slow manifolds along with the primary strong (γ0) and
weak (γw) canards in the cross-section Σe : e = eFN (see also Appendix A). We
identify subsector I1 as the segment of S+

a,C bounded by γ0 and γw. The two distinct

subsectors I0 are then readily identified as the two disjoint parts of S+
a,C outside

I1. Also shown are 3 solutions Γ1,Γ2,Γ3, taken from the sectors I0, I1 and I0,
respectively (Figure 13(b)). The trajectory Γ1 starts on S+

a,C ‘prior’ to the strong
canard γ0, i.e. outside the funnel, and jumps away to more negative V without
making any rotations. The orbit Γ2 however lies in the funnel region between the
primary canards and makes a single rotation in its transient solution. The orbit Γ3

starts on S+
a,C ‘after’ the weak canard and like Γ1, has a spiking transient. As gK

decreases, the I1 branch quickly expands to larger e values and the right I0 branch
is eventually pushed out of the domain covered by the map (Figure 12(f)).

The reason for the difference between Γ2 and Γ3 is as follows: for 1 < µ−1 < 2,
S+
a,C makes a twist around the weak canard. Then the sector I1 lies above Sr,C after

passage near the folded node (not shown) and hence jumps back to S+
a,C where it

finishes a full rotation before jumping to S−a,C , which explains the rotation number
s = 1. On the other hand, the sector I0 bounded by the weak canard γw and the fold
L+ lies after passage of the folded node below Sr,C and hence jumps immediately to
S−a,C without any extra rotation which then accounts for the rotation number s = 0.

The 2 different behaviours can be clearly observed in Figure 13(b). More generally,
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Figure 14. Zoom of return map ΠC for gA = 4 nS, C = 2 pF,
gK = 6.1235 nS. The fixed point (black dot) is highly unstable and
the attractor is a (10)411 MMO (not shown).

initial conditions in the region between the weak canard and the fold rotate smax−1
times before jumping away to the attracting manifold (see Section 5.3).

Figure 14 shows a zoom of the return map ΠC for gK = 6.1235 nS near the
vertical branch associated with the weak canard. Recall from Section 4.1 that
the local maximum in Figure 14 is due to a turning point in the jump-back weak
canard and the local minimum is due to the termination of the jump-away weak
canard. Here, rather than consider a bifurcation diagram, we consider a single
snapshot of a 3-parameter family of maps. Since the local topological structure of
the map is preserved under changes in the bifurcation parameter, the only thing
that changes is the position of the diagonal relative to the map. Hence we proceed
on the understanding that the indicated bifurcations occur when a fixed point, i.e.
an intersection of the map with the diagonal, crosses the special points. We observe
that the diagonal ‘moves up’ relative to the map as the bifurcation parameter gK
decreases. For gK > 6.127 nS there is a stable fixed point to the right of the local
minimum. As gK decreases the diagonal will first touch the map at the SNs=0

1 point
which is followed immediately by the PDs=0

1 point where the newly created stable
fixed point loses its stability. As gK decreases further, the stable spiking branch
s = 0 loses its stability at the SNs=0

2 point. The 11 MMO branch then becomes
stable at PDs=1

2 . In between the SNs=0
2 and the PDs=1

2 points, there is a parameter
window in which there are no stable fixed points and the MMO attractor is an
n-cycle with k period-n points on the s = 0 branch and (n − k) period-n points
on the s = 1 branch where k is typically either 1 or n − 1. The stable 1011 MMO
pattern is identified in the map shown in Figure 12(d) as a 2-cycle. Th is explains
precisely the sequence of bifurcations detected in Figure 2, which is closely related
to the birth of canards.

5.2. Vertical bifurcations - variation of δ and crossing of strong canard.
Fixing gK = 4.1 nS, the maximal number of rotations is smax = 4. We construct the
maps Π0 and ΠC and explore the bifurcation sequence associated with the passage
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Figure 15. Return maps ΠC for gK = 4.1 nS where smax = 4: (a)
C = 0 pF, gA = 0.3 nS (δ < 0), (b) C = 0 pF, gA = 0.7 nS (δ > 0),
(c) C = 2 pF, gA = 0.3 nS, (d) C = 2 pF, gA = 0.7 nS. The fixed
point (black dots) shifts from the left spiking branch to the s = 1
bursting branch.

of δ as it crosses zero. The return maps before and after this sequence of bifurcations
are shown in Figure 15 for C = 0, 2 pF.

For gA = 0.3 nS, the distance of the global returns from the strong canard δ
is negative and the trajectories exhibit relaxation oscillations. The corresponding
maps (Figure 15(a) and (c)) reflect these dynamics. The fixed point, indicated by
the black dot, of the singular map Π0 sits to the left of the canard point (Figure
15(a)). Thus the attractor is a relaxation orbit.

For gA = 0.7 nS and C = 0 pF, the distance of the global returns δ is positive.
The singular map Π0 (Figure 15(b)) possesses two fixed points: one stable on the
maximal rotation branch I4 of the map and one highly unstable on the canard
branch. As the perturbation C is switched on, the secondary canards (which are
represented in the singular limit by γ0) bifurcate out of the strong canard. The
non-singular return map ΠC has five distinct branches with each branch separated
by nearly vertical segments5. The leftmost branch I0 corresponds to relaxation

5In Figure 15(d) three branches are visible, the other two exist outside the physiological domain
e > 1
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Figure 16. Return map ΠC for gK = 4.1 nS, C = 2 pF, gA =
0.672 nS where smax = 4. The fixed point (black dots) shifts from
the left spiking branch to the s = 1 bursting branch.

oscillations where the global return trajectories land outside the funnel (i.e. δ < 0).
The second branch I1 of the map is the region of the funnel where MMO patterns
only have one small oscillation. The subsequent branches progressively move t
hrough the rotational sectors until the maximal rotation sector I4 is reached. The
stable fixed point of the map occurs on the I1 branch and this is reflected in the
observed 11 MMO pattern.

When gA is small, only the spiking and first bursting branches of ΠC lie in the
physiological domain (Figure 15(c)). As gA increases, the branches of the map
contract and undergo a leftward shift to smaller e coordinates so that higher order
bursting branches enter the physiological domain (Figure 15(d)). Consequently,
the fixed point of the map occurs closer to the MMO branches of ΠC . The exact
transition sequence from I0 to I1 can be observed in Figure 16 (which is a snapshot
of ΠC for fixed (C, gK , gA) rather than a bifurcation diagram; compare with Figure
14). As gA continues to increase, the first intersection of the diagonal with the s = 1
branch occurs when ΠC has slope 1 (bifurcation point SNs=1

5 ) just before the local
maximum of the jump-back canards (see also Figure 3(c)). As gA increases further,
the s = 1 branch of the map beco mes stable as the diagonal passes through a point
with slope −1 (PDs=1

4 ) to the right of the maximum associated with the jump-back
canards. Thereafter, there is a window of gA values for which there are two stable
fixed points, one on the spiking branch s = 0 and the other on the s = 1 bursting
branch (Figure 16(b)). There is also an highly unstable fixed point on the canard
branch. As gA moves to larger values still, the fixed point on the spiking family loses
stability at PDs=0

6 point (Figure 3(c)) and the s = 1 MMO is the only attractor of
the system. Thus the return maps ΠC predict the sequence of bifurcations shown
in Figure 3. In addition, the maps also predict the bistability of the MMO orbits.

5.3. Crossing and creation of secondary canards. To complete the discussion
of the return maps, we examine the structure of ΠC under two circumstances: when
a trajectory crosses a secondary canard into a different rotational sector (vertical
bifurcations) and when a secondary canard bifurcates from the primary weak canard
(horizontal bifurcations). As seen in Section 2, the bifurcation structure of (1)
follows similar trends in the transitions between MMO families under variations in
δ and µ. The return map ΠC reflects this as shown in Figure 17.
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Figure 17. Return maps ΠC for C = 2 pF under variations in δ
and µ: (a) gK = 4.1 nS, gA = 1 nS, (b) gK = 4.1 nS, gA = 1.45 nS,
(c) gK = 4.723 nS, gA = 4 nS, (d) gK = 4.722 nS, gA = 4 nS. Black
dots denote fixed points of the map.

Variations in δ have the effect of shifting the map relative to the diagonal but
have virtually no impact on the structure (topology) of the map. For gK = 4.1 nS,
the maximal number of rotations is smax = 4 so the return map ΠC has 5 branches.
Starting with gA small, increasing gA shifts the diagonal to the right relative to
the map so that the fixed points shift to MMO branches with higher rotation num-
ber. In terms of the funnel, orbits are pushed further and further away from the
strong canard, moving deeper into the rotational subsectors. Bistable MMO or-
bits can also be detected near the switch from one rotational subsector to another.
These manifest in the maps as two stable fixed points occurring on adjacent MMO
branches.

The bifurcations that occur arise as the trajectories cross the canards. In the
crossing from s = 1 to s = 2 (Figure 17(a)), the diagonal initially intersects the
s = 1 branch at a stable fixed point. As the diagonal ‘moves to the right’ relative
to the map (under increases in gA),6 it encounters the stable s = 2 branch at the
SNs=2

6 point (Figure 3(c)). This stability is short-lived as the diagonal ‘shifts right’

6Again, we think of the map frozen since its topological structure is preserved under parameter
changes.
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(relative to ΠC) and encounters the PDs=2
7 point where the s = 2 branch turns

unstable. The concavity of the s = 2 branch allows the slope to decrease from −1
and then increase back to −1 so that the s = 2 MMOs regain their stability via
another PD indicated by the point PDs=2

8 in Figure 3(c). As the diagonal ‘shifts
even further to the right’ (relative to the map), the fixed po int on the s = 1 MMO
branch passes through the PD point (labelled PDs=1

9 ) and becomes unstable. This
is exactly the bifurcation sequence shown in Figure 3(c).

Under variations in µ, secondary canards bifurcate from the weak canard thus
forming new branches in the map. The creation of these new branches introduces
almost vertical segments in ΠC . For gK = 4.723 nS, the 11 MMO is the attractor
and this is represented by a stable fixed point on the s = 1 branch of ΠC (Figure
17(c)). The s = 1 branch of the map has a local minimum, which as gK decreases,
becomes significantly sharper until it reaches a SN bifurcation corresponding to
SNs=2

3 in Figure 2(c). At this point the s = 1 branch breaks into two distinct
branches with an additional, newly created s = 2 branch in between (Figure 17(d)).
The left vertical boundary of I2 corresponds to the newly created secondary canard
γ1 and it connects the left s = 1 branch with the newly created s = 2 branch. The
right vertical boundary actually corresponds to the primary weak canard. Note that
the rightmost I1 branch is the rotational subsector bounded by the weak canard
and the fold similar as in Figure 12(c) at the µ = 1 bifurcation. As in the µ = 1
case, the SN point corresponds to a tangency between S+

a,C and Sr,C which then
perturbs to transverse intersections. As gK decreases further, the s = 2 branch
rapidly expands to larger e values and the right I1 branch is pushed out of the
physiological domain. In this process, the right I1 branch loses stability at SNs=1

4

in Figure 2(c). The s = 2 branch then becomes stable at PDs=2
3 . The return map

ΠC and the associated bifurcation sequence (Figure 2(c)) in this case is analogous
to the situation in Figure 14 (Section 5.1).

6. Discussion. MMOs in multiple timescale systems are the result of the com-
bined interaction between a local mechanism and a global mechanism. The local
mechanism is the folded node of the reduced flow (4) which causes a local twisting
of the slow manifolds and hence local rotations of trajectories. The global mech-
anism is the global return which re-injects trajectories into the funnel region and
thus resets the dynamics after completion of the local passage. A recent study of
a pituitary lactotroph model [28, 31, 34] revealed that the bursting was the result
of canard-induced MMOs. A discussion of the bifurcation structure of the MMOs
was the primary focus of this paper.

We employed bifurcation analysis, geometric singular perturbation theory and
return map analysis in order to examine the fine bifurcation structure of folded node
type canards in (1). Each technique provided substantial information and it was
their combination that allowed us to understand the phenomenon of spike-adding
in pseudo-plateau bursters. We were able to determine the regions in parameter
space where the spike transitions occur using a full system bifurcation analysis. We
then used the singular limit as a predictor for the non-singular case. It was clear
from the singular limit analysis that the appropriate parameter space to work in
was (µ, δ) space. Together, the singular and non-singular analyses allowed us to
identify the origin and properties of the bursting.

To aid the analysis, we defined return maps Π0,ΠC in the singular (4), (5) and
perturbed problems (1), respectively. We introduced these objects so that we could



2908 THEODORE VO, RICHARD BERTRAM AND MARTIN WECHSELBERGER

study the dynamics of the system in the setting of 1D maps. This relied on the
geometry and exponential contraction of the lactotroph model. The exponential
contraction reduces the problem of studying the bifurcations of MMOs under vari-
ations of C, µ and δ to the study of bifurcations in a 3-parameter family of maps.
The resulting maps ΠC were multimodal and seemingly discontinuous. The dis-
tinct branches of the map arise from the canard orbits. Trajectories that follow a
maximal canard on opposite sides of Sr,C are torn apart and follow very different
evolutions thus causing the rapid vertical expansion in the maps.

One of the strengths of the return map formulation is that the partitioning of
the funnel can be characterized in a simple way. The canard trajectories act as
separatrices in the return maps, clearly dividing trajectories with differing numbers
of twists around the weak canard. The main insight obtained from Π0 is the extent
of the vertical segments of the canards in ΠC . Moreover, the turning points of Π0

on S+
a have a one-to-one correspondence with local extrema in ΠC .

The main bifurcation sequences detected consist of only SN and PD points. In
studying the transitions between MMO branches, this is sufficient. However as
µ→ 0 (FSN type II), different tools are needed to explain the bifurcation structure
near the singular Hopf bifurcation [14, 18] of system (1): a task we leave to future
work.

Acknowledgments. The authors would like to thank the referees for their helpful
suggestions in giving the text focus and in streamlining the presentation. Finan-
cial support was provided by the University of Sydney to TV. TV thanks Warren
Weckesser who provided meticulous support in the use of AUTO. RB was supported
by NSF grant DMS 0917664.

Appendix A. Computation of slow manifolds. We refer to [3, 4, 5], whose
work we reproduce in the context of (1), for details of the computation of the slow
manifolds. To compute the slow manifolds in the case of a folded node, we consider
a rescaled version of (1)

(V̇ , ṅ, ė) = T ((C/ktgmax)−1f, g1, g2), (11)

where the free parameter T is the actual integration time. Thus the integration
time of any solution is rescaled to 1. For the computation of the slow attracting
manifold S+

a,C , we continue solutions of (11) subject to boundary conditions which

ensure that solutions lie (approximately) on S+
a,C . To do this, we choose a curve on

the attracting sheet of the critical manifold S+
a that is sufficiently far from L+:

u(0) ∈ {(V, n, e) ∈ Sa : e = 0.6} , (12)

where u = (V, n, e). To ensure the relevant part of S+
a,C is computed near the folded

node, the right endpoint u(1) is restricted to a plane through the folded node with
the requirement that the plane is transverse to the flow. A suitable choice is to take
the plane of constant e passing through the folded node

u(1) ∈ Σe ≡ {(V, n, e) : e = eFN} . (13)

Before S+
a,C can be calculated, note that a solution of the boundary value problem

(BVP) (11) subject to (12) and (13) is the trivial orbit segment given by the folded
node. We now use an homotopy method to construct a first solution of the BVP.
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is the intersection of the periodic orbit Γ of the system, a 12 MMO.

Starting with the trivial solution at the folded node, we continue the orbit in T
subject to the modified boundary condition

u(0) ∈
{

(V, n, e) ∈ L+
}

until the endpoint u(0) is at some predetermined distance from the folded node.
In our computations, the calculation was terminated when the endpoint reached
e = 0.6. The last solution obtained from the homotopy is the start solution for the
BVP defined by (11) together with (12), (13). Numerical continuation in T then
generates the surface S+

a,C .
The repelling slow manifold is computed in a similar way but with negative T

which has the effect of reversing the direction of the flow. The boundary conditions
are chosen to ensure that solutions lie close to Sr,C . To continue orbits with negative
T in practice, we simply swap the boundary conditions. Thus, the BVP for the
repelling slow manifold is (11) subject to

u(0) ∈ Σe,

u(1) ∈ {(V, n, e) ∈ Sr : V = −30} . (14)

As in the computation for S+
a,C , the trivial orbit segment at the folded node is used

as a starting solution for a 2-step homotopy process to find a first solution to the
BVP defined by (11) subject to (14). In the first stage of the 2-step homotopy, we
move solutions along L+ until e(1) = 0.01. From there, the second stage of the
homotopy moves solutions along Sr until V = −30.

The advantage of terminating the computation of S+
a,C and Sr,C at the plane Σe

is that canard solutions are easily identifiable as transverse intersections of the slow
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manifolds (Figure 18). In terms of the BVP, canards are solutions of (11) subject
to the boundary conditions

u(0) ∈
{

(V, n, e) ∈ S+
a : V = 100

}
and u(1) ∈ {(V, n, e) ∈ Sr : V = −30} .

A solution of this BVP is computed by finding orbit segments ua ∈ S+
a,C and

ur ∈ Sr,C that match in the plane Σe. We concatenate ua with the reverse of ur
(so that the integration time is positive), rescale the resulting orbit back to the
time interval [0, 1] and continue the solution. Provided |ua(0)−ur(0)| is sufficiently
small, a Newton step in AUTO generates a solution of the BVP which represents
the respective canard solution.

Appendix B. Computation of non-singular return maps. As in Appendix
A we consider (1) in its rescaled form (11). Computation of the non-singular return
map ΠC involves 2 parts: computing the regular parts of ΠC away from the ca-
nards and approximating the exponentially thin (or nearly vertical) segments near
a canard.

For the parts of ΠC away from the canards, we require a set of initial conditions
on the attracting slow manifold S+

a,C with n = nσ. To initialize the computation of
ΠC , we first take a line of initial conditions on the attracting sheet of the critical
manifold S+

a far from the section Σ of interest:

u(0) ∈
{

(V, n, e) ∈ S+
a : V = 100

}
. (15)

This line of initial conditions is then flowed forward until they hit the section Σ, at
which point the calculation is terminated. That is,

u(1) ∈ Σ ≡ {(V, n, e) : n = nσ, nσ constant} . (16)

Exponential contraction of system (1) ensures that this curve is sufficiently close to
S+
a,C . We use this curve S+

a,C ∩Σ as the initial conditions in our return map ΠC and
flow them forward until they return to Σ. This produces a return map naturally
parametrized by the coordinate e. For any maximal canards that are crossed, there
is a seemingly discontinuous jump and the map appears to have disjoint branches.
The distance ∆e between the distinct branches (where there is no data) is nonzero
and depends on the number of points used to compute ΠC . The more points used
to parametrize S+

a,C ∩Σ, the smaller the ‘gap’ ∆e. In our calculations, we typically
used 2000 points.

By continuity of solutions of (1), all branches of the map are in fact continuously
connected to each other by exponentially thin canard segments. To compute these
canard segments, we first use AUTO to identify the maximal canards (see Appendix
A). The endpoint of the canard on Sr is then extended as close to the lower fold
curve L− as possible to give an indication of the vertical extent of the canards. We
also extend the endpoint of the canards on Sa out to the section ΣV : V = 100 and
then flow it forward to obtain the corresponding canard point on S+

a,C ∩ Σ. The

canard point in S+
a,C ∩Σ always sits in the interval of width ∆e between the distinct

branches of ΠC .
We then take the points of the canard on Sr,C and perturb them in either V

direction (towards either S±a,C). Those points that sit above the repelling slow

manifold jump-back to S+
a,C whilst those that sit below Sr,C jump-away to S−a,C .

The returns of these points to the section Σ give the returns of the jump-back and
jump-away canards. To complete the computation of the return map, we must
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determine the initial conditions in Σ corresponding to the jump-back and jump-
away canards. Since it is impossible to trace the returns of these canards to their
origin in the section Σ, we use interpolation to approximate the distribution of these
returns in a neighbourhood of the canard point. As in [15] we terminate the canard
branch when it intersects the regular part of ΠC so that we have a continuous map.
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