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Abstract We combine bifurcation analysis with the
theory of canard-induced mixed mode oscillations to
investigate the dynamics of a novel form of bursting.
This bursting oscillation, which arises from a model of
the electrical activity of a pituitary cell, is characterized
by small impulses or spikes riding on top of an elevated
voltage plateau. Oscillations with these characteristics
have been called “pseudo-plateau bursting”. Unlike
standard bursting, the subsystem of fast variables does
not possess a stable branch of periodic spiking solu-
tions, and in the case studied here the standard fast/slow
analysis provides little information about the under-
lying dynamics. We demonstrate that the bursting is
actually a canard-induced mixed mode oscillation, and
use canard theory to characterize the dynamics of the
oscillation. We also use bifurcation analysis of the full
system of equations to extend the results of the singular
analysis to the physiological regime. This demonstrates
that the combination of these two analysis techniques
can be a powerful tool for understanding the pseudo-
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1 Introduction

Electrical bursting is characterized by episodes of
electrical impulses followed by periods of quiescence
during which the cell is repolarized. These oscillations
are often observed in nerve and endocrine cells, and
have been the focus of mathematical modeling and
analysis. Many hormone-secreting cells in the anterior
pituitary gland, such as lactotrophs, somatotrophs,
and corticotrophs, exhibit fast bursting with small
spikes arising from an elevated or depolarized voltage
(Kuryshev et al. 1996; Van Goor et al. 2001). Single
pancreatic β-cells, isolated from islets, exhibit a similar
type of bursting pattern (Kinard et al. 1999). Figure
1(a) shows an example from a pituitary lactotroph
cell line (GH4 cell). Mathematical models for bursting
in lactotrophs (Tabak et al. 2007; Toporikova et al.
2008), somatotrophs (Tsaneva-Atanasova et al. 2007),
corticotrophs (LeBeau et al. 1998; Shorten et al.
2000), and single β-cells (Zhang et al. 2003) have been
developed and analyzed. This type of bursting, called
“pseudo-plateau” bursting, is quite different from that
of most neurons and neuron models, as discussed in
Stern (2008).

We recently described a model that is unlike other
models of pseudo-plateau bursting in that the bursting
persists almost unaltered when the variable for the
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Fig. 1 (a) Perforated patch electrical recording of bursting in a GH4 pituitary cell. (b) Bursting produced by the model with the default
parameters shown in Table 1, with C = 6 pF, gK = 4.4 nS, and gA = 18 nS

intracellular Ca2+ concentration is fixed or eliminated
(Toporikova et al. 2008). This is unusual, since the
slow variation of the intracellular Ca2+ concentration
is typically responsible for clustering impulses into
periodic episodes of activity. Previously, we analyzed
some of the properties of this unusual form of burst-
ing (Toporikova et al. 2008). In the current article
we extend this in two ways. First, we show how the
bursting is situated in parameter space relative to other
types of behaviors, and demonstrate how the number
of spikes per burst varies in parameter space. Second,
we take advantage of the different time scales within
this model to analyze the mechanism for the bursting.
We show that the bursting is actually a canard-induced
mixed mode oscillation (MMO) where a MMO pattern
corresponds to a switching between small-amplitude
oscillations and large relaxation oscillations. Using geo-
metric singular perturbation analysis (Fenichel 1979;
Jones 1995; Wechselberger 2005; Brons et al. 2006),
we demonstrate the origin of the MMO, identify the
region in parameter space where the MMO exists, and
show how the number of small amplitude oscillations
(or spikes) varies in parameter space. In so doing, we
identify the mechanism for this type of pseudo-plateau
bursting, and also perform analyses at the singular limit
to explain behaviors seen away from this limit. Mixed
mode oscillations have been described previously for
neural models and data (Erchova and McGonigle 2008;
Wechselberger 2005; Rubin and Wechselberger 2007;
Rotstein et al. 2008; Ermentrout and Wechselberger
2009; Drover et al. 2005; Brons et al. 2008; Krupa et al.
2008; Guckenheimer et al. 1997), but this is the first
example where the MMOs form bursting oscillations.

2 The mathematical model

The model is a minimal description of the electrical
activity and Ca2+ dynamics in a pituitary lactotroph
(Toporikova et al. 2008). This is based on another
model (Tabak et al. 2007), which produces bursting
over a range of parameter values. For much of this
range the bursting is driven by slow activity-dependent
variation in the Ca2+ concentration. However, for
a subset of this range the Ca2+ concentration can
be clamped and bursting persists. In the model by
Toporikova et al. this latter form of bursting was exam-
ined, and the Ca2+ variable removed, since variation in
Ca2+ was not necessary to produce the bursting. This is
the model we use here.

The model includes variables for the membrane po-
tential (V) of the cell, the fraction of activated K+ chan-
nels of the delayed rectifier type (n), and the fraction of
A-type K+ channels that are not inactivated (e). The
differential equations are

C
dV
dt

= −(ICa + IK + IA + IL) (2.1)

τe
de
dt

= e∞(V) − e (2.2)

τn
dn
dt

= n∞(V) − n (2.3)

where ICa is an inward Ca2+ current and all other
currents are outward K+ currents. IK is a delayed rec-
tifier current, IA is an A-type current that inactivates
when V is elevated, and IL is a constant-conductance
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current that replaces the Ca2+-activated K+ current in
the lactotroph model of Tabak et al. (2007). The ionic
currents are given by

ICa = gCam∞(V)(V − VCa) (2.4)

IK = gKn(V − VK) (2.5)

IA = gAa∞(V)e(V − VK) (2.6)

IL = gL(V − VK) . (2.7)

The activation of the Ca2+ current and the A-type
K+ current is very fast, and is modeled as instanta-
neous, with steady-state activation functions m∞(V)

and a∞(V). Mathematically, this can be justified by a
center-manifold reduction (Rubin and Wechselberger
2007). The delayed rectifier current activates more
slowly, with activation dynamics given by Eq. (2.3), and
the A-type current also inactivates relatively slowly,
with inactivation dynamics given by Eq. (2.2). Without
IA this is just the well-known Morris–Lecar model
(Morris and Lecar 1981), a minimal biophysical model
for membrane excitability that is capable of producing
impulses, but not bursts of impulses.

Steady state activation functions have the form

x∞(V) = 1

1 + exp
(

Vx−V
sx

) (2.8)

for x = m, n, a, while the inactivation function is

e∞(V) = 1

1 + exp
(

V−Ve
se

) . (2.9)

System parameters are: time constants (τn and τe),
membrane capacitance C, current conductances (gCa,
gK, gA, gL), Nernst potentials (VCa and VK), and shape
parameters for the steady state functions (Vm, Vn, Va,
Ve, sm, sn, sa, se). Values are given in Table 1.

Numerical simulations were performed with the
fourth-order Runge–Kutta integration method, as
implemented in the XPPAUT software package
(Ermentrout 2002). Computer codes are freely avail-
able online at www.math.fsu.edu/∼bertram/software/
pituitary. Bifurcation diagrams and phase portraits of
the singular perturbation analysis were also computed
using XPPAUT. All graphics were produced with the
software package MATLAB.

Figure 1(b) shows bursting oscillations produced by
the model. Notice the small spikes that occur on top
of a depolarized voltage plateau, which is character-
istic of the bursting that often occurs in lactotrophs,
somatotrophs, corticotrophs, and isolated β-cells. The

Table 1 Parameter values used in the model

Parameter Value Definition

C 0–20 pF Membrane capacitance
gK 0–10 nS Maximal conductance of delayed

rectifier K+ channels
gA 0–25 nS Maximal conductance of A-type

K+ channels
gCa 2 nS Maximal conductance of Ca2+

channels
VCa 50 mV Reversal potential for Ca2+
Vm −20 mV Voltage value at midpoint of m∞
sm 12 mV Slope parameter of m∞
VK −75 mV Reversal potential for K+
Vn −5 mV Voltage value at midpoint of n∞
sn 10 mV Slope parameter of n∞
τn 40 ms Time constant for n
Va −20 mV Voltage value at midpoint of a∞
sa 10 mV Slope parameter of a∞
Ve −60 mV Voltage value at midpoint of e∞
se 5 mV Slope parameter of e∞
gL 0.3 nS Maximal conductance of leak

current
τe 20 ms Time constant of e

bursting in the GH4 cell is very noisy, which is typical
of pituitary bursting. In contrast, the model is determin-
istic, and thus the bursting is much more regular.

The three model variables vary on different time
scales. The time scale for variation in V (τV) can be
estimated by the ratio of the model cell capacitance
C to the maximum ion channel conductance, gmax =
max{gCa, gK, gA, gL} (more precisely, one uses dimen-
sional analysis to identify the different time scales;
see later). In most of our analysis and simulations,
C = 2 pF and gmax > 2 nS. Thus, τV = C/gmax < 1 ms.
(The capacitance value chosen is intermediate between
the more common 5 pF of somatotrophs or 6 pF of
lactotrophs and the singular limit. We later vary C to
investigate how the behavior changes with changes in
capacitance.) The time constants for the other variables
are given explicitly as model parameters: τe = 20 ms
and τn = 40 ms. Thus, the V variable changes rapidly
and the e and n variables change on slower time scales.
We take advantage of this separation of time scales, and
increase the disparity further by reducing C, when we
apply geometric singular perturbation analysis to the
system.

3 Pseudo-plateau bursting boundaries
in parameter space

Our goals here are to determine how pseudo-plateau
bursting relates to other states of the system such as

http://www.math.fsu.edu/~bertram/software/pituitary
http://www.math.fsu.edu/~bertram/software/pituitary
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tonic firing (spiking) or an equilibrium state (either
hyperpolarized or depolarized) by changing three key
model parameters, and to determine how the number
of spikes within a bursting pattern varies with para-
meters. The three parameters that we vary are the
maximum conductances of the delayed rectifier (gK)
and A-type K+ currents (gA), and the capacitance (C).
The first parameter, gK, was chosen since it controls
the number of spikes per burst (as we discuss later).
The second parameter, gA, was varied in our previous
analysis, where we showed that the A-type current is
crucial for the bursting (Toporikova et al. 2008). The
third parameter, C, sets the time scale for voltage (τV =
C/gmax), as discussed in the previous section. Decreas-
ing C reduces τV and widens the separation of time
scales between V and the slower variables n and e.

We begin by treating gK as the bifurcation parame-
ter, keeping the other two parameters fixed at gA =
2 nS and C = 2 pF. Figure 2(a) is a bifurcation diagram

(b)

(a)

Fig. 2 (a) Bifurcation diagram illustrating the asymptotic dy-
namics of the system, with gK as bifurcation parameter (fixed
C = 2 and gA= 2). Steady state solutions (black) are either stable
(solid) or unstable (dashed). Red Minimum and maximum V
of periodic spiking solutions, either stable (solid) or unstable
(dashed). Subcritical Hopf bifurcations (HP1, HP2) initiate and
terminate the periodic branch. (b) Blowup of the diagram in
the top panel near HP1, highlighting the region where bursting
occurs. PD period doubling bifurcation

showing the asymptotic behavior of the system for a
range of values of gK. The black curve represents steady
state solutions, which could be stable (solid curve) or
unstable (dashed). The red curves represent the max-
imum and minimum voltages of periodic spiking solu-
tions, which may be stable (solid) or unstable (dashed).
For small values of gK the steady state solutions are
stable, and at an elevated or depolarized voltage. They
lose stability at a subcritical Hopf bifurcation (HP1),
giving rise to a branch of periodic spiking solutions.
The steady state solutions regain stability at another
subcritical Hopf bifurcation (HP2).

The spiking solutions are stable for most of the range
of gK for which they exist. However, as highlighted in
Fig. 2(b), there is a small range of gK values where the
spiking branch is unstable. This is expected to the left
of HP1 and to the right of HP2 because these Hopf
bifurcations are subcritical. However, there is a much
larger region to the right of HP1 where the periodic
solutions are unstable, and this is surprising. The expla-
nation is that the spiking branch goes through a period
doubling bifurcation (PD1) shortly after turning around
at a saddle-node of periodics (SNP, not labeled). The
primary spiking branch regains stability only after a sec-
ond PD bifurcation occurs (PD2). Thus, between HP1

and PD2 the steady state and regular spiking branches
are both unstable. This is the region where bursting
occurs. We show later, by going to the singular limit
C → 0, that this bursting is a canard-induced mixed
mode oscillation (see, e.g., Brons et al. 2006). The
stable spiking solution that occurs between the left SNP
bifurcation and PD1 loses stability and is replaced by a
stable doublet spiking solution at PD1. We distinguish
this from the bursting solution that occurs between PD1

and PD2.
We next determine how the bifurcation points in

Fig. 2 vary when the conductance gA of the IA current
is changed. This is done since our prior analysis showed
the importance of IA in the production of bursting.
We use a two-parameter (gK, gA) diagram to show
the dependence of the different bifurcations on the gK

and gA parameters (Fig. 3(a)). The left subcritical Hopf
bifurcation of Fig. 2(a) is insensitive to gA, because the
A-type current is inactivated at depolarized voltages.
Thus, the curve of bifurcation points of this type is
nearly vertical in Fig. 3(a) (left green curve). On the
other hand, the right subcritical Hopf bifurcation in
Fig. 2(a) is very sensitive to gA because when gA is
greater, less gK is needed to destabilize the hyperpo-
larized steady state (right red curve in Fig. 3(a)). The
left PD bifurcation in Fig. 2(b) remains close to HP1 as
gA is varied, so this bifurcation curve is almost indistin-
guishable from the HP1 curve. Therefore, we only show



J Comput Neurosci (2010) 28:443–458 447

1 1

1

1 1 2

2

2

1

2

A
A

k

(a)

(b)

Fig. 3 (a) Two-parameter bifurcation diagram in the parameters
gK and gA, with C = 2 pF. (b) Blowup of panel a, highlighting the
bursting region. The label SN represents a saddle node bifurca-
tion. The label TB represents a codimension-2 Takens–Bogdanov
bifurcation. The system behaviors are in bold: bursting periodic
bursting, dep depolarized steady state, hyp hyperpolarized steady
state, dep/hyp bistable region

a single curve in the figure and denote it by HP1/PD1.
The PD2 bifurcation in Fig. 2(b) is important as the
right boundary for the bursting. For small values of gA,
PD2 moves to the right as gA is increased, increasing the
range over which bursting occurs. However, when gA

becomes sufficiently large the PD bifurcation becomes
insensitive to further increases. As a result, the PD2

curve in Fig. 3(a) first has a positive slope, but even-
tually becomes vertical. The HP1/PD1 and PD2 curves
then form the left, right, and lower boundaries of the
region of bursting (Fig. 3). The lower boundary clearly
shows that the IA current is necessary for bursting in
this model (independent of the strength of the delayed
rectifier).

To see where the upper boundary of the bursting
region (the SN1 branch) comes from, we return to a
one-parameter bifurcation diagram, but this time with
a larger gA conductance, gA = 15 nS (Fig. 4(a)). With
this larger gA the stationary branch of solutions is
folded, creating the two knees or saddle-node (SN)

(a)

(b)

(c)

Fig. 4 (a) One-parameter bifurcation diagram for C = 2 pF
and gA = 15 nS. There is a fold in the stationary branch, with
two saddle-node (SN) bifurcations. The stable spiking branch
terminates at a homoclinic (HM) saddle-node on invariant circle
bifurcation. Bursting exists between PD1 and PD2. (b) Increasing
gA to 20.5 pS moves SN1 to the left of PD2. The unstable spiking
branch terminates at a homoclinic saddle-node loop bifurcation
that is very close to PD2. Bursting only exists between PD1 and
SN1. (c) Further increasing gA to 22 nS moves SN1 to the left of
PD1, so that bursting is no longer produced

bifurcations in Fig. 4(a). The periodic spiking branch
that emerges from the Hopf bifurcation (HP1) goes
through two PD bifurcations as before, gaining stability
at the right PD. The stabilized spiking branch now
terminates at a homoclinic saddle-node on invariant
circle bifurcation (labeled HM in the figure). This SNIC
bifurcation comes about when HP2 from Figs. 2 and
3 coalesces with the lower SN (SN1) in Fig. 4(a) at a
codimension-2 Takens–Bogdanov (TB) bifurcation.

When gA is increased further SN1 shifts leftward,
eventually moving to the left of PD2. As this happens,
PD2 and HM move together, eliminating the stable
branch of spiking solutions (Fig. 4(b)). The interval of
bursting solutions now terminates at SN1, rather than
PD2, and the termination is through a homoclinic bifur-
cation; the silent phase of the burst gets progressively
longer as gK approaches the SN1 bifurcation. When gA
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is increased even further SN1 moves to the left of PD1,
eliminating the interval of bursting solutions (Fig. 4(c)).
Thus the stable asymptotic structure of the system is
a depolarized and/or a hyperpolarized steady state, for
the full range of gK.

The sequence of events described above is summa-
rized in the two-parameter (gK, gA) diagram (Fig. 3).
The two branches of SN bifurcations (the left and right
knees) are shown in brown in panel A, coalescing at
a codimension-2 cusp bifurcation. The HP2 bifurcation
coalesces with the SN1 bifurcation at the labeled TB
point. For all gA values above this point the spiking
branch terminates at a homoclinic bifurcation (a SNIC
bifurcation for lower gA values and a saddle-loop bi-
furcation for higher gA values; see Fig. 4). The SN1

bifurcation branch forms the upper boundary for the
bursting, since for all gA values above this curve the sys-
tem is either globally stable with a hyperpolarized sta-
tionary attractor, or bistable with hyperpolarized and
depolarized stationary attractors. This loss of bursting
oscillations for sufficiently large gA was described pre-
viously (Toporikova et al. 2008), but not in terms of the
(gK, gA) bifurcation structure. This (gK, gA) diagram
provides the curves that delimit the various system
behaviors which are given in bold text in Fig. 3.

Varying the gA parameter, as was done above, varies
the influence that the important A-type K+ current has
on the system. We next vary the membrane capacitance
C, which changes the time scale separation between
V and the slower variables e and n. Making C larger
makes V slower, thereby decreasing the time scale
separation. Figure 5(a) is a two-parameter bifurcation
diagram showing how the locations of the subcritical
Hopf bifurcations vary with C and gK. This is done for
four different values of gA. In all cases, as C is increased
the HP bifurcations come together, eventually coalesc-
ing at a relatively high C value. Beyond this value, the
system is steady, exhibiting neither continuous spiking
nor bursting oscillations.

From Fig. 5(a) it is clear that the left branch of the
HP curve is unaffected by changes in gA over the range
gA ∈ [1, 5] nS, so in the blowup figure in panel B the left
branch of a single HP curve is shown. Also shown, for
four values of gA, are branches of PD bifurcations. For
each value of gA, bursting exists between the HP1 curve
and the PD2 curve. Between the PD1 branch and the
HP1 curve a stable hyperpolarized stationary solution
coexists with a spike doublet solution (the doublet
bifurcates further through a series of PD bifurcations,
leading ultimately to chaos). We see that the bursting
region expands as gA is increased, at least for gA up to
5 nS, and that the bursting region also expands as C
decreases (except for a minor decrease of the bursting

(a)

(b)

Fig. 5 (a) Two-parameter bifurcation diagram illustrating the de-
pendence of the Hopf bifurcations on the membrane capacitance
C for four different values of gA. The HP1 bifurcation is insen-
sitive to gA. (b) Two-parameter bifurcation diagram illustrating
the C dependence of period doubling bifurcations of the primary
spiking solution. A single HP1 curve is also included. Bursting
occurs between HP1 and PD2. Between PD1 and HP1 the system
is bistable between a hyperpolarized steady state and a complex
spiking pattern (doublets, four-spike pattern, etc.)

regime in the limit C → 0 for gA greater than 1 nS).
We also point out that, in the limit C → 0, the range
of gK values for which bursting occurs extends from
HP1 to gK ≈ 6 nS for the larger values of gA. We
show this again later in our analysis of the mixed mode
oscillations that underlie bursting in this system.

We next demonstrate how the number of spikes per
burst varies. This is an important biological feature,
since this number (partly) determines the burst du-
ration (active phase) and hence the amount of Ca2+
influx, and thus the amount of hormone released from
a cell. We set gA = 4 nS and vary gK and C over
a rectangular grid of values, with �gK = 0.1 nS and
�C = 1 pF. For each choice of parameters we solve
the differential equations numerically and count the
number of spikes per burst. In Fig. 6 circles represent
the number of spikes in a burst. Large reddish circles
represent bursts with many spikes (maximum of 62 for
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Fig. 6 Number of spikes per burst for a grid of gK and C values
(gA = 4 nS). Single points represent steady states, and small dark
circles represent continuous spiking. Larger circles with colors
ranging from light blue to red represent bursting. The larger the
circle, the greater the number of spikes per burst. The minimum
number of spikes is 2 (small, light blue), and the maximum is 62
(large, red). Circles with points in the middle represent bistable
dynamics

the largest circles), while small blue circles represent
bursts with few spikes (minimum of 2). We superim-
pose the PD curve for gA = 4 nS and the HP1 curve
onto the grid. To the right of PD2 the system exhibits
continuous spiking, represented by small dark circles.
To the left and above the PD1 branch the system is at a
steady state (represented by points). Bursting or com-
plex spiking (doublets, four-spike patterns bifurcating
off of the doublets branch, etc.) occurs only within
the two branches of the PD curve. Between the PD1

and HP1 curves the system is bistable, with coexist-
ing stable hyperpolarized steady states and simple or
complex spiking (the bistable region extends to the left
of the PD1 bifurcation to the saddle node of periodics
(SNP); see discussion of Fig. 2). Thus, in the simulation
grid this region is occupied by a mix of points (steady
states) and circles (simple or complex spiking). For
some parameter values there are circles with points in
the middle, representing bistable solutions that were
found by varying the initial conditions. In many cases
only one stable solution was found, which maybe be
due to a small basin of attraction of the other stable
solution. The most important observation to make from
Fig. 6 is that the number of spikes per burst is greatest at
the lower gK values. We show later that this is predicted
from the analysis of mixed mode oscillations in the
C → 0 limit.

4 Geometric singular perturbation analysis

We now show the origin of the spiking and bursting
oscillations described in previous sections. The bursting
oscillations are not of the standard type, which are due
to bistability of the fast subsystem of variables between
a hyperpolarized steady state and a periodic (spiking)
solution (Rinzel 1987; Rinzel and Ermentrout 1998). To
understand the bursts produced by the current model
we take advantage of the time-scale separation of the
variables that was pointed out in Section 2.

To rigorously justify the time-scale separation in
(Eqs. (2.1)–(2.3)), we nondimensionalize the system
by introducing a dimensionless ‘voltage’ variable v =
V/kv where we choose kv = 100 mV as a typical volt-
age scale, and a dimensionless ‘time’ variable τ = t/kt

where kt = τe = 20 ms is a typical (slow) time scale of
the system. This leads to the dimensionless form

dv

dτ
= kt

τv

f (e, n, v)

dn
dτ

= kt

τn
(n∞(v) − n)

de
dτ

= kt

τe
(e∞(v) − e) (4.1)

where

f (e, n, v) ≡ −{
ḡCam∞

(
v − V̄Ca

)

+ (ḡKn + ḡAa∞e + ḡL)
(
v − V̄K

) }
(4.2)

and τv = C/gmax. Note that the overbar denotes a di-
mensionless parameter. The right hand sides take the
form of a scaling factor multiplied by some quantity
which is O(1). With the choice of the above scaling
factors kv and kt, we see that the dynamics of the
variables (n, e) are of O(1) while the dynamics of the
variable v is O(1/ε) where

ε ≡ τv

kt
= C

ktgmax
� 1 . (4.3)

In particular, decreasing the capacitance C decreases
ε and hence increases the time scale separation be-
tween the dynamics of the fast variable v and the slow
variables (n, e). Therefore, system (4.1) is a singularly
perturbed system with two slow variables (n, e), one fast
variable (v) and singular perturbation parameter ε.

The dimensional analysis above demonstrates that
the original system (Eqs. (2.1)–(2.3)) already has the
correct factorization (although in dimensional form).
Hence, for easier comparison with the bifurcation
analysis presented in Section 2, we use this original sys-
tem in our analysis and treat V as a fast variable, (e, n)
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as slow variables and C as the singular perturbation
parameter.

We begin our geometric singular perturbation analy-
sis by moving to the singular limit, C → 0, where V
changes instantaneously and the slow variables evolve
in (slow) time according to (Eqs. (2.2)–(2.3)). If we
define the right hand side of Eq. (2.1) by

gmax f (V, e, n) ≡ −(ICa + IK + IA + IL) , (4.4)

then f (V, e, n) = 0 defines the corresponding quasi-
steady state condition due to the instantaneous dynam-
ics of V. The two slow variables (e, n) evolve in (slow)
time so that this condition is satisfied. That is, the phase
point in R

3 travels along the critical manifold

S ≡ {(V, e, n) ∈ R
3 : f (V, e, n) = 0} (4.5)

(except at discrete jumps from one sheet of the mani-
fold to another which are controlled by the layer prob-
lem, defined below). This slow evolution on S is called
the reduced f low. The implicit equation f = 0 can be
solved explicitly for n (or for e, but not V), which enters
into IK (and f ) linearly,

n = n(e, V) = − 1

gK

[
gCam∞(V)

(V − VCa)

(V − VK)

+ gAa∞(V)e + gL

]
. (4.6)

The critical manifold S is a folded surface, shown in
Fig. 7(a) for one set of gK and gA values. The bottom,
middle, and top sheets of the surface are separated by
fold curves (in red). Fold curve L− separates the bot-
tom and middle sheets, while fold curve L+ separates
the middle and top sheets. Note that this geometric
structure of the critical manifold will not change under
the variation of gK (it is only a scaling factor).

Since the critical manifold Eq. (4.6) is a graph
over the base (e, V), the dynamics on the critical
manifold, the reduced flow, can be described by
the differential equation for e (Eq. (2.2)) and by
differentiating f (V, e, n) = 0 with respect to time to
obtain a differential equation for V. Thus,

d
dt

f (V, e, n) = d
dt

0 (4.7)

yields

− ∂ f
∂V

dV
dt

= ∂ f
∂e

de
dt

+ ∂ f
∂n

dn
dt

(4.8)

where n = n(e, V) and the reduced system projected
onto the base (e, V) is given by

− ∂ f
∂V

dV
dt

=
(

e∞ − e
τe

)
∂ f
∂e

+
(

n∞ − n
τn

)
∂ f
∂n

(4.9)

de
dt

=
(

e∞ − e
τe

)
. (4.10)

This system is singular along the fold curves L±, where
∂ f
∂V = 0. To remove this singularity we rescale time with
the transformation τ ≡ −(

∂ f
∂V )−1t. With this transforma-

tion we obtain the desingularized system:

dV
dτ

=
(

e∞−e
τe

)
∂ f
∂e

+
(

n∞−n
τn

)
∂ f
∂n

≡ F(V, e, n) (4.11)

de
dτ

= −
(

e∞ − e
τe

)
∂ f
∂V

. (4.12)

The phase portraits of the reduced system and the
desingularized system are equivalent on the top and
bottom sheet of the critical manifold. Because of the
time rescaling, the flow of the desingularized system on
the middle sheet, where ∂ f

∂V > 0, must be reversed to
obtain the equivalent reduced flow on the middle sheet.
Thus the reduced flow can be obtained by analyzing the
desingularized system.

The reduced flow, calculated by numerically solving
Eqs. (4.11), (4.12), is shown on the critical manifold in
Fig. 7(a) and its projection onto the e-V plane is shown
in Fig. 7(b) (black curve, single arrow). The trajectory
moves along the bottom sheet until it reaches L−. At
this point, the reduced flow is singular ( ∂ f

∂V = 0) and
the solution ceases to exist due to finite time blow-up.
The quasi-steady state assumption f = 0 cannot hold
anymore and we expect a rapid motion away from the
fold-curve L−. This rapid motion can be understood by
switching to a fast (dimensionless) time scale t1 = t/τv

which transforms (Eqs. (2.1)–(2.3)) to

dV
dt1

= f (V, e, n) (4.13)

de
dt1

= τv

τe
(e∞(V) − e) (4.14)

dn
dt1

= τv

τn
(n∞(V) − n) . (4.15)

Taking the singular limit C → 0 we obtain the layer
problem

dV
dt1

= f (V, e, n) (4.16)

de
dt1

= dn
dt1

= 0 (4.17)
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Fig. 7 A singular periodic orbit (black) concatenated by slow
and fast segments of the two singular limit systems, the reduced
problem (4.11)–(4.12) and the layer problem (4.16)–(4.17), that
leads to relaxation oscillations in (Eqs. (2.1)–(2.3)) for C > 0.
Here, the periodic orbit does not enter the singular funnel of
the folded node FN, bounded by the fold curve L+ and the

strong singular canard SC. (a) A view of the singular periodic
orbit (black) and the critical manifold. (b) Projection onto the
(e, V)-plane with the singular funnel highlighted in gray. FN is at
(e, V) = (0.41, −15.26), eigenvalue ratio is μ ≈ 0.1 and parame-
ter values are gA = 0.2 nS and gK = 4.0 nS. There is also a saddle
equilibrium S (black diamond) at (e, V) = (1.5 × 10−4, −15.94)

which describes the evolution of the fast variable V
along one-dimensional fibers where (e, n) are constant
parameters. Note that the critical manifold is the man-
ifold of equilibria for the layer problem. The stability
of these equilibria is determined by the sign of ∂ f

∂V .
It follows that the lower and upper sheets, which we
denote by S±

a , are attracting ( ∂ f
∂V < 0) while the middle

sheet, denoted by Sr, is repelling ( ∂ f
∂V > 0).

Going back to Fig. 7, we concatenate the trajectory
of the reduced flow that reaches the fold-curve L−
with a fast fiber segment of (Eq. (4.16)–(4.17)) which
provides the rapid motion from L− to the stable top
sheet S+

a (black curve, double arrow) at a point on
P(L−). The curve P(L−) denotes the projection of L−
along fast fibers onto the stable top sheet S+

a , while
L+ is projected onto the stable bottom sheet S−

a as
P(L+) (blue curves). From here the trajectory moves
according to the reduced flow along the top sheet S+

a
until L+ is reached and the layer problem is again
solved for the rapid motion to the stable bottom sheet
S−

a at a point on P(L+). Here, this concatenation of
slow and fast segments leads to a singular periodic orbit.
Geometric singular perturbation theory (Szmolyan and
Wechselberger 2004) shows that this orbit perturbs to
a nearby periodic relaxation oscillation orbit of sys-
tem (Eqs. (2.1)–(2.3)) for sufficiently small C 	= 0. This
relaxation oscillation orbit corresponds to a spiking
solution below the PD2 curve in Fig. 3. In the following,
we apply geometric singular perturbation techniques
to uncover the genesis of the bursting mechanism in
system (Eqs. (2.1)–(2.3)).

5 Mixed mode oscillations

Mixed mode oscillations consist of small amplitude os-
cillations followed by large relaxation-type excursions,
repeated periodically. An understanding of possible
mechanisms for these oscillations using geometric sin-
gular perturbation theory has recently been achieved
(Wechselberger 2005; Brons et al. 2006; Guckenheimer
2008). One possibility is the existence of folded node
singularities of the reduced flow together with an ap-
propriate global return mechanism (see e.g., Brons
et al. 2006).

A folded singularity of the reduced system (Eqs.
(4.9)–(4.10)) is an equilibrium of the desingularized
system (Eqs. (4.11)–(4.12)) that occurs on a fold curve
and satisfies

f (V, e, n) = 0 (5.1)

F(V, e, n) = 0 (5.2)

∂ f
∂V

= 0 . (5.3)

Generically, this is different from an ordinary singular-
ity of the reduced flow (an equilibrium), which is also
an equilibrium of the desingularized flow but satisfies

f (V, e, n) = 0 (5.4)

F(V, e, n) = 0 (5.5)

∂ f
∂V

	= 0 . (5.6)
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Such an ordinary equilibrium of the reduced flow is
positioned away from the fold-curves L± and is also an
equilibrium of the full system (Eqs. (2.1)–(2.3)), i.e.

f (V, e, n) = 0 (5.7)

n = n∞(V) (5.8)

e = e∞(V) . (5.9)

These equilibria have been identified in the bifurcation
diagrams of Section 2.

Linear stability analysis of a folded singularity in-
dicates whether it is a folded node (FN), a folded
saddle, or a folded focus. In the present case, and with
parameter values gA = 4 nS, gK = 4 nS, a folded node
singularity exists on the fold curve L+ (shown in Fig. 8),
since the eigenvalues of the linearization at the equilib-
rium point of the desingularized flow are both negative.
Also, for this choice of parameter values the fold curves
L+ and L− join and form a cusp-like structure near
e = 1. Compare with Fig. 7 (where gA = 0.2 nS and
gK = 4 nS) which also has a FN, but for which the fold
curves do not form a cusp for e in the admissible range
of [0,1].

The reduced flow in the neighborhood of a folded
node has very interesting properties. Singular canards
(Benoit 1983; Szmolyan and Wechselberger 2001) exist
in the neighborhood of a folded singularity. These tra-
jectories enter the folded singularity, in our case along
the top attracting sheet S+

a of the critical manifold,
and move through the folded node singularity in finite
time, emerging on the repelling middle sheet Sr and

traveling along it for some time. For folded nodes, this
implies that there is a whole sector of singular canards,
bounded below by L+ and above by the strong singular
canard (SC in Figs. 7 and 8) associated with the unique
trajectory which is tangent to the eigendirection of the
strong eigenvalue of the FN. This sector, the singular
funnel, is shown in gray in Figs. 7 and 8. In the case of
a folded saddle, only two such singular canards exist,
while a folded focus has no singular canards.

For canard-induced MMOs to exist, a singularly per-
turbed system has to fulfill two major requirements
(Brons et al. 2006):

• The reduced flow has to possess a folded node
singularity.

• There is a singular periodic orbit formed from the
concatenation of slow and fast segments of the
reduced and layer problems which starts with a
fast fiber segment at the folded node singularity.
This automatically assures that the global return of
such a singular periodic orbit is within the singular
funnel of the folded node.

If these two assumptions are fulfilled then canard
theory implies that this singular periodic orbit perturbs
to a nearby MMO orbit for sufficiently small ε > 0
(C > 0). In the case shown in Fig. 8, these assump-
tions are fulfilled; the singular periodic orbit starting
at the FN indeed returns into the singular funnel. We
therefore expect to find MMOs in system (Eqs. (2.1)–
(2.3)). Furthermore, the theory predicts that the small
amplitude oscillations of the MMO pattern occur in a

Fig. 8 A singular periodic orbit (black) concatenated by slow
and fast segments of the two singular limit systems, the reduced
problem (4.11)–(4.12) and the layer problem (4.16)–(4.17), that
leads to MMO in (Eqs. (2.1)–(2.3)) for C > 0. Parameter values
are gA = 4.0 nS and gK = 4.0 nS. (a) Critical manifold (surface)
with fold curves L− and L+ (red) and fold curve projections

P(L±) (blue). Also shown is the strong singular canard (green,
SC) of the folded node (FN). (b) Projection onto the (e, V)-
plane with the singular funnel highlighted in gray. The FN is
at (e, V) = (0.02, −15.26) and has eigenvalue ratio of μ ≈ 0.1.
There is also a saddle equilibrium S (black diamond) at (e, V) =
(1.4 × 10−4, −15.94)
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neighbourhood of the folded node and that the max-
imum amplitude of these small oscillations is O(

√
ε),

i.e., the maximum amplitude grows proportional to the
square root of the capacitance C. This also implies that
the amplitude of the small oscillations vanishes in the
singular limit ε → 0 (C → 0).

The small amplitude oscillations are due to a geo-
metric property of invariant manifolds near a folded
node. According to Fenichel theory (Fenichel 1979;
Jones 1995), the attracting and repelling sheets of the
critical manifold (S±

a and Sr, respectively) away from
the fold-curves L± perturb smoothly to locally invari-
ant slow manifolds (S±

a,C and Sr,C, respectively) for
C sufficiently small, but non-zero. These perturbed
slow manifolds are in an O(C) neighbourhood of the
unperturbed critical manifolds. Furthermore, the flow
on these perturbed slow manifolds is a smooth O(C)

perturbation of the reduced flow on the correspond-
ing unperturbed manifolds. If one extends these per-
turbed slow manifolds by the flow into the vicinity of
a folded node singularity, then the intersection of the
attracting and repelling sheets is locally twisted (see
Wechselberger 2005 for details; the numerical tech-
nique for computing twisted slow manifolds is de-
scribed in Desroches et al. 2008.) Singular canards of
the reduced flow perturb to actual canards of the origi-
nal system. In our case, these canards follow S+

a,c toward
the FN and Sr,c afterwards before jumping to S−

a,c. Since
S+

a,c and Sr,c are twisted near the FN, the canards rotate
and produce the small spikes during the active phase of
the burst.

Figure 9 confirms the predicted MMO result for
gK = 4 and gA = 4. It illustrates the emergence of small
amplitude oscillations in the voltage time course as
C is increased. When C = 0.05 pF the (very) small
amplitude oscillations are not yet visible. Projection
of this trajectory onto (e, V)-space (not shown here)
closely follows the singular periodic orbit in Fig. 8(b).
When C is increased by a factor of 40 to C = 2 pF small
oscillations appear near the end of the active phase;
this is a bursting oscillation with small spikes (panel
B). These reflect the rotational properties near the FN
that were undetectable near the singular limit. When C
is increased further to C = 6 pF the small oscillations
are larger than before and occur throughout the active
phase (panel C). Notice that in all three time courses
the beginning of the active phase is characterized by
a voltage peak. This is due to the shape of the critical
manifold and the direction of the reduced flow, and
is not one of the small oscillations associated with the
folded node. For example, there are 8 small spikes
associated with the FN in Fig. 9(c), preceded by an ad-
ditional small spike. This additional oscillation does not

(a)

(b)

(c)

Fig. 9 Mixed mode oscillations with gK = 4 nS, gA = 4 nS, and
various values of C. (a) C = 0.05 pF is very small and the small
amplitude oscillations are not visible. (b) When C is increased 40-
fold (C = 2 pF) small oscillations become visible during the active
phase, reflecting the twists near the folded node. Here we find
smax = 5 plus one additional small oscillation at the beginning
of the active phase. (c) With a larger capacitance, C = 6 pF,
the small oscillations (8 + 1) occur throughout the active phase.
The predicted maximum number smax = 5 does not hold anymore
because the capacitance C, considered as a singular perturbation
parameter, is too large

vanish in the singular limit C → 0, another indicator
that it is not associated with the folded node.

For MMOs to exist, it is crucial that the phase point
returns to the singular funnel of the folded node when
entering the active phase of the oscillation. This will
occur when the point on P(L−), that the phase point
jumps to when leaving L−, lies in the singular funnel
of the folded node. If this does not happen, then no
small oscillations will be produced and the trajectory
will exhibit a relaxation oscillation. This is illustrated in
Fig. 7, both on the critical manifold and on its projection
onto the (e, V)-plane. In this example, there also exists
a folded node, but since the projection curve P(L−)

does not intersect the singular funnel (gray shaded
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region in Fig. 7(b)) it follows that the return of the
singular trajectory starting at the folded node is outside
the singular funnel of the folded node. Hence we do not
expect a MMO but a relaxation oscillation.

Whether or not the global return mechanism projects
the phase point into the singular funnel can be for-
malized as follows. Let δ denote the distance from the
phase point on P(L−) of the singular periodic orbit to
the strong canard SC with the convention that δ > 0
indicates that the phase point is within the singular
funnel. The condition δ = 0 corresponds to the border
between MMOs and relaxation oscillations and indi-
cates that the segment of the singular periodic orbit on
S+

a lies on the strong canard SC. For example, for fixed
gK = 4 nS we have δ = 0 for gA ≈ 0.27 nS. The δ is
a continuous increasing function of gA, so δ < 0 when
gA = 0.2 pS and relaxation oscillations are produced
(Fig. 7) and δ > 0 when gA = 4 pS and MMOs are
produced (Fig. 8).

The choice of parameter values determines whether
or not the singular periodic orbit enters the singular
funnel. The behaviors of these singular periodic orbits
are summarized in Fig. 10 for the two parameters gK

and gA. MMOs are predicted for all parameter combi-
nations within the region highlighted in gray. For any
value 3.5 < gk < 6 nS (and independent of gA), there
exists a folded node singularity on L+, which is the first
requirement for MMOs to exist and explains the left
and right boundary of the MMO regime. The second
requirement for MMOs, δ > 0, is fulfilled above the
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Fig. 10 Region in the gK-gA parameter space where MMOs are
predicted in the C → 0 limit. The colored vertical line segments
indicate various values of smax, the maximum number of small
oscillations that can occur in an MMO (red = 12, yellow = 5, green
= 2, blue = 1). This number increases as gK is decreased

curve δ = 0 which explains the lower boundary of the
MMO region. The upper boundary of the MMO region
is a curve of saddle-node bifurcations SN1. Crossing
this curve towards increased gA annihilates the MMO
attractor because a stable equilibrium attractor bifur-
cates. This is a stable hyperpolarized state of the re-
duced system. There is also a stable depolarized state
of the reduced system for gK < 3.5.

5.1 Comparison of bifurcation diagrams

The MMO region in Fig. 10 is very similar to the
bursting region in Fig. 3(b) and explains the genesis of
the observed bursting region as the singular perturba-
tion parameter C is increased. In both cases the upper
bound of the MMO/bursting region is a curve of saddle-
node bifurcations SN1 which indicates that the system
is in a hyperpolarized steady state for large conductance
gA. To understand the relation of the left, right and
lower boundaries in both bifurcation diagrams in more
detail, a bit more canard theory is required, as discussed
next.

For sufficiently small values of the perturbation pa-
rameter, C in this case, it is possible to calculate the
maximal number of small oscillations of a MMO pat-
tern (Wechselberger 2005). This number, smax, depends
on the eigenvalues of the linearization of the desin-
gularized system at the FN. Let these eigenvalues be
denoted by λ1 and λ2, where |λ1| < |λ2|, and define the
eigenvalue ratio

μ = λ1

λ2
. (5.10)

Then, since at a FN both eigenvalues have the same
sign, 0 < μ < 1. The maximal number of small oscilla-
tions in the MMO is then

smax =
[
μ + 1

2μ

]
, (5.11)

the greatest integer less than or equal to μ+1
2μ

. Thus, if
s is the number of small oscillations produced in the
MMO for sufficiently small C, then s ≤ smax where smax

is given by Eq. (5.11). Here sufficiently small C means
that

√
ε � μ, where ε is given by Eq. (4.3). Otherwise

the system is too far from the singular limit and the
bound becomes invalid.

In the present case, μ depends on both gA and gK.
However, the dependence on gA is very weak, so that
μ changes little if gK is held fixed and gA is varied
(between the upper and lower bounds of the MMO
region). Thus, μ is (almost) constant, and so is smax,
along the vertical line segments shown in Fig. 10. When
gk ≈ 3.5 nS, μ = 0 and for smaller gK values there are
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no MMOs. When gK ≈ 6 nS, μ = 1 and for larger gK

values there are no MMOs. This explains the notation
of the left and right borders in Fig. 10. Near the left
border the number of small oscillations in the MMO is
large (since smax → ∞ as μ → 0); near the right border
the number of small oscillations is 1 (since smax → 1 as
μ → 1). Note that this is in addition to the initial spike
that begins an active phase.

The left border μ = 0 denotes a folded saddle-node
(type II) of the reduced flow. To be more precise, we
observe a transcritical bifurcation of a folded singular-
ity and an ordinary singularity. To the left of the border
we have μ < 0 which corresponds to a folded saddle
on L+, with a stable node equilibrium on S+

a . If we
increase gK (and therefore μ), this stable equilibrium,
the ordinary singularity, merges with the folded singu-
larity for μ = 0 and crosses over to the repelling branch
Sr for μ > 0 where it becomes an (unstable) saddle
equilibrium. The folded singularity is now a folded
node on L+ which explains the transcritical nature of
the folded saddle-node, type II. (A folded saddle-node,
type I, corresponds to a true saddle-node bifurcation of
two folded singularities of the reduced flow, which we
do not observe here.)

Note that the stable node equilibrium for μ < 0 is on
the attracting sheet S+

a . Thus it corresponds to a stable
equilibrium of the full system since all three eigenvalues
(two from the reduced problem and one from the layer
problem) are negative. This corresponds to a stable de-
polarized state because the delayed rectifier is too weak
to repolarize the cell. When gK is increased so that μ >

0, the equilibrium has bifurcated to the repelling sheet
Sr, where it is a saddle point in the reduced system.
Hence, it corresponds to an unstable equilibrium of the
full system with two positive eigenvalues (one from the
reduced problem and one from the layer problem) and
one negative eigenvalue (from the reduced problem).
Therefore, the real part of two eigenvalues changes
sign as the bifurcation point is crossed. Exactly the
same happens when C > 0, as shown in the bifurcation
diagram of Fig. 3. Here we observe a Hopf bifurca-
tion (HP1), i.e., two (complex conjugate) eigenvalues
change their sign. Hence, the singular limit (C → 0)
representation of a Hopf bifurcation in a singularly
perturbed system is a folded saddle-node, type II, of
the corresponding reduced problem. This observation
is also confirmed in Fig. 5 where the Hopf bifurcation
H P1 converges to gK ≈ 3.5 for C → 0 independent
of gA. Subsequent bifurcations near a folded saddle-
node, type II, are currently under investigation with
emphasis on the role of the nearby saddle equilibrium
on MMO patterns (Guckenheimer 2008; Krupa and
Wechselberger 2010).

We next consider the right border, μ = 1, in Fig. 10
and relate it to Fig. 3(b). This border of the MMO
regime corresponds for C = 0 to a degenerate folded
node where two nonzero eigenvalues merge. To the
right of this border we have folded foci which possess
no canards. Hence we only observe relaxation oscil-
lations as described in Section 3. To the left of the
border we have folded nodes with eigenvalue ratio μ

close to one which implies that smax = 1. Hence we ob-
serve MMOs with one extra small-amplitude oscillation
(Fig. 11(b)) compared to a relaxation oscillation. In
Fig. 3(b) the right border consists of period doubling
bifurcations (PD2). Near the PD2 bifurcation the phase
point in the depolarized state follows the strong canard
and alternately jumps up and down, thus producing
an oscillation with doubled period (Fig. 11(a)). For
smaller gA values, such as on the lower PD2 branch,
the phase point in the depolarized state travels along
the strong canard and jumps down at different loca-
tions, creating a period-two relaxation oscillation with
slightly different amplitudes. The other period doubling
bifurcation (PD1) in Fig. 3(b) is a transition from single
spikes to doublets.

(a)

(b)

Fig. 11 Time courses of MMO patterns for parameter values
gA = 10 nS and C = 2 pF near the right PD2 boundary in Fig. 3:
(a) a period-doubled oscillation (21 MMO pattern) for gK =
6.00895 nS and (b) a 11 MMO oscillation for gK = 5.5 nS
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A last piece of canard theory is required to com-
pare bifurcation structures within the MMO regime in
Fig. 10 with Fig. 3(b). For sufficently small values of
the perturbation parameter C, there exist (smax − 1)

secondary canards which partition the funnel region
of a folded node into smax subsectors with different
rotational properties (Wechselberger 2005). The first
subsector is bounded by the strong canard SC and the
first secondary canard; trajectories within this subsector
make one rotation. The second subsector is bounded by
the first and the second secondary canard; trajectories
within this subsector make two rotations. The last sub-
sector is bounded by the (smax − 1) secondary canard
and the fold curve L+; trajectories in this last subsector
make the maximal smax rotations. Hence, each subsec-
tor has a different rotation number.

All secondary canards are within an O(ε(1−μ)/2)

neighborhood of the strong canard SC which implies
that the size of the first (smax − 1) subsectors is of
O(ε(1−μ)/2) since they are bordered by secondary ca-
nards. The last subsector with maximal rotation number
is of size O(1) since it is bordered by the last secondary
canard and the fold-curve. In the singular limit, all
secondary canards merge with the strong canard and
hence only the maximal rotation subsector survives. It
follows that if the singular perturbation parameter is
sufficiently small compared to the distance δ > 0 of the
singular periodic orbit from the SC, i.e., δ � ε(1−μ)/2

and hence the periodic orbit is within the last subsector,
then the observed MMO has maximal rotation number.
As δ approaches zero, the periodic orbit moves through
all the different rotational sectors, finally reaching the
first subsector with only one rotation. Thus, the MMO
pattern closest to the border δ = 0 has only one small
oscillation.

For parameter values lying on or near the δ = 0 line
segment in Fig. 10 the periodic orbit of the singular flow
(the concatenation of flow in the reduced system and
from the layer problem) enters the singular funnel on or
near the SC curve, so for C > 0 (but sufficiently small)
there will be a single small oscillation associated with
the FN. If one increases gA, moving upward along a
vertical line segment in the MMO region of Fig. 10, then
the periodic orbit of the singular flow enters further
from the SC curve and closer to L+, so the δ function
increases from 0. Therefore, for C > 0 the periodic or-
bit enters the FN through a sector in which s is closer to
smax and thus more small oscillations are produced. For
example, moving upward along the yellow line segment
in Fig. 10 by increasing gA will result in s increasing
from 1 up to 5. For sufficiently small C, this will result
in bursting oscillations with 2 spikes (for small gA) up
to 6 spikes (for gA near the upper bursting boundary).

For C > 0, but small, this will result in bursting
oscillations with 2 spikes for gA small up to 6 small
oscillations for gA near the upper bursting boundary.

In summary, the eigenvalue ratio for the FN in the
singular system, μ, determines the maximum number
of small oscillations (smax) that can occur during the
MMO oscillation. This parameter is adjusted through
the biophysical parameter gK. Increasing gKdecreases
smax. The distance from the strong canard at which
the singular periodic orbit enters the singular funnel,
δ, determines how close the actual number of small
oscillations (s) is to the upper bound smax. This parame-
ter is adjusted through the biophysical parameter gA.
Increasing gA increases s.

Figure 12 shows how the number of spikes in a
burst varies for the case C = 2 pF, computed through
numerical simulation of the full system. To the right and
below the bursting region of the gK-gA parameter space
the system spikes continuously (small blue circles). To
the left and above the bursting region the system is at
a steady state (blue dots). Within the bursting region,
but near the bottom boundary, the number of spikes
per burst is small, typically two or three. As one moves
away from the lower boundary the number of spikes
per burst increases rapidly to a maximum, and the value
of this maximum is larger on the left side of the bursting
region than on the right side. This is all consistent with

Fig. 12 Number of spikes per burst for a grid of gK and gA values
(C = 2 pF). Single points represent steady states, and small dark
circles represent continuous spiking. Larger circles with colors
ranging from light blue to red represent bursting. The larger the
circle, the greater the number of spikes per burst (same as in
Fig 6). The minimum number of spikes is 2 (small, light blue), and
the maximum is 53 (large, red). The green and brown curves are
the period doubling and saddle node bifurcation curves shown in
Fig. 3B
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the singular perturbation analysis. Even for larger val-
ues of the capacitance C the same trends are observed,
however as C is increased the lower bursting boundary
moves upward and there is an increase in the range of
gA values over which the number of spikes per burst
increases from two to its maximum (not shown).

6 Discussion

Mixed mode oscillations have appeared in several
neural applications (Erchova and McGonigle 2008;
Wechselberger 2005; Rubin and Wechselberger 2007;
Rotstein et al. 2008; Ermentrout and Wechselberger
2009; Drover et al. 2005; Brons et al. 2008; Krupa et al.
2008; Guckenheimer et al. 1997). In this article we
have demonstrated how MMOs can produce a type of
bursting oscillation (Fig. 1) that has been described in a
recent mathematical model of the pituitary lactotroph
(Toporikova et al. 2008), and which could potentially
describe bursting in other endocrine cells and neurons.
We have shown the genesis of this bursting rhythm us-
ing geometric singular perturbation theory. The curves
in the (gK,gA) parameter space that bound the MMO
region in the singular limit (Fig. 10) correspond nicely
to those that bound the bursting region away from this
limit (C = 2 pF, Fig. 3). Thus, the analysis performed at
the singular limit not only reveals the subtle mechanism
of bursting in this system, but it also provides informa-
tion on the extent of bursting that is consistent with the
bifurcation analysis of the full system.

Importantly, the singular perturbation analysis pro-
vides information on features that were not apparent
from the bifurcation analysis of the full system. While
the full-system analysis provided boundaries for the
bursting region in parameter space, it did not fully
explain the rationale for these boundaries. The singular
perturbation analysis gave a clear rationale, in terms
of the properties of the folded node singularity and
the curves delimiting the singular funnel. Also, singular
analysis provided information on how the number of
spikes in a burst varies in parameter space. This in-
formation could not be obtained from the bifurcation
analysis of the full system, but required numerical sim-
ulation (Figs. 6 and 12). Finally, the singular theory
predicts that the amplitude of the spikes that occur
during bursting increase as the square root of the ca-
pacitance (the actual value of capacitance for pituitary
somatotrophs is ∼ 5 pF and for lactotrophs is ∼ 6 pF).
This dependence of spike amplitude on C can only
be obtained from the full system through numerical
simulation.

While the singular perturbation analysis has many
virtues, it also has limitations. Most obviously, the
singular analysis is only guaranteed to be valid for
sufficiently small C. Also, the analysis is most effective
when there are no more than two slow variables. Thus,
the singular analysis has limitations that are not present
in the full-system bifurcation analysis. This emphasises
the power of combining the two analysis techniques:
singular perturbation analysis to understand the oscil-
lation mechanism and extent in parameter space as-
suming that certain conditions are met, and full-system
bifurcation analysis to extend the singular analysis to
the non-singular situation that is likely a more accurate
description of the biological system.
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