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Abstract The electrical activity of endocrine pituitary cells
is mediated by a plethora of ionic currents and establishing
the role of a single channel type is difficult. Experimen-
tal observations have shown however that fast-activating
voltage- and calcium-dependent potassium (BK) current
tends to promote bursting in pituitary cells. This burst pro-
moting effect requires fast activation of the BK current,
otherwise it is inhibitory to bursting. In this work, we ana-
lyze a pituitary cell model in order to answer the question
of why the BK activation must be fast to promote bursting.
We also examine how the interplay between the activa-
tion rate and conductance of the BK current shapes the
bursting activity. We use the multiple timescale structure
of the model to our advantage and employ geometric sin-
gular perturbation theory to demonstrate the origin of the
bursting behaviour. In particular, we show that the burst-
ing can arise from either canard dynamics or slow passage
through a dynamic Hopf bifurcation. We then compare our
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theoretical predictions with experimental data using the
dynamic clamp technique and find that the data is consis-
tent with a burst mechanism due to a slow passage through a
Hopf.
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1 Introduction

The electrical activity of pituitary cells regulates diverse
functional characteristics such as the release of prolactin,
growth hormone and ACTH in lactotrophs, somatotrophs
and corticotrophs, respectively. The combination of ionic
currents mediated by various ion channels in the cellu-
lar membrane determines the pattern of electrical activity
exhibited by these cells (Stojilkovic et al. 2010). One partic-
ular pattern of electrical activity commonly seen in pituitary
cells is pseudo-plateau bursting (Stern et al. 2008), which
consists of alternating periods of small-amplitude oscilla-
tions in the active (depolarized) phase followed by silent
phases (Fig. 1a). The calcium concentration in these cells
increases more when the cell is bursting than when it is
spiking, resulting in higher levels of hormone and neu-
rotransmitter secretion (Stojilkovic et al. 2005; Van Goor
et al. 2001). We distinguish pseudo-plateau bursting from
plateau bursting, which features large-amplitude fast spik-
ing in the active phase (Bertram et al. 1995; LeBeau
et al. 1998; Tsaneva-Atanasova et al. 2007). The burst-
ing type we examine in this paper is the pseudo-plateau
type.
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Fig. 1 Electrical activity of
pituitary cells. a Pseudo-plateau
bursting recorded in an
unstimulated GH4C1
lacto-somatotroph cell line and
b MMOs generated by a
deterministic mathematical
model. Insets: magnified view of
a single burst with sub-threshold
oscillations in the active phase

a b

Pituitary cells express a variety of ion channels and
establishing the role of any given channel type remains a
significant undertaking. It has been proposed that large con-
ductance potassium (BK) channels (Latorre and Brauchi
2006; Sah and Faber 2002; Stojilkovic et al. 2010) pri-
marily determine whether a pituitary cell spikes or bursts
(Miranda et al. 2003; Stojilkovic et al. 2005). In Tabak et al.
(2011), a hybrid computational/experimental approach was
used to study how the kinetic properties of BK channels
affect bursting in pituitary cells. It was demonstrated that
subtracting/adding BK current tended to decrease/increase
burstiness. Blocking of the BK channels using paxilline or
iberiotoxin generally resulted in an irreversible conversion
from bursting to spiking. Using the dynamic clamp tech-
nique (Sharp et al. 1993), artificial BK current was then
injected into the cell, which was observed to reliably return
the cell to a bursting state. Moreover, increasing the con-
ductance of the injected BK current also increased burst
duration. However, it was also observed that the burst pro-
moting effect of the BK current came with a caveat: BK
activation must be sufficiently fast to promote bursting. If
the BK activation is too slow, then the BK current becomes
inhibitory to bursting by speeding up repolarization (Tabak
et al. 2011). The primary aim of this work is to provide
a mathematical explanation of the key physiological obser-
vations of Tabak et al. (2011). Namely, to understand why
increasing BK conductance promotes bursting and why BK
activation must also be fast in order to promote bursting.

The dependence of the electrical activity on the activa-
tion rate of the BK channels highlights the importance of
timescales in cellular excitability. Experimental recordings
and model simulations of pituitary cell bursting support this
notion by showing that the dynamics evolve on multiple
timescales. There are fast epochs where the cell switches
between active and silent phases and slow epochs where the
sub-threshold oscillations of the bursting can occur. Using
geometric singular perturbation theory (GSPT) (Fenichel
1979; Jones 1995), it has been shown that the pseudo-
plateau bursting is a mixed mode oscillation (MMO) (Vo
et al. 2010; Teka et al. 2011). A MMO is an oscillatory
trajectory featuring small amplitude oscillations sitting on

top of large amplitude, relaxation-type oscillations (Fig. 1b).
Two common mechanisms for MMOs are canard dynam-
ics and slow passage through a dynamic Hopf bifurcation
(Brøns et al. 2008; Desroches et al. 2012; Erchova and
McGonigle 2008; Izhikevich 2000). In the current article,
we analyze a pituitary cell model and show that both canard
and Hopf mechanisms are possible, depending on parameter
values.

The outline of the paper is as follows: in Section 2, we
describe the mathematical model and perform a bifurcation
analysis with respect to kinetic properties of the BK current.
We show numerically that BK conductance and BK activa-
tion rate alone are insufficient to control bursting. Instead, it
is a combination of the BK conductance and BK activation
rate that controls the bursting behaviour. In Section 3 we
formally show that our model is a multiple timescale prob-
lem and give a brief overview of GSPT in the context of
our bursting model. In Section 4, we use our geometric sin-
gular perturbation analysis to explain, mathematically, the
bursting behaviour encountered in Section 2 via canard- and
Hopf-induced MMOs. In particular, we demonstrate that
both MMO mechanisms are affected by the BK conduc-
tance, however, only the Hopf mechanism generates MMOs
that depend on the BK activation rate. That is, we show
that sensitivity to variations in the BK activation rate is
an useful diagnostic in identifying the burst mechanism. In
Section 5, we test our geometric analysis experimentally by
injecting artificial BK conductance into spiking GH4 cells
(a lacto-somatotroph cell line) using the dynamic clamp
technique. As we decrease the activation time constant of
BK channels, we observe longer bursts with smaller sub-
threshold oscillations during the active phase, consistent
with the Hopf mechanism. We conclude in Section 6 with a
discussion.

2 The mathematical model

We consider a mathematical model that provides a minimal
description of the electrical activity and calcium dynam-
ics in pituitary cells (Tabak et al. 2011). There are three
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voltage-gated currents (ICa, IBK, IK ), a calcium-gated cur-
rent, ISK , and a leak current, IL. The voltage-gated inward
calcium current ICa is assumed to activate instantaneously
(so that the activation variable is fixed at its quasi steady
state). Despite being gated by both voltage and calcium, the
BK channels are modelled as a purely voltage-dependent
process since the calcium concentration felt by the BK chan-
nels is determined by the voltage-dependent current through
a nearby calcium channel and equilibrates in microsec-
onds (Fakler and Adelman 2008; Sherman et al. 1990). The
state variables are the membrane potential V of the cell,
activation variables n and b for the K and BK channels,
respectively, and the intracellular calcium concentration c.
Their dynamics are governed by the evolution equations

Cm

dV

dt
= −(ICa + IBK + IK + ISK + IL),

τBK

db

dt
= b∞(V ) − b,

τn

dn

dt
= n∞(V ) − n,

dc

dt
= −fc(αICa + kcc), (1)

where the ionic currents are given by

ICa = gCam∞(V )(V − VCa),

IBK = gBKb(V − VK),

IK = gKn(V − VK),

ISK = gSKs∞(c)(V − VK),

IL = gL(V − VL), (2)

and the steady state functions are given by

x∞(V ) =
[

1 + exp

(
Vx − V

sx

)]−1

,

s∞(c) = c2

c2 + k2
s

,

where x ∈ {m, b, n}. Standard parameter values are listed in
Table 1.

2.1 Fast-activating BK channels promote bursting

One of the key observations from Tabak et al. (2011) was
that the activation of the BK channels needed to be fast in
order to promote bursting. Otherwise, the BK current has
an inhibitory effect and the cell spikes. A systematic way
to investigate the dependence of the speed of activation on
the bursting in Eq. (1) is via a bifurcation analysis. That
is, examining what happens to the system dynamics under
variations in the activation time constant.

In Fig. 2a–f, representative time traces for different types
of bursts are shown for a fixed value of gBK . For large τBK

(i.e. slow activation), the BK current hinders the bursting

Table 1 Standard parameter values for the 4D pituitary cell model

Parameter Value Definition

Cm 0 − 10 pF Membrane capacitance

gCa 2 nS Maximal conductance of

Ca2+ channels

VCa 60 mV Reversal potential for Ca2+

Vm −20 mV Voltage value at midpoint of m∞
sm 12 mV Slope parameter of m∞
gK 1.5 nS Maximal conductance of delayed

rectifier K+ channels

VK −75 mV Reversal potential for K+

Vn −5 mV Voltage value at midpoint of n∞
sn 10 mV Slope parameter of n∞
τn 30 ms Time constant of n

gSK 2 nS Maximal conductance of

SK channels

ks 0.4 μM Ca2+ at midpoint of s∞
gBK 0 − 1 nS Maximal conductance of

BK channels

Vb −20 mV Voltage value at midpoint of b∞
sb 2 mV Slope parameter of b∞
τBK 2 − 10 ms Time constant of b

gL 0.2 nS Leak conductance

VL −50 mV Leak current reversal potential

fc 0.01 Fraction of free Ca2+ ions

in cytoplasm

α 0.0015 μMfC−1 Conversion from charges to

molar concentration

kc 0.12 ms−1 Rate of Ca2+ extrusion

and the system is in a spiking state (panel (a)). When the
activation time constant is decreased, the system generates
bursts (panels (b)–(d)). These bursts have sensitive depen-
dence to τBK . Speeding up the activation of the BK channels
(i.e. making τBK smaller) rapidly increases the number of
small oscillations in the bursts. Moreover, as τBK decreases,
so too does the amplitude of the small oscillations in the
burst. For sufficiently small τBK , we observe damped oscil-
lations followed by a plateau in the active phase before the
trajectory jumps away to the silent phase (panel (e)). Fur-
ther decreases in τBK only intensify the damping effect
and the oscillatory behaviour gives way to a flat plateau
(panel (f)). Henceforth, we explicitly distinguish between
bursting (panels (b)–(d)) and plateau oscillations (panels (e)
and (f)).

A graphical summary of the effect of τBK variations on
the trajectories is provided in panel (g), where the bifurca-
tion structure of Eq. (1) with respect to τBK for Cm = 5 pF
and gBK = 0.5 nS was computed using AUTO (Doedel
1981; Doedel et al. 2009). We plot τBK against the standard
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Euclidean norm of the solution. As τBK is decreased, the
behaviour switches from spiking to bursting with increas-
ing duration, to plateauing. Distinct bursting families are
distinguished by the number, s, of small oscillations in the
active phase. The spiking branch (blue, labelled s = 0) is
stable for the largest τBK values. The stability changes at
a period doubling (PD) bifurcation (PD1, right inset) and
the s = 1 bursting family becomes stable at a saddle-node
(SN) of periodics (SN1, right inset). Between the spiking
and first bursting branch is a small τBK interval where the
trajectory is a mixture of spiking and bursting patterns. This
behaviour of stability loss at a PD and stabilization at a
SN with mixed bursting trajectories in between persists for
the remaining bursting transitions, except for the transition
between the s = 6 bursting branch and the plateau branch
(left inset). In this case there are no bifurcations separat-
ing the two branches. That is, from a dynamical systems
viewpoint, there is no intrinsic difference between the last
bursting family and a plateau trajectory.

The time traces in Fig. 2 show that the amplitude and
number of small oscillations in the bursts changes very
rapidly under τBK variations when all other parameters are
fixed. However, changes in the other system parameters
alter the bifurcation structure and hence the associated time
traces. Figure 3e shows an example of how a change in

gBK for instance, can have a drastic impact on the bifur-
cation structure of Eq. (1). Note that the L2 norm has a
much smaller vertical range than its counterpart in Fig. 2g.
The relatively flat L2 norm depicted in Fig. 3e is reflected
in the trajectories (panels (a) to (d)) as a weak response to
τBK variations. That is, the number and amplitude of the
sub-threshold oscillations in the bursting patterns has little
variation under τBK variations. Moreover, the burst duration
is essentially unaltered.

2.2 The interplay between BK conductance and activation
speed

In the dynamic clamp studies conducted in Tabak et al.
(2011), artificial BK current was injected into pituitary cells
not only for different activation rates τBK , but also for var-
ious conductances gBK . In Section 2.1, we investigated the
dependence of the bursts on the activation time constant for
two different fixed gBK values. Figures 2 and 3 hinted at
the notion that (in addition to τBK ) gBK is a crucial fac-
tor in shaping the electrical activity. We now extend that
analysis and examine the dependence of the bursts on both
the amount of BK current and its speed of activation. To
do this, we compute 2-parameter bifurcation diagrams in
(τBK, gBK)-space (Fig. 4).

Fig. 2 Effect of variations in
τBK on the trajectories of
Eq. (1) for Cm = 5 pF and
gBK = 0.5 nS with all other
parameters fixed at their
standard values. In a
τBK = 10 ms (spiking), b
τBK = 7 ms (bursting with 1
small oscillation), c
τBK = 5.8 ms (bursting with 3
small oscillations), d
τBK = 5.3 ms (bursting with 5
small oscillations), e
τBK = 4 ms (plateauing with
visibly damped oscillations) and
f τBK = 1 ms (plateauing with
no observable oscillations). g
Summary of all possible
behaviours as τBK is varied

a b

c d

e f

τ

g
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Fig. 3 Time traces and
bifurcation structure of Eq. (1)
for Cm = 5 pF and
gBK = 0.1 nS with other
parameters as given in Table 1.
In a, τBK = 10 ms, b
τBK = 7 ms, c τBK = 4 ms and
d τBK = 1 ms. Variations in the
activation rate τBK only creates
minor changes in the bursting
patterns. The bifurcation
diagram in panel e illustrates the
notion that τBK has little
influence on the bursting
trajectories for this particular
parameter set

a b

c d

τ

e

In Fig. 4a, the spiking/bursting boundary (blue, PD1) was
calculated by following in 2 parameters the PD point where
the s = 0 branch loses stability. Also shown is the boundary
between bursts with 1 small oscillation and more complex
trajectories (also computed by following in (τBK, gBK) the
PD point where the s = 1 branch becomes unstable)1. For
this particular parameter set, bursting exists in the absence
of BK current. Spiking only occurs when slowly-activated
BK current is injected. If the injected BK current is suffi-
ciently fast, then the resulting trajectory is either a burst or a
plateau oscillation. Above a certain gBK threshold (approx-
imately given by the nearly horizontal segment of the red
boundary), the activation speed of the BK current becomes
crucial: small variations in τBK change the number and
amplitude of the small oscillations in the burst pattern sig-
nificantly. Below the threshold, the bursting trajectories are
largely independent of τBK . That is, large variations in τBK

produce only minor changes in the burst pattern, suggest-
ing that the mechanism that generates the bursts is somehow
different above and below the threshold (compare Figs. 2
and 3).

In panel (b), we show the 2-parameter bifurcation struc-
ture of Eq. (1) for Cm = 5 pF and gK = 3.2 nS. For this
given parameter set, the system is calibrated so that in the

1We do not draw the bursting/plateau boundary since in AUTO, there
seems to be no way of distinguishing between these two types of
trajectories.

a

Spiking

Bursting/Plateauing PD1

τ

b

Spiking

Bursting/
Plateauing

Fig. 4 Spiking/bursting boundaries of Eq. (1) with Cm = 5 pF for a
gK = 1.5 nS and b gK = 3.2 nS with all other parameters fixed at
their standard values. In (a), bursting exists even in the absence of BK
current. In (b), BK current is necessary for bursting. In both cases, the
BK current must be activated sufficiently fast, otherwise the system is
spiking. The dashed lines in (a) denote the 1D slices taken in Figs. 2g
and 3e
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absence of BK current it is spiking. The BK current then
becomes crucial for bursting. The addition of BK current
alone does not guarantee bursting as the activation speed
τBK is a critical factor in determining whether the system
spikes or bursts. More specifically, the model predicts that
the BK current only produces bursts when τBK lies in an
intermediate τBK range. If τBK is too large, then the BK
current impedes the burst phenomenon. If it is too small,
then the small oscillations in the active phase rapidly die
out and only plateau oscillations are observed. Note that
the spiking/bursting boundary (blue) has a reversed orien-
tation to its counterpart in panel (a). This orientation flip
in the spiking/bursting boundary occurs at gK ≈ 1.98 nS
and arises from changes in the shape of the PD1 curve
under gK variations. Despite this, the conclusions are still
the same: bursting due to BK current can only occur if the
BK activation is sufficiently fast.

So far, we have used bifurcation analysis to partition
the parameter space of Eq. (1) based on the dynami-
cal behaviour. Namely, we have identified the regions in
(τBK, gBK)-space where the system is spiking and where
it is either bursting or plateauing. However, our bifurca-
tion diagrams do not reveal the underlying mechanisms
that cause the observed behaviour. In particular, we would
like to understand why in some instances τBK is so cru-
cial in shaping the bursting trajectories whilst in others it
has virtually no influence. GSPT forms the basis of our
approach.

3 Geometric singular perturbation analysis

Geometric singular perturbation theory (Jones 1995; Rubin
and Terman 2002) is an analytic technique for multi-scale
problems that combines asymptotic theory with dynamical
systems techniques. It has been used to successfully explain
the dynamics arising in a variety of biological systems. In
the context of bursting, GSPT was pioneered by Rinzel
(1985) and has become a very useful tool in understanding
burst phenomena (Izhikevich 2007; Ermentrout and Terman
2010). For instance, the classification of bursters is often
based on the fast subsystem bifurcations involved in the ini-
tiation/termination of the active phase (Bertram et al. 1995;
Izhikevich 2000). GSPT has also been used to great effect in
unravelling the dynamics of plateau bursting in pancreatic
β cells (Bertram and Sherman 2005; Terman 1991), trigem-
inal motoneurons (Del Negro et al. 1999) and neonatal
CA3 hippocampal principal neurons (Safiulina et al. 2008).
GSPT is also useful in explaining the relationship between
plateau and pseudo-plateau bursting (Osinga and Tsaneva-
Atanasova 2010; Teka et al. 2011). The bursting activity of
pituitary cells such as cotricotrophs (LeBeau et al. 1998),
somatotrophs (Nowacki et al. 2010) and lactotrophs (Teka

et al. 2011; Vo et al. 2010) have also been described using
GSPT. The examples cited here are far from forming a com-
prehensive list and are only intended to give a sense of the
practical utility of GSPT. Since GSPT relies on the fact that
the system evolves on multiple timescales, our first task is to
show that system (1) is a multi-timescale problem. By intro-
ducing a dimensionless time variable t = kt ts and suitable
rescalings, we can rewrite Eq. (1) as

ε1
dV

dts
= Cm

ktgref

dV

dts
= f1(V , b, n, c),

ε2
db

dts
= τBK

kt

db

dts
= b∞(V ) − b ≡ f2(V , b), (3)

dn

dts
= kt

τn

(n∞(V ) − n) ≡ g1(V , n),

dc

dts
= −ktfckc

(
α

kc

ICa + c

)
≡ g2(V , c),

where kt = τn is a reference time scale, gref = O(1) nS is a
typical conductance scale and

f1(V , b, n, c) := − 1

gref
(ICa + IBK + IK + ISK + IL).

Note that we avoid rescaling of V and c as they have no
influence on the timescales. We remark that, strictly speak-
ing, GSPT requires the right hand sides of Eq. (4) to be
O(1), but f1 is not of the same order as f2, g1 or g2. This is
a non-issue since in our calculations, we implicitly assume
V has been non-dimensionalized so that f1 = O(1) and
the ensuing results have been rescaled to restore V to its
dimensional form.

From system (4), we can see that the voltage variable
has time constant Cm/gref = 1 ms for Cm = 5 pF and
gref = 5 nS. Meanwhile, the activation variable for the BK
channels has typical timescale τBK = 5 ms. The gating
variable n is slower with timescale τn = 30 ms, whilst the
calcium variable is substantially slower with a timescale of
(fckc)

−1 > 800 ms. To formalize this timescale separa-
tion, we introduce the small parameters ε1 ≡ Cm/(ktgref)

and ε2 ≡ τBK/kt , which measure the relative speeds of
V and b to n, respectively. By decreasing Cm (or ε1),
the timescale separation between V and (b, n, c) increases,
whilst decreasing τBK (or ε2) changes the timescale sep-
aration between b and (V , n, c). Although it is not clear
whether or not V and b operate on similar timescales, it
is clear that both V and b are substantially faster than
(n, c). Thus, system (4) is a singularly perturbed problem
with fast variables (V , b), slow variables (n, c) and small
perturbation parameters (ε1, ε2).

System (4) is currently described over the slow timescale
ts . This means that the fast variables (V , b) go through
their dynamics and equilibrate much more rapidly than the
slow variables (n, c). We call Eq. (4) the slow system. An
equivalent description of the dynamics can be obtained by
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rescaling time
(
ts = ε2tf

)
to give the fast system:

dV

dtf
= ε2

ε1
f1(V , b, n, c),

db

dtf
= f2(V , b), (4)

dn

dtf
= ε2g1(V , n),

dc

dtf
= ε2g2(V , c).

Systems (4) and (5) are equivalent in the sense that they
trace out the same paths in phase space, but at different
speeds.

The next step is to take the singular limit to decompose
Eq. (1) into slow and fast subsystems that are simpler to
analyze. However, the presence of two perturbation param-
eters naturally leads to the question of which limit to take.
Taking the limit ε1 → 0 with ε2 �= 0 assumes that the volt-
age variable is significantly faster than the other variables.
Similarly, the limit ε2 → 0 with ε1 �= 0 assumes that the
activation of the BK channels is a much more rapid process
than anything else. Here, we make the a priori assumption
that V and b vary on similar timescales. As such, we take the
double singular limit (ε1, ε2) → (0, 0) under the stipula-
tion that the relative speeds of V and b remain comparable.
Formally, we assume that

lim
(ε1,ε2)→(0,0)

ε2

ε1
= r, (5)

where r = O(1) so that ε2 = rε1. Given the relation
between ε1 and ε2, we now only to refer to ε2 with the value
of ε1 implied. The (double) singular limit ε2 → 0 (and
hence ε1 → 0) in the fast system (Eq. (5)) leads to the 2D
layer problem:

dV

dtf
= rf1(V , b, n, c),

db

dtf
= f2(V , b),

dn

dtf
= 0,

dc

dtf
= 0. (6)

The singular limit ε2 → 0 on the slow timescale (i.e. in the
slow system (Eq. (4))) gives the 2D reduced problem:

0 = f1(V , b, n, c),

0 = f2(V , b),

dn

dts
= g1(V , n),

dc

dts
= g2(V , c). (7)

In terms of matched asymptotic expansions (Mishchenko
et al. 1994), the reduced and layer problems correspond
to the outer and inner solutions, respectively. The idea of
GSPT is to combine the information from the 2D layer prob-
lem and the 2D reduced problem in order to gain insight into
the original 4D cell model (Eq. (1)). For the scope and pur-
poses of this paper, we avoid excessive mathematical detail
and provide only a cursory analysis of the slow and fast
subsystems whilst highlighting the features relevant to our
problem.

3.1 The layer problem

We begin with a bifurcation analysis of the 2D layer prob-
lem (Eq. (6)). The layer problem is an approximation of
Eq. (1) in which the slow variables are assumed to move so
slowly that they are essentially fixed. That is, the slow vari-
ables act as parameters in the layer problem approximation.
The set of equilibria for the layer problem is a surface called
the critical manifold:

S :=
{
(V , b, n, c) ∈ R

4 : f1(V , b, n, c) = f2(V , b) = 0
}

.

(8)

Since n and b enter linearly into f1 and f2, respectively, we
can obtain a graph representation of the critical manifold:

b = b∞(V ),

n = − 1

gK

(
gCam∞(V )

V − VCa

V − VK

+ gBKb∞(V )

+gSKs∞(c) + gL

V − VL

V − VK

)
. (9)

Figure 5a shows an archetypical critical manifold S, drawn
as a graph over the slow variables (n, c). We observe that
the critical manifold is folded, which is typical of neuronal
problems (Teka et al. 2011; Vo et al. 2010; Rotstein et al.
2008; Rubin and Wechselberger 2008; Wechselberger and
Weckesser 2009; Ermentrout and Wechselberger 2009). The
fold curves, L, of S are precisely the set of points where the
layer problem undergoes a saddle-node bifurcation:

L:= {(V , b, n, c)∈S : det J r =f1V f2b−f1bf2V =0}, (10)

where J r =
(

rf1V rf1b

f2V f2b

)
is the Jacobian of the layer prob-

lem. Note that the condition in Eq. (10) is necessary but not
sufficient. In Fig. 5a, there are two fold curves: an upper
fold curve L+ and a lower one L−. These divide the critical
manifold S into attracting sheets, Sa , and repelling sheets,
Sr , where the notions of attraction and repulsion come from
a linear stability analysis of Eq. (6).

The fold curves are of interest because they are points
where Fenichel theory (Fenichel 1979; Jones 1995) breaks
down. More generally, Fenichel theory breaks down in the
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neighbourhood of bifurcations of Eq. (6). Usually, the inter-
esting dynamics are localized around these non-hyperbolic
regions. We note here for later reference that another way in
which Fenichel theory can break down is via a Hopf bifurca-
tion of the layer problem (see Section 4.2). The Hopf curves,
H , of the critical manifold are given by:

H := {(V , b, n, c) ∈ S : tr J r = rf1V + f2b = 0} , (11)

together with a transversality condition (the eigenvalues of
the linearization of Eq. (6) must cross the imaginary axis
with non-zero speed)2. Again, the condition in Eq. (11) is
necessary but not sufficient. For normally hyperbolic crit-
ical manifolds (i.e. the eigenvalues of the linearization of
Eq. (6) evaluated along S are uniformly bounded away
from the imaginary axis), Fenichel theory guarantees the
persistence of locally invariant slow manifolds S(ε1,ε2) of
the fully perturbed problem (Eq. (4)) for sufficiently small
perturbations.

According to the layer problem, an arbitrary initial con-
dition starting away from the critical manifold will be drawn
into one of the attracting sheets of S. Once the trajectory
is on the critical manifold, the layer flow predicts trivial
dynamics. At this point, the slow processes dominate and
the layer flow is no longer a suitable approximation of the
dynamics. As such, we must switch viewpoints and consider
the slow dynamics via the reduced system.

3.2 The reduced problem

The 2D reduced problem is a differential-algebraic system,
consisting of algebraic equations that constrain the dynam-
ics to some surface and differential equations that describe
the slow motions along that surface. We observe that the
algebraic conditions in Eq. (7) constrain the slow motions
to the critical manifold itself. That is, the reduced system
(Eq. (7)) prescribes a nontrivial flow along S. Moreover, the
restriction of the flow of Eq. (4) to the invariant slow mani-
folds S(ε1,ε2) is a small smooth perturbation of the slow flow
along S.

To analyze the flow on a manifold, one must typically
look at the flow in various coordinate charts (we refer to
(Wechselberger 2012) for a more detailed discussion of how
to deal with reduced systems in arbitrary dimensions). To
obtain evolution equations in all coordinate charts for the
reduced problem (Eq. (7)), we take a total time derivative of
the algebraic constraints and rearrange to obtain:

⎛
⎝−J 0

0 I 2

⎞
⎠ d

dts

⎛
⎜⎜⎝

V

b

n

c

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f1ng1 + f1cg2

0
g1

g2

⎞
⎟⎟⎠ , (12)

2We point out that for our model equations, det J |S and tr J |S are
both independent of the calcium variable c.

where J =
(

f1V f1b

f2V f2b

)
is a special case of the Jacobian

J r of Eq. (6), 0 is the 2 × 2 zero matrix and I 2 is the 2 × 2
identity matrix. Multiplying both sides by the 4 × 4 matrix(−adj(J ) 0

0 I 2

)
, where adj(J ) is the adjoint of J , leads to

the following form for the reduced system:

(
(det J )I 2 0

0 I 2

)
d

dts

⎛
⎜⎝

V
b
n
c

⎞
⎟⎠=

⎛
⎜⎝

−f2b (f1ng1 + f1cg2)
f2V (f1ng1 + f1cg2)

g1
g2

⎞
⎟⎠, (13)

which describes the flow of the reduced problem on S in
the 4 coordinates (V , b, n, c). Usually, more than one coor-
dinate chart is needed to cover a manifold. In our case,
the critical manifold has a graph representation (9), which
allows us to use a single coordinate chart and obtain the
projection of the reduced system on the (V , c) plane:

det J
dV

dts
= −f2b (f1ng1 + f1cg2) ,

dc

dts
= g2, (14)

where b and n are now specified by Eq. (9). The projection
of the reduced system (Eq. (14)) highlights an important
fact: the reduced system is singular at the fold curves L.
However, this singular term can be removed by a time
rescaling (dts = (det J ) dtd ) to give the desingularized
system:

dV

dtd
= −f2b (f1ng1 + f1cg2) ≡ F(V, c),

dc

dtd
= (det J ) g2. (15)

Note that in regions where det J < 0, the time rescaling
reverses the orientation of trajectories.

The desingularized system possesses two kinds of sin-
gularities: ordinary and folded. Ordinary singularities are
simply equilibria of the desingularized system (15), of the
reduced system (7) and of the original cell model (1). More
precisely, ordinary singularities, E, are given by

E := {(V , b, n, c) ∈ S : g1 = g2 = 0} . (16)

Folded singularities, M , on the other hand, are points on the
fold curve where F vanishes:

M := {(V , b, n, c) ∈ L : F = 0} . (17)

In the desingularized system, M is a set of equilibria. How-
ever, in the reduced system (Eq. (14)), folded singularities
are special points where both sides of the V -equation van-
ish simultaneously. This means that there is potentially a
cancellation of a simple zero, i.e. dV/dts is finite and
non-zero at a folded singularity. This in turn allows trajec-
tories to cross the fold L in finite time. Such solutions are
called singular canards and their persistence under small
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perturbations (i.e. ε2 small and nonzero) gives rise to com-
plex dynamics (see Brøns et al. 2006; Harvey et al. 2011;
Rotstein et al. 2008; Teka et al. 2011; Vo et al. 2010;
Wechselberger and Weckesser 2009 for examples). There
are three generic types of folded singularities (based on the
eigenvalues of the linearization of Eq. (15)): folded saddles
which have real eigenvalues of opposite sign, folded nodes
which have real eigenvalues of the same sign and folded
foci which possess complex eigenvalues. Folded nodes have
interesting properties and have been shown in various other
bursting problems to be a crucial piece of the puzzle (Brøns
et al. 2006; Harvey et al. 2011; Rubin and Wechselberger
2008; Teka et al. 2011; Vo et al. 2010).

3.3 Singular orbit construction

The aim of GSPT is to combine information from the
reduced and layer problems in order to understand the
dynamics of the cell model (Eq. (1)), particularly the oscil-
latory behaviour. To this end, we now use our reduced
and layer flows to construct singular periodic orbits, which
according to GSPT (Szmolyan and Wechselberger 2004),
will perturb to nearby periodic orbits of the full system
(Eq. (1)) for sufficiently small perturbations. We start with
the construction of the simplest type of periodic solution
of interest: a relaxation oscillation. An example of such a
construction is illustrated in Fig. 5. Relaxation oscillations
have been carefully studied in a variety of contexts using
asymptotic methods (Dorodnitsyn 1947; Grasman 1987;
Mishchenko and Rozov 1980). Here, we adopt the geomet-
ric approach (Szmolyan and Wechselberger 2004). We first
identify the main objects from our singular analysis. The
critical manifold S is folded with attracting and repelling
sheets (Sa and Sr ) separated by the fold curves L±. There

is a folded singularity on each fold curve: a folded node on
L+ and a folded focus on L−. The full system equilibrium
(ordinary singularity, E) lies on the repelling manifold for
the chosen parameter set. Note that spiking, bursting and
plateauing are only possible provided that E is unstable (i.e.
that E ∈ Sr ).

Figure 5 shows the singular attractor for the given param-
eter set constructed from the reduced (outer solution) and
layer (inner solution) flows. The singular orbit consists of 4
distinct segments. Starting at the lower fold curve L−, there
is a rapid evolution described by Eq. (6) towards the upper
attracting manifold Sa (red, double arrow). Once the trajec-
tory reaches Sa , the reduced flow description (Eq. (7)) takes
over until the trajectory (denoted by �S) reaches the upper
fold L+. At the fold curve, the reduced flow is singular and
there is a finite time blow-up of the solution (i.e. the solu-
tion ceases to exist). As such, the layer problem becomes
the appropriate descriptor and there is a fast down-jump to
the lower attracting manifold. From there, the reduced sys-
tem describes the slow motions along the critical manifold
until the trajectory once again hits the fold curve, thus com-
pleting the orbit. GSPT then guarantees that this singular
orbit will persist as a nearby periodic relaxation oscillation
corresponding to a spiking solution of Eq. (1).

4 Canard- and Hopf-induced MMOs

Having seen how to use the reduced and layer problems
to construct singular periodic orbits, we are now in a
position to investigate the oscillatory behaviour of Eq. 1.
There are two distinct mechanisms by which MMOs can
be generated: canard dynamics and slow passage through
a dynamic Hopf bifurcation (we refer to Section 9 of

a
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FF
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Sr

b

FN

FF

E
= 0

F = 0

μ

Fig. 5 Critical manifold and singular periodic orbit constructed from
Eqs. (6) and (7), projected onto a (V , n, c) space and b the (V , c) plane
for gK = 3.2 nS, gBK = 0.05 nS, r = 1 and all other parameters
set to their standard values. The critical manifold S is folded with fold
curves L±. On L+ (L−), there is a folded node (folded focus). The

singular orbit consists of slow orbit segments �S along the attracting
branches Sa together with fast jumps �F between them. The fast up-
jump projects the singular orbit outside the funnel of the folded node,
which is bounded by L+ and the strong canard, γ0 (see Section 4)
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Fig. 6 Singular orbit
construction in the case of a
canard-induced MMO for
gBK = 0.1 nS and r = 1 with
all other parameters as in Table
1. There is a folded node on L+
and the fast up-jump of the
singular orbit returns it to the
funnel (shaded region between
the fold L+ and the strong
canard γ0) of the folded node

a b

Desroches et al. (2012) for a comprehensive account of
MMOs in the literature). Canard dynamics are associated
with the slow subsystem and have been found in other neu-
roendocrine cell models to be the progenitor for the bursting
behaviour (Teka et al. 2011; Vo et al. 2010, 2012). The
slow passage through a dynamic Hopf bifurcation can be
observed when there is a Hopf bifurcation in the fast subsys-
tem that is unrelated to equilibria of the full system (Bertram
et al. 1995; Rinzel 1985; Stern et al. 2008; Teka et al. 2011;
Osinga and Tsaneva-Atanasova 2010; Tsaneva-Atanasova
et al. 2010). In this section, we examine both mecha-
nisms in detail and demonstrate the origin of the bursting
behaviour.

4.1 Canard dynamics

As we saw in Section 3.2, the folded singularities can lead
to counter-intuitive behaviour due to the indeterminate form
for the V -equation in Eq. (14). More specifically, it is pos-
sible for trajectories that reach the folded singularity to pass
through it with finite speed. This potential for trajectories to
tunnel through the fold is the linchpin of the argument for
the burst generating mechanism in canard-induced MMOs.
Here, we illustrate how this tunnelling behaviour can lead to
the small oscillations of a burst.

Figure 6 shows a singular orbit construction in which
there is a folded node on the upper fold curve L+. Associ-
ated to the folded node is a subset of the attracting manifold
Sa called the funnel of the folded node (grey shaded region).
The funnel is bounded by the fold curve L+ and by the
strong canard γ0, which is the unique trajectory tangent to
the strong eigendirection of the folded node. Every trajec-
tory that lands inside the funnel region is inevitably drawn
into the folded node. We quantify this by introducing a met-
ric δ, which measures the distance from the landing point of
the singular orbit on its fast up-jump to the strong canard γ0.
By convention, we say that trajectories that land inside the
funnel have a positive δ and trajectories that land outside the

funnel have a negative δ. Singular canards are identified as
those trajectories with a positive δ. These special solutions
start on Sa , tunnel through the fold L+ (via the folded node)
and follow Sr for O(1) times on the slow timescale before
they are repelled3.

There are two requirements for the existence of canard-
induced MMOs (Brøns et al. 2006): the reduced flow must
possess a folded node and there must be some kind of global
re-injection mechanism (fast depolarization) that returns tra-
jectories to the funnel of the folded node. This second
condition is equivalent to the requirement that δ is posi-
tive or, in other words, that there is a singular periodic orbit
that initiates its down jump at the folded node. According
to canard theory, such a singular periodic orbit will perturb
to a MMO orbit for sufficiently small perturbations O(ε2).
Moreover, the small amplitude oscillations of the MMO
occur in a neighbourhood of the folded node (Fig. 7). Fur-
thermore, the maximal amplitude of these small oscillations
is O

(√
ε2

)
. The rotational behaviour in a neighbourhood

of the folded node arises from geometric properties of
invariant slow manifolds. We refer to Brøns et al. (2006),
Wechselberger (2005) for details.

Figure 7 shows how the singular canard orbits perturb
to MMOs for fixed ratio r and various perturbations ε2.
Note that the full system trajectory (black orbit) initially
approaches the folded node parallel to the strong eigendi-
rection. This brings the trajectory close to the folded node,
where the trajectory then follows the weak eigendirection
(which serves as a linear approximation to the axis of rota-
tion for the small oscillations). Subsequently, the full system
orbit spends a significant amount of time on the repelling
manifold before jumping away. The deeper into the fun-
nel the singular orbit lands, the more time that the full

3Folded nodes have a sector of canards (the funnel). Folded saddles
have precisely two canards (tangent to the eigendirections of the folded
saddle) and folded foci have no canards.
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Fig. 7 Canard-induced MMOs
for gBK = 0.1 nS, r = 1 and a
Cm = 0.5 pF, τBK = 0.5 ms, b
Cm = 2 pF, τBK = 2 ms and c
Cm = 5 pF, τBK = 5 ms (cf.
Fig. 6). The left panels show the
singular (�F ∪ �S ) and
non-singular orbits in the (V , c)

plane. The right panels show the
associated time courses. The
parameters Cm and τBK were
chosen to preserve the ratio
r = 1. The small oscillations are
localized about the folded node
and their amplitudes increase
with the perturbation parameters
(Cm, τBK). The parameter set in
panel (c) places the trajectory on
the lower dashed line in Fig. 4a

c

b

a

system trajectory spends on the repelling sheet and the more
small oscillations executed in the full system trajectory. We
note here that there is an upper bound, smax, on the number
of small oscillations that a canard-induced MMO may have
(see Brøns et al. 2006; Wechselberger 2005). Only MMOs
with s < smax have easily observable small amplitude oscil-
lations whilst the small oscillations in MMOs with s = smax

are usually very difficult to observe (see Section 3.1 of
Desroches et al. (2012) for example).

Variations in the system parameters alter the landing
point of the fast up-jump of the singular orbit. If the param-
eters are calibrated so that the fast up-jump projects the
singular orbit into the funnel far from the strong canard γ0,
then the full system trajectory will execute smax oscillations
(for sufficiently small perturbations). Whether or not these
sub-threshold oscillations are actually observable is a differ-
ent matter. As the landing point of the fast up-jump moves
(under parameter changes) and approaches γ0, fewer small
oscillations will be observed in the burst pattern and the time
spent on the repelling side of the manifold decreases. When
δ < 0 (Fig. 5), the singular orbit never passes through the

folded node and hits L+ at a regular jump point. Conse-
quently, singular orbits with δ < 0 perturb to regular spiking
behaviour.

4.2 Slow passage through a dynamic Hopf bifurcation

Canard-induced MMOs arise from the canard dynamics
associated with folded node singularities in the slow subsys-
tem (Eq. (7)) and provide one burst generating mechanism.
However, as suggested by Figs. 2 and 3, changes in the
system parameters can drastically alter the MMO trajecto-
ries and the mechanisms that generate them. More precisely,
changes in gBK change the shape and structure of the crit-
ical manifold. For this reason, we now consider MMOs
generated from a slow passage through a dynamic Hopf
bifurcation (Baer et al. 1989; Neishtadt 1987, 1988) of the
fast subsystem (Eq. (6)). Figure 8 shows the singular orbit
construction in the case of Hopf-induced MMOs. The major
difference from the canard case is that there is now a curve
of Hopf bifurcations H on S. To be precise, these are sub-
critical Hopf bifurcations of the layer problem (Eq. (6)) so
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Fig. 8 Singular orbit
construction in the case of
Hopf-induced MMOs for
gBK = 0.5 nS and r = 1.2. The
repelling manifold is enclosed
by the Hopf curve H and the
lower fold curve L−. Note that
the folded singularity on L+ is
now a focus instead of a node
and the change in the structure
of S is due to the increase in
gBK (see Fig. 11)

a b

that the associated bursts are pseudo-plateau type4. For a
fixed c, the periodic branch that emanates from H is unsta-
ble (along the entire branch) and terminates at a homoclinic
on the repelling sheet of S. To simplify the presentation,
we omit these (unstable) periodic branches from Fig. 8 and
focus only on the key organizing structures.

In Fig. 8, it is clear that the Hopf curve occurs at a
more depolarized voltage level than the upper fold L+. This
means the repelling sheet of S extends past the upper fold
L+ and is now enclosed by H and L−. Since the upper
attracting sheet of the critical manifold terminates at the
curve of Hopf bifurcations H , the corresponding singular
orbit must jump at H , where the stability changes. In the
full system trajectory however, there is a substantial delay
before the trajectory jumps to the lower attracting mani-
fold, with small amplitude oscillations visible just before the
jump (Fig. 9a). This delay is mainly observed for small per-
turbations O(ε2). For larger perturbations, the delay is less
substantial and the small oscillations are observed on both
sides of the Hopf bifurcation (Fig. 9b and c).

The flow of Eq. (1) in a neighbourhood of H can be
understood in very simple terms. For ε2 = 0, the slow
variables (n, c) are fixed parameters of the layer problem
(Eq. (6)). For ε2 �= 0, n and c are dynamic quantities that
drift through the vicinity of the Hopf curve. As the trajec-
tory approaches H from the attracting side, the eigenvalues
of Eq. (6) are complex with negative real part. Exponen-
tial contraction of the system means that the trajectories
become exponentially close to Sa on the slow timescale.
As the trajectory passes H over to the repelling sheet of S,
the real part of the eigenvalues crosses zero and becomes

4In the classic slow-fast approach to bursting, the criticality of the
fast subsystem Hopf differentiates between plateau and pseudo-plateau
bursting. Plateau (pseudo-plateau) bursts are associated with super-
critical (subcritical) Hopf bifurcations of the layer problem. For
further details, we refer to Stern et al. (2008), Osinga and Tsaneva-
Atanasova (2010), Tsaneva-Atanasova et al. (2010), Teka et al. (2011).

positive. However, the trajectories are not immediately
repulsed. Instead, the trajectories destabilize when the
expansion on the repelling manifold counteracts the accu-
mulative contraction on the attracting manifold, which is the
cause for the observed delay. The implication then is that the
further the trajectory is from H on the attracting side, the
longer the delay on the repelling side before it is repelled.
However, there is a maximal distance (independent of ε2)
that trajectories may trace the repelling manifold before they
must jump away. For further details, we refer to Baer et
al. (1989), Neishtadt (1987, 1988).

Much like canard-induced MMOs, the amplitude and
number of small oscillations associated with Hopf-induced
MMOs is related to the size of the perturbation (i.e. to the
amount of time spent in a neighbourhood of H ). For small
perturbations, the passage through H is slow and the tra-
jectories are exponentially attracted to Sa . As such, there is
a substantial amount of time for the trajectories to oscillate
but those oscillations are very small and difficult to observe
due to the strong attraction to Sa . Any oscillatory behaviour
only becomes visible just before the trajectory jumps away
when the repulsion along Sr overwhelms the accumula-
tive contraction on Sa . When the perturbation parameter
ε2 is increased, the timescale separation weakens, essen-
tially making the slow variables faster. Consequently, the
drift through H is faster and there is less time for the tra-
jectories to oscillate. However, since the attraction to Sa is
weaker (due to larger ε2) the small oscillations have larger
amplitude and are easier to observe. Thus, as the perturba-
tion is pushed further, the trajectories have even less time
to be pulled into Sa and so the observed oscillations are
larger and fewer, since the amount of time spent near H

decreases (compare the panels of Fig. 9). Moreover, since
the trajectory is drifting through a Hopf bifurcation, the real
part of the eigenvalues increases through zero. As such,
the small oscillations of the Hopf-induced MMOs initially
have decreasing amplitude (on the attracting side) and then
increasing amplitude (on the repelling side).
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Fig. 9 Hopf-induced MMOs
for gBK = 0.5 nS, r = 1.2 and a
Cm = 0.5 pF, τBK = 0.6 ms, b
Cm = 2 pF, τBK = 2.4 ms and c
Cm = 5 pF, τBK = 6 ms (cf.
Fig. 8). The parameter set in
panel (c) places the trajectory in
the bursting/plateauing region of
Fig. 4a. Note that the choices of
Cm and τBK adhere to the ratio
r = 1.2. Smaller perturbations
increase the amount of time
spent on Sr but the oscillations
have smaller amplitude. Larger
perturbations increase the
amplitude of the spikes but
reduce the amount of time spent
near the Hopf curve H

a

b

c

4.3 Damped oscillations jumping at a fold

An important factor in shaping the trajectories is the amount
and type of contraction along the slow flow on Sa . When the
eigenvalues of Eq. (6) evaluated along slow orbit segments
on Sa are real, the trajectories are attracted (or repelled)
along nodes of Eq. (6). When the eigenvalues are complex,
the attraction (or repulsion) occurs along foci of the layer
problem, resulting in oscillatory behaviour in the full sys-
tem trajectory. With the results of Sections 4.1 and 4.2 in
mind, we are now in a position to investigate the geome-
try and nature of the orbits under parameter changes. A key
parameter that influences the amount and type of contrac-
tion along Sa is the ratio of fast timescales r . In Fig. 10, we
examine the effect of variations of r on the MMOs5.

Each panel of Fig. 10 shows 2 plots. In the main plot,
the singular orbit construction (red and blue) together with
the full system trajectory (black) are shown in the (V , c)

5Variations in r have no effect on the singular canards since they are
associated with the slow subsystem and r is only present in the fast
subsystem.

plane. In the adjacent plot, the real part of the eigenval-
ues λ of Eq. (6) evaluated along the slow orbit segment �S

on Sa is shown (with V on the vertical axis with the same
scale as in the main plot). The eigenvalues become complex
when the blue curves coalesce and become a single branch.
In panel (a), the eigenvalues of Eq. (6) on the stable top
sheet are initially real and negative. That is, the trajectory
approaches the attracting manifold along nodes of the layer
problem. As the reduced flow brings the trajectory towards
the Hopf curve, λ becomes complex. However, this region
of complex eigenvalues is short lived and the Hopf bifurca-
tion is encountered shortly after. As a result, the full system
trajectory has insufficient time to oscillate (for the cho-
sen perturbation parameters) and the associated pattern is a
spike. In panel (b), the region of complex λ is more exten-
sive, which provides the full system trajectory just enough
time to perform one small oscillation before jumping away.
As the ratio r of the speeds of V and b is decreased (i.e. the
BK activation made faster), the region of complex eigen-
values becomes more extensive (panels (c) and (d)). The
full system trajectories are then able to spend more time
in the oscillatory regime resulting in more sub-threshold
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Fig. 10 The eigenvalues of
Eq. (6) evaluated along �S

regulates the type of bursting
pattern. Singular and
non-singular orbits are shown
for Cm = 5 pF, gBK = 0.5 nS
and a τBK = 10 ms (r = 2), b
τBK = 7 ms (r = 1.4), c
τBK = 5.8 ms (r = 1.16), d
τBK = 5.3 ms (r = 1.06), e
τBK = 4 ms (r = 0.8) and f
τBK = 1 ms (r = 0.2). The
inset in (e) shows the second
degenerate node and switch from
complex to real eigenvalues.
Note the shifted scale on Re λ in
(f). The parameters were chosen
to correspond to those in Fig. 2
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oscillations. Of course, decreasing both perturbation param-
eters τBK and Cm (instead of τBK alone) improves the
singular limit predictions and generates more oscillations
of smaller amplitude (cf Fig. 9). Note that changing τBK

and Cm (with r fixed) leaves the location of the Hopf curve
unaltered, but changes the speed at which the full system
trajectory passes through it.

As r decreases further, the Hopf curve H moves closer
and closer to the fold curve L+. Eventually, at some critical
r-value, the Hopf and (upper) fold curves coalesce resulting
in a double zero eigenvalue, i.e. a Bogdanov-Takens (BT)
bifurcation, of the layer problem. This change in the eigen-
value structure of Eq. (6) significantly alters the behaviour
of the singular orbits and their non-singular counterparts.
Before the BT bifurcation when the repelling manifold Sr

is enclosed by H and L−, the eigenvalues of Eq. (6) along
�S are initially real (at the landing point after the fast up-
jump). The slow flow then moves the singular orbit through
a degenerate node of Eq. (6) and λ becomes complex and
remains so until the singular orbit reaches the Hopf curve.
In the full system trajectory, this is seen as oscillatory
behaviour with decreasing amplitude, since the real part of
the eigenvalues increases towards zero.

After the BT bifurcation, the Hopf curve disappears and
the repelling sheet of S is enclosed by L+ and L−. As
before, the eigenvalues of the layer problem along �S are
initially real and the slow flow moves the orbit through a
degenerate node of Eq. (6) where the eigenvalues become
complex. The difference this time is that �S passes through
another degenerate node and λ becomes real once again
(panels (e) and (f)). This second degenerate node is born at
the BT bifurcation and moves away from L+ to more depo-
larized voltage levels as r is decreased. The slow flow �S on
the upper attracting sheet Sa can then be decomposed into
3 distinct segments. The ‘upper’ part of �S is the segment
between the landing point of the fast up-jump and the first
degenerate node of Eq. (6). The ‘middle’ part is the seg-
ment enclosed by the two degenerate nodes and the ‘lower’
part is the segment between the second degenerate node and
L+. The ‘upper’ part of �S manifests in the fully perturbed
problem as a monotone decrease to more hyperpolarized
voltage levels. The ‘middle’ part corresponds to decaying
oscillations in the full system trajectory. The ‘lower’ seg-
ment corresponds to a plateau phase of the full system orbit,
where there is only contraction (via nodes of the layer prob-
lem) and the small oscillations die out. Smaller ratios r
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move the second degenerate node to more depolarized V

levels, which causes greater damping of the small oscilla-
tions in the active phase (compare panels (e) and (f)). Thus,
variations in the ratio r can convert the full system trajec-
tory from spiking to bursting to plateauing. In particular, the
jumping mechanism for the singular orbits changes at the
BT bifurcation of Eq. (6).

5 Distinguishing between Canard- and Hopf-induced
MMOs

In Section 2.2, we showed 2-parameter diagrams illustrating
that there are parameter regimes where BK current acti-
vated at just the right speed is crucial for bursting. We also
demonstrated that there are parameter regimes where the
bursting can exist independent of the BK current or its acti-
vation speed. We then proceeded to show in Section 4 how
the MMOs can arise from two substantially different mech-
anisms. In this section, we explain the difference between
the different regimes encountered in Fig. 4 and discuss the
possibility of canard- and Hopf-induced MMOs in real cells.

5.1 MMOs in theory

So far, we have examined in Section 2.2 the effect of
variations of gBK and τBK on the MMOs. We have also
demonstrated in Section 4.3 that the ratio r of fast timescales
plays a crucial role in determining the nature of the orbit.
However, BK current is not the only instigator for bursting
and other ionic currents contribute to shaping the electrical
activity. Here, we illustrate in (gK, gBK, r)-space how the
oscillation mechanism can change under parameter varia-
tions. Figure 11a shows a 2-parameter bifurcation diagram
of the reduced system (Eq. (7)) in (gK, gBK) for an unspec-
ified r (recall that r is not in the slow subsystem). The red
boundary (denoted DFN) corresponds to degenerate folded
nodes of Eq. (7), where the folded singularity switches
from node to focus. In the region of folded nodes (to the
right of the DFN curve), canard-induced MMOs can only
exist provided δ > 0 i.e. provided the singular orbits are
returned to the funnel of the folded node. The blue curve
denotes the parameter set where δ = 0. For the region
denoted by δ < 0, the folded node and the singular fun-
nel exist, but the singular orbits are projected outside of
the funnel region. In the deterministic setting, this guar-
antees spiking behaviour. However, stochastic fluctuations
in actual single-cell recordings may occasionally re-inject
trajectories into the funnel of the folded node, thus produc-
ing an occasional burst. To the authors’ knowledge, studies
of how stochastic noise affects canard dynamics are cur-
rently scarce (Berglund et al. 2012; Kuehn 2011). A precise
characterization of how stochastic fluctuations influence the
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Fig. 11 2-parameter bifurcation diagrams showing changes in the
oscillation mechanism in a (gK, gBK)-space for unspecified r , b
(r, gBK)-space for gK = 1.5 nS and c (r, gBK)-space for gK = 3.2 nS.
Below the BT line, the Hopf curve does not exist and the folded singu-
larity is either node or focus. The vertical dashed lines in (a) indicate
the gK slices taken in panels (b) and (c)

dynamics is beyond the scope of the current article and is
left to future work. Above the DFN border, the folded singu-
larity on L+ is of focus type and oscillatory behaviour due
to canard dynamics is impossible.

The inset of Fig. 11a shows a zoom of the DFN bound-
ary where the 2 red curves cross. This seemingly unusual
behaviour can be explained via the geometry of the criti-
cal manifold. Firstly, we note that the fold condition (Eq.
(10)) is independent of gK (and gSK ). Changes in gBK

can alter the location and number of solutions to Eq. (10).
For small gBK , there are 2 fold curves L±. For gBK ∈
[0.1025, 0.1067] nS (the boundaries of which are shown as
green dotted lines in the inset only), the shape of the critical
manifold changes and there are 4 folds, L±, L++ and L+−,
where the new folds lie between L± and L++ is above L+−.
For gBK > 0.1067 nS, L++ merges with L+ and annihi-
lates it in the process, leaving only L+− and L−. That is, the
upper red curve is the DFN boundary for the folded singu-
larity on L+− and the lower red curve is the DFN boundary
for the folded singularity on L+. For the unlabelled region
between the two DFN curves where there are 4 folds, the
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uppermost fold curve is L+ and the folded singularity is still
a focus. For gBK between the green boundaries where there
are 4 folds, the singular orbit construction changes in a very
minor way and the analysis from Section 4 holds.

Now, recall from Section 4.3 that the layer problem
(Eq. (6)) may undergo a BT bifurcation under parameter
variations6. In Fig. 11b and c, we show the curve of BT
bifurcations (blue curve) in (r, gBK)-space7. To the right of
the BT curve, the singular orbits encounter the Hopf curve
before the fold curve and so the corresponding trajectories
of Eq. (1) exhibit Hopf-induced MMOs. Whether or not the
full system trajectory actually exhibits small oscillations in
these regions of parameter space depends entirely on the
magnitude of the perturbations. To the left of the BT border,
the Hopf curve disappears and the singular orbits jump at
the fold curve. In cases where the singular orbit jumps from
a folded node (δ > 0), this leads to canard-induced MMOs.
Regions where the singular orbits land outside the funnel
(δ < 0) correspond to spiking trajectories. Meanwhile,
regions labelled folded foci possess a folded singularity of
focus type on L+ (but the singular orbit may jump from a
regular jump point). In any case, the full system trajectory
in these folded foci regions is a plateau oscillation.

Using our singular analysis, we can now explain the dif-
ference between Fig. 4a and b. In Fig. 4a, bursting can exist
without any BK current. The speed of BK channel activa-
tion only becomes important when gBK exceeds a certain
value. In Fig. 11b, this switch in the importance of τBK is
revealed to be due to a switch in the burst generating mecha-
nism. For small gBK , the singular orbits jump from a folded
node and the MMOs are of canard type. As such, varia-
tions in τBK (a quantity associated with the fast subsystem)
have little impact on the trajectories (see Fig. 3). Beyond
the gBK threshold, the burst generating mechanism switches
from canard dynamics to slow passage through a dynamic
Hopf bifurcation and τBK becomes a crucial factor in deter-
mining the shape of the trajectories (see Fig. 2). In Fig. 4b,
BK current is essential for bursting. Figure 11c reveals why
this is so. For small gBK , folded nodes exist in Eq. (7) but
the singular attractor always lands outside the funnel region.
The addition of gBK moves the singular orbits into the fun-
nel region and then eventually, for sufficiently large gBK ,
changes the MMO mechanism. All together, what Fig. 11
illustrates is that the canard- and Hopf-induced MMOs
are generic features and both mechanisms must be taken
into consideration in order to understand the dynamics of
Eq. (1).

6In our case, the homoclinic associated with the BT bifurcation has no
influence on the full system dynamics.
7The BT bifurcation is a codimension 2 bifurcation. The reason we are
able to draw a curve of BT bifurcations is that det J |S and tr J |S are
both independent of c

5.2 MMOs in practice

We have demonstrated the existence of both canard- and
Hopf-induced MMOs in Eq. (1). The question then is
whether or not they are observed experimentally. A sim-
ple test to distinguish between the canard and Hopf-induced
MMOs is to inject artificial BK current (via dynamic clamp)
and vary τBK . Based on our full system bifurcation analysis
(Section 2.2) and our geometric singular perturbation analy-
sis (Section 4), we expect (for fixed Cm) the canard-induced
MMOs to have weak response to variations in τBK , whilst
the Hopf-induced MMOs should have extreme sensitivity to
variations in τBK . To test the sensitivity of the trajectories to
variations in τBK , we blocked the BK channels using pax-
illine and measured the response of the cell to injection of
BK current at different activation rates. The injected gBK

values were chosen close to the minimum needed to evoke
bursting (otherwise we would be in the high gBK regime
where there are no canard dynamics).

The dynamic clamp technique is an electrophysiological
technique whereby a current, computed from mathematical
models, is injected into a cell to simulate dynamic processes
(Sharp et al. 1993). The current of interest in our case is IBK

with its model equation given in Eq. (2). In order to update
the BK activation variable b and driving force V−VK , infor-
mation on the voltage V is required. In the dynamic clamp
technique, rather than using a model for V , the voltage is
recorded in real time from the cell and used in calculations.
Thus, the computer calculates the model IBK using V from
the cell, then injects the model current into the cell. This
two-way interaction is done rapidly, at average time steps of
54 μs.

In Fig. 12, we show evidence for Hopf-induced MMOs
in pituitary cells. Panels (a) to (d) show the effect of vary-
ing the activation time constant τBK for fixed gBK . For BK
current injected with slow activation time constant (i.e. τBK

large), the cell is in a spiking state (panel (a)). By decreasing
the activation time constant, we eventually cross a threshold
and bursting can be observed interspersed with the spik-
ing activity (panel (b)). Further decreasing τBK reliably
converts the electrical activity to bursting and the spiking
behaviour is absent (panel (c)). Moreover, the amplitude of
the small oscillations decreases with τBK . For sufficiently
fast activation rates, the small oscillations are virtually non-
existent and the electrical activity exhibits plateau behaviour
(panel (d)). These observations are consistent with the
prediction that for Hopf-induced MMOs, decreasing τBK

switches the activity from spiking to bursting to plateauing
(Fig. 10).

To quantify how changing τBK affects the electrical
activity, we first measured the amplitude of the largest
sub-threshold oscillation in a given burst for a fixed gBK

with activation time constant τBK . We then normalized
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the amplitude relative to the maximum and minimum volt-
age values of that burst to obtain the maximal relative
amplitude. Averaging over the number of events (where
an ‘event’ refers to a spike, burst or plateau) produced
the mean maximal sub-threshold oscillation amplitude for
a fixed (τBK, gBK) pair. This procedure was repeated for
each (τBK, gBK) pair used in the dynamic clamp exper-
iments. Figure 12e provides a graphical summary of the
amplitude data from these experiments for 5 cells (differ-
ent curves). Bursting appears for fast activation rates with
sub-threshold oscillations of large amplitude (relative to the
size of the pulse). For very fast BK activation, the mean
maximal sub-threshold oscillation amplitude decreases and
eventually disappears, giving way to plateaus. Figure 12f
shows an equivalent diagram to panel (e) for system (1) with
Cm = 5 pF, gK = 3.2 nS and gBK = 0.5 nS (with param-
eters chosen so that the MMOs are Hopf-type). The model
predicts the trends observed experimentally. Namely, that
fast BK activation generates bursting with small oscillations
that decrease in amplitude as τBK is decreased.

The dynamic clamp data provides direct evidence for the
Hopf mechanism. Evidence for the canard-induced MMOs
is more elusive. One example where the canard-induced
MMOs may explain the behaviour is in the case of block-
ing of the BK channels. Many cells in an unstimulated state
either burst or spike. For those cells that are initially burst-
ing, introducing the BK channel blocker paxilline usually
ceases the bursting activity and results in spiking. In mathe-
matical terms, this is due to the loss of a fast variable making
the Hopf mechanism impossible. However, there are some
cells (about 10 % of those tested) where the bursting activ-
ity persists in the presence of paxilline or other BK channel
blockers (Tabak et al. 2011). As this leaves only one fast
variable remaining in our model, then according to Eq. (1)
the bursting must arise from canard dynamics. However, this
persistence of bursting after BK block was only observed in
a minority of cells. Moreover, models of cell activity that
contain more ionic currents will also have more fast vari-
ables, making it feasible to have Hopf-induced MMOs in
the presence of BK blockers.

a b

c d

τ

e

τ

f

Fig. 12 Effect of variations of τBK in dynamic clamp experiments.
For a τBK = 10 ms, the cell is spiking. In b, τBK = 7 ms, which is
at the bursting threshold and the time course is a mixture of spikes and
bursts. In c, τBK = 5 ms and the cell is bursting. In d, τBK = 2 ms
and the electrical activity consists of plateau patterns. Note the dif-
ferent timescales. A summary of the behaviour of the sub-threshold

oscillation amplitude under τBK variations in five different cells is pre-
sented in panel (e). The gBK values for the circle, diamond, hexagram,
pentagram and square marker points are gBK = 0.5, 1.6, 2, 0.5, 1 nS,
respectively. The cell in panels (a) to (d) corresponds to the diamond
marker points (gBK = 1.6 nS). Panel f shows the same figure for the
model (1) with Cm = 5 pF, gK = 3.2 nS and gBK = 0.5 nS
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6 Discussion

One of the key observations from Tabak et al. (2011) was
that the conductance and activation rate of BK current
played vital roles in the spiking/bursting activity of pituitary
cells. The aim to understand these observations motivated
the study of a 4D multiple timescale pituitary cell model.
Full system bifurcation analysis showed the sensitivity of
the MMOs to both the activation time constant and conduc-
tance of the BK channels. Geometric singular perturbation
theory was then used to formally decompose the system
(Eq. (1)) into slow and fast subsystems, which provided
the theoretical framework necessary to understand the burst
generating mechanisms. For our model, there are various
ways in which the system can be decomposed via GSPT.
In this work we made the assumption that V and b are
both fast variables operating on similar timescales. This led
to the formal definition of the ratio of timescales r , which
we assumed at the outset was O(1). A subtle issue with
this approach is the fact that variations in τBK essentially
alter the nature of the activation variable b: for small τBK ,
b is fast whilst for large τBK , b is slow. We remark here
that the limit r → 0 in the 2-fast/2-slow decomposition
converges to the results of a 1-fast/2-slow decomposition
with b constrained to its steady state function b∞(V ). Sim-
ilarly, the limit r → ∞ in the 2-fast/2-slow decomposition
converges to the results of a 1-fast/3-slow decomposition
with V fast and (n, b, c) slow. In either limit, there is only
one fast variable and the system is restricted to generating
canard-type MMOs. In any case, the 2-fast/2-slow approach
encapsulates all of the information from the instantaneous
BK approach and from the 1-fast/3-slow approach.

The central aim of this work has been to understand the
role of BK conductance in the spiking/bursting activity of
pituitary cells and why the BK activation rate also needed
to be fast for a burst promoting effect. In the past, the
burst promoting role of gBK has been explained physiolog-
ically in the following way: gBK turns on early during the
spike, limiting spike amplitude, so gK does not fully activate
(which is reflected in Figs. 6 and 8 by the restricted range of
n). Consequently, the membrane potential remains around
a plateau until gSK activates sufficiently to terminate the
bursts. Using the 2-fast/2-slow splitting, we supplemented
this classic explanation with a mathematical framework
and showed that there are two distinct ways in which the
MMOs can manifest in Eq. (1): via canard dynamics or
slow passage through a dynamic Hopf bifurcation. In partic-
ular, we showed that the type of trajectory (canard-induced
MMO, Hopf-induced MMO, spike or plateau oscillation)
depended crucially on the interplay between the activa-
tion rate and maximal conductance of the BK current. We
also demonstrated that τBK was a very useful diagnostic in
distinguishing between canard- and Hopf-induced MMOs

since τBK only appears in the fast subsystem (via the ratio
r of fast timescales).

Using the eigenvalues of the layer problem as a diagnos-
tic, we demonstrated that the slow passage effect provided
the explanation for how trajectories could transition from
spiking to bursting to plateauing under variations in the acti-
vation rate of the BK current. When gBK is slowly activated
(i.e. τBK or r large), the eigenvalues of Eq. (6) are com-
plex over a very short interval in phase space. This gives
the trajectories insufficient time to oscillate and the result-
ing pattern is a spike. When τBK is fast (r small), the region
of complex eigenvalues of Eq. (6) occupies a larger region
of phase space and provides the trajectories more time to
oscillate before jumping away to the silent phase. For very
fast activation time constants (r → 0), the eigenvalues of
Eq. (6) alternate from real to complex back to real. As such,
any oscillatory behaviour quickly decays and a flat plateau
is observed.

One of the hallmarks of the Hopf-induced MMOs is
the sensitivity to variations in τBK . Two easily observable
traits that change dramatically with τBK are the number
and amplitude of small oscillations in the burst pattern.
To test the model predictions, we blocked BK channels in
GH4 cells and injected artificial BK current (via dynamic
clamp) at different activation rates. We observed that at the
onset of bursting, the amplitude of the sub-threshold oscil-
lations is large. Injecting more rapidly activated BK current
reliably decreased the amplitude of the small oscillations.
For injected BK current with sufficiently fast activation
time constant, the small oscillations essentially disappear
and the bursting is replaced by plateau behaviour. Thus,
the dynamic clamp experiments support the notion that the
bursting arises from Hopf-induced MMOs. However, the
Hopf mechanism alone is insufficient to explain all of the
bursting behaviour. In particular, bursting in the absence of
BK current can only be explained (within the confines of
Eq. (1)) via canard dynamics.

We have demonstrated the potency of combining theory,
numerics and experimentation. The theory of canard- and
Hopf-induced mixed mode oscillations provides a theoret-
ical framework in which experimental predictions can be
made. The dynamic clamp technique can then be used to
confirm or counter these predictions. In spite of the suc-
cess of these techniques, there are various limitations and
complications that have yet to be addressed. Most notable
is the fact that the results of GSPT break down away from
the singular limit. In the case of canard-induced MMOs, the
bifurcation structure of Eq. (7) provides a good approxima-
tion to the bifurcation structure of Eq. (1) for sufficiently
small perturbations (see Teka et al. 2011; Vo et al. 2010
for examples). No such comparison can be made between
singular and non-singular bifurcation structures for the
Hopf-induced MMOs. Further compounding the issue is the
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question of how the switch from canard-induced MMOs to
Hopf-induced MMOs occurs in the fully perturbed problem
(1). In the singular limit, the switch can be well understood
as a Bogdanov-Takens bifurcation of the layer problem,
which alters the jumping mechanism for the singular orbits.
How the switch in the oscillation mechanism perturbs (i.e.
how the slow and fast subsystems interact away from the
singular limit) is much less clear. Studies of how the BT
bifurcation unfolds in systems with one slow variable have
been considered (Golubitsky et al. 2001; Chiba 2011), how-
ever, our case is different since we have two slow variables
and the canard phenomenon is generic. On the experimen-
tal side, we have provided evidence for the Hopf-induced
MMOs but experimental evidence for the canard-induced
MMOs is currently tenuous and is left to future work.
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