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Abstract Models of electrical activity in excitable cells
involve nonlinear interactions between many ionic currents.
Changing parameters in these models can produce a vari-
ety of activity patterns with sometimes unexpected effects.
Furthermore, introducing new currents will have different
effects depending on the initial parameter set. In this study
we combined global sampling of parameter space and local
analysis of representative parameter sets in a pituitary cell
model to understand the effects of adding K+ conductances,
which mediate some effects of hormone action on these
cells. Global sampling ensured that the effects of introduc-
ing K+ conductances were captured across a wide variety of
contexts of model parameters. For each type of K+ conduc-
tance we determined the types of behavioral transition that
it evoked. Some transitions were counterintuitive, and may
have been missed without the use of global sampling. In
general, the wide range of transitions that occurred when the
same current was applied to the model cell at different loca-
tions in parameter space highlight the challenge of making
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accurate model predictions in light of cell-to-cell hetero-
geneity. Finally, we used bifurcation analysis and fast/slow
analysis to investigate why specific transitions occur in rep-
resentative individual models. This approach relies on the
use of a graphics processing unit (GPU) to quickly map
parameter space to model behavior and identify parameter
sets for further analysis. Acceleration with modern low-cost
GPUs is particularly well suited to exploring the moderate-
sized (5-20) parameter spaces of excitable cell and signaling
models.

Keywords Electrical activity · Pituitary lactotroph ·
Global parameter sampling · Bifurcation analysis ·
Graphics processing unit

1 Introduction

Many biological phenomena, such as cell electrical activ-
ity or chemical reaction networks, are studied using cou-
pled systems of nonlinear ordinary differential equations
(ODEs). These may produce solutions with rich dynamics,
including equilibria, limit cycles, as well as the possibility
of coexistence of multiple stable solutions for a given set of
parameters. Multi-scale oscillations can also occur, such as
chaotic trajectories or bursting oscillations, which consist of
periodic episodes of fast oscillations or spikes. A key task
in developing and analyzing such models is to understand
how parameters of the model affect features of its solutions,
such as the period and amplitude of an oscillation, or the
number of spikes per burst. In particular, it is of interest to
understand how the role of a parameter depends on the con-
text of all the other parameters in the model. Attaining a

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10827-016-0600-1-x&domain=pdf
mailto:bertram@math.fsu.edu


332 J Comput Neurosci (2016) 40:331–345

global understanding of the relationship between parameter
space and feature space can be challenging even for a mod-
est number of parameters, owing to the nonlinear nature of
such models.

The relationship between model parameters and solu-
tion features has been explored using both local and global
approaches. “Local” methods provide information about
solutions near a given point in parameter space or in a low-
dimensional subspace of the whole parameter space. The
most basic of these approaches is hand-tuning of parameters
using direct numerical simulation, whereby parameters are
manually adjusted to see their effect on solutions (Sherman
2011). This approach relies on (and builds) the modeler’s
intuition for how individual parameters affect the features
of the solution. Typically this exploration in parameter
space involves only a few parameters at a time, as one
will begin with a specific point in parameter space and
make incremental parameter changes from there. This pro-
cess can be automated using brute force parameter sweeps,
where features of model behavior (such as spikes per burst)
are computed across two-dimensional parameter subspaces
and then visualized to guide further mathematical analysis
(Storace et al. 2008; Barrio and Shilnikov 2011; Linaro et al.
2012; Barrio et al. 2015).

Numerical continuation is another method used to dis-
cover the behavior of model solutions over a range of
parameter values (Sherman 2011). Commonly used imple-
mentations are due to Doedel and Kernevez (1986) and
Dhooge et al. (2003). Once a solution of interest is found,
typically an equilibrium point or a periodic orbit, continua-
tion tracks the solution as a few parameters change (usually
one or two). In addition to tracking generic solutions, con-
tinuation is able to track the bifurcation points of these
solutions, such as Hopf bifurcation points. The result is a
bifurcation diagram: a graph indicating the tracked solutions
(and their stability), separated by bifurcation points. This
approach can be used to extend and organize the process of
hand tuning and 2 or 3-dimensional brute force parameter
sweeps, and is useful for summarizing model behavior for a
small number of parameters at a time (Sherman 2011). Due
to the low-dimensional nature of hand-tuning and numeri-
cal continuation, the computations required are completed
rapidly on modern desktop computers. This means such
computations are “disposable;” that is, one can test new
ideas and follow intuition with little delay due to compu-
tation time. While these local methods provide excellent
tools for exploring and explaining the relationship between
parameters and solutions for a few parameters at a time, they
become cumbersome as the dimension of parameter space
is increased.

Other methods are more “global” in that they attempt
to gain an understanding of solutions across a higher-

dimensional subspace of parameter space. These include
global sensitivity analysis methods (Iooss and Lemaı̂tre
2015), and brute force model database techniques (Günay
2014) which attempt to systematically sample a large num-
ber of independent parameter combinations throughout a
large subset of (or the entirety of) the model’s parame-
ter space. Model databases have been developed to study
crustacean stomatogastric ganglion (STG) neurons and net-
works (Goldman et al. 2001; Prinz et al. 2003, 2004; Taylor
et al. 2009; Kispersky et al. 2012; Caplan et al. 2014), the
escape swim network of the mollusk Tritonea diomedea
(Calin-Jageman et al. 2007), the rat globus pallidus neu-
ron (Günay et al. 2008), rat pituitary lactotroph cells (Tabak
et al. 2011), the leech heart half-center oscillator (Doloc-
Mihu and Calabrese 2011), and the lobster cardiac ganglion
(Williams et al. 2013). In the database approach, at each
of the many sampled points in parameter space, the solu-
tion (or features of the solution) is computed and the results
are stored for later analysis. This offers the benefit of a
more global perspective across a higher-dimensional param-
eter space. Particularly, one can ask whether the change in
a model behavior due to a change in parameters is generic,
or whether it depends on the context of the values of all
the other parameters in the system. One drawback of brute
force approaches is the large computation time required
to complete all the simulations, which means such stud-
ies are often run on computer clusters. Similarly, global
sensitivity analysis can require a large, computationally
intensive sampling of the desired parameter search space
(Iooss and Lemaı̂tre 2015), particularly when the model
responses involve the computation of solutions of nonlinear
ODEs.

Modern programmable graphics processing units (GPUs)
are powerful massively parallel processors well suited to
the task of accelerating brute force parameter search com-
putations. They are available on desktop workstations and
laptop computers at a low cost. Indeed, GPUs are increas-
ingly being used to accelerate numerical simulations in
neuroscience-related contexts, such as central pattern gen-
erator neuronal networks (Rodrı́guez et al. 2015; Barrio
et al. 2015), spiking neural network simulations (Brette and
Goodman 2012), and simulation of the circadian pacemaker
of the suprachiasmatic nucleus (DeWoskin et al. 2014).

In this study, we employ a GPU-accelerated model
database technique to investigate how the properties of a
model of pituitary cell electrical activity (Tabak et al. 2011)
vary across a 5-dimensional parameter space. The model
solutions mimic the electrical properties of endocrine cells
such as pituitary lactotrophs, which can exhibit quiesent,
spiking, and bursting behaviors. The type of pattern pro-
duced is physiologically important, since hormone secretion
from the cells is triggered by the influx of Ca2+ ions associ-
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ated with that pattern of electrical activity (Van Goor et al.
2001). These activity patterns are known to change when
cells are exposed to hormones, and these changes are in
many cases due to increases in the conductances of K+
ion channels (Stojilković et al. 2010). Because these con-
ductances may affect electrical activity in different ways
depending on the context defined by the expression of other
conductances, we first generate a database of models with
widely varying parameter values. Based on these different
contexts, we examine how changes in the conductances of
three different types of K+ channels influence the behav-
ior of the entire population of models. The model database
approach allows the study of ”macroscopic” changes in sub-
populations models exhibiting specific behaviors (such as
quiescence, spiking, and bursting), as well as the “micro-
scopic” transitions that each individual model undergoes.
These changes are then studied in representative models
using bifurcation analysis and fast/slow analysis (Rinzel and
Ermentrout 1998) to understand the underlying mechanism.
Thus, the global database analysis technique is combined
with local analysis to first see what happens and then to
understand why it happens.

The use of the GPU greatly facilitates the sampling
of parameter space, allowing it to be performed in a few
seconds. This means brute force parameter sweeps and
model database computations can share the benefit of being
“disposable” computations. Analysis is also facilitated by
algorithms that extract features of the activity time courses
as they are being computed. The dependency of the activ-
ity features (such as amplitude, burst duration, or number
of spikes per burst) on parameters can then be readily dis-
played. This global inspection of behaviors makes it easy
and quick to identify general biologically relevant trends,
such as the propensity of a certain type of ion channel to
produce bursting. Global sampling of parameter space also
has the potential to identify interesting and perhaps unex-
pected transitions between activity patterns that motivate
further investigation with tools such as fast/slow analysis.
This combined global/local approach has great applicability
in model exploration and analysis.

2 Methods

2.1 Model description

The model is based on a previously described lactotroph
model (Tabak et al. 2011). We consider a base model that
includes a voltage-gated Ca2+ current (ICa), a delayed rec-
tifier K+ current (IK ), a Ca2+-activated K+ current (ISK ),
and a leak current (IL). The model includes three variables,
membrane potential (V ), activation of IK (n), and the intra-

cellular Ca2+ concentration (c), governed by the following
equations:

Cm

dV

dt
= −(ICa + IK + ISK + IL), (1)

τn

dn

dt
= n∞(V ) − n, (2)

dc

dt
= −fc(αICa + kcc). (3)

We then study the effects of increasing one of three addi-
tional currents: an inward rectifying K+ current (IKir ),
a BK-type K+ current (IBK ), and an A-type K+ current
(IA). BK channels are both Ca2+ and voltage activated. We
choose to model a subpopulation of BK channels closely
associated with Ca2+ channels. In a small region near the
opening of a Ca2+ channel, the [Ca2+] varies rapidly and
its dynamics closely follow the dynamics of the membrane
potential. We therefore approximate IBK activation as volt-
age dependent (Fakler and Adelman 2008; Sherman et al.
1990). These additional currents add terms to the voltage
equation:

Cm

dV

dt
= −(ICa + IK + ISK + IKir + IBK + IA + IL). (4)

Two equations for the gating variables associated with inac-
tivation of IA (h) and activation of IBK (b) are also added to
the system (1–3):

τBK

db

dt
= b∞(V ) − b, (5)

τh

dh

dt
= h∞(V ) − h. (6)

The ionic currents are given by:

ICa = gCam∞(V )(V − ECa) (7)

IK = gKn(V − EK) (8)

ISK = gSKs∞(c)(V − EK) (9)

IKir = gKirk∞(V )(V − EK) (10)

IBK = gBKb(V − EK) (11)

IA = gAa∞(V )h(V − EK) (12)

IL = gl(V − El) (13)

with the steady-state activation functions

x∞(V ) = [1 + exp((Vx − V )/sx)]−1 (14)

s∞(c) = c2

c2 + k2
s

(15)

where x ∈ {m, n, k, b, a, h}. Default parameter values listed
in Table 1 give rise to a spiking activity pattern, when
gKir = gA = gBK = 0. All simulations had the same initial
condition: V = −60 mV, n = 0.1, c = 0.1μM , b = 0.1,
and h = 0.1.
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Table 1 Parameter values for
the lactotroph model. Ranges
are given in square brackets for
parameters that were varied

Parameter Value Description

Cm 10 pF Membrane capacitance

ECa 60 mV Reversal potential for Ca2+ current

EK -75 mV Reversal potential for K+ current

EL -50 mV Reversal potential for leak current

gCa 2 [0.5, 3.5] nS Maximal Ca2+ channel conductance

Vm -20 mV Half-maximal voltage for m∞
sm 12 mV Slope parameter for m∞
gK 3.2 [0.8, 5.6] nS Maximal delayed rectifier K+ channel conductance

Vn -5 mV Half-maximal voltage for n∞
sn 10 mV Slope parameter for n∞
τn 30 ms Time constant for n

gSK 2 [0.5, 3.5] nS Maximal SK channel conductance

ks 0.4 μM Half-maximal Ca2+ for s∞
gKir 0 [0, 2] nS Maximal inward rectifier K+ channel conductance

Vk -65 mV Half-maximal voltage for k∞
sk -8 mV Slope parameter for k∞
gBK 0 [0, 4] nS Maximal BK channel conductance

Vb -20 mV Half-maximal voltage for b∞
sb 2 mV Slope parameter for b∞
τBK 5 ms Time constant for b

gA 0 [0, 100] nS Maximal A-type channel conductance

Va -20 mV Half-maximal voltage for a∞
sa 10 mV Slope parameter for a∞
Vh -60 mV Half-maximal voltage for h∞
sh -5 mV Slope parameter for h∞
τh 20 ms Time constant for h

gL 0.2 [0.05, 0.35] nS Maximal leak conductance

fc 0.01 Fraction of free cytosolic Ca2+

α 0.0015 μ M fC −1 Conversion of charge to concentration

kc 0.12 [0.03, 0.21] ms−1 Rate of Ca2+ extrusion

2.2 Numerical methods

Parameter grids and model database computations were
performed using custom OpenCL code running on nVidia
graphics processing units. ODEs were numerically inte-
grated using the Runge-Kutta fourth order method with a
time step of 0.5 ms. Solution trajectories are not stored,
but instead reduced to a set of summary features during
the process of numerical integration. This greatly reduces
the memory storage needs and allows a large number of
simulations to be run in parallel on the GPU. Relevant
points of the trajectory used to compute features are illus-
trated for a bursting trajectory in Fig. 1. The first 10 s
of simulated time were discarded as transient behavior. In
the following 40 s of simulation, the absolute maximum
and minimum voltage (max V, min V ; red downward and
upward triangles, respectively, in Fig. 1) and voltage slope
(max(dV/dt), min(dV/dt); blue rightward and leftward
triangles, respectively, in Fig. 1) were recorded. From these

special points in the time course, we determined if oscil-
lations were present, and if so, computed event detection
thresholds to be used in feature computation in the final
100 s of simulation.

If the amplitude (max V − min V ) is larger than 10 mV,
then oscillations are considered to be present. For oscillat-
ing solutions, we divided the trajectory into active and silent
phases. An active phase begins when the voltage increases
beyond the voltage threshold (0.35 · (max V − min V );
red dashed line in Fig. 1) and the voltage slope increases
beyond a positive slope threshold (0.25 · max(dV/dt);
upper blue dash-dotted line, Fig. 1 right panel). The begin-
ning of an active phase is indicated in Fig. 1 by a
black square. The active phase ends and the silent phase
begins when the voltage drops below the voltage thresh-
old and the voltage slope rises above the negative slope
threshold (0.25 · min(dV/dt); lower blue dash-dotted line,
Fig. 1 right panel). This is indicated by a black circle
in Fig. 1.
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Fig. 1 Thresholds and salient points of trajectories used to compute
solution features. One burst from the mean bursting model is shown
as a timecourse (left panel, V vs t) and as a phase plot (right panel,
dV/dt vs V ), which shows the same burst trajectory as a loop traversed
clockwise. The absolute maximum and minimum voltage (red down-
ward and upward triangles, respectively) are used to compute a voltage
threshold (red dashed line, 0.35 · (max V − min V )). Similarly, the
maximum and minimum voltage slope (blue rightward and leftward
triangles, respectively) were used to compute positive and negative
slope thresholds (blue dash-dotted lines, right panel; 0.25·max(dV/dt)

and 0.25 · min(dV/dt), respectively). The active phase, or event, is
the portion of the trajectory in the interval beginning with the black
square and ending with the black circle, and the silent phase is the com-
plement (circle to square). Local maxima are denoted with red plus
symbols

Salient points of trajectories, including active and silent
phase transition points, and local maxima and minima
of voltage are used to compute a running mean of fea-
ture values for each trajectory. These include event period
(elapsed time between upward threshold crossings), event
amplitude (max V − min V , per period), event duration
(elapsed time between upward and downward threshold
crossings), event area (the area between the trajectory and
the voltage threshold over the duration of the active phase),
and number of local maxima per event (red plus sym-
bols, Fig. 1). For all trajectories, the running mean V

is also computed, which represents the resting poten-
tial in non-oscillatory trajectories. Only the features are
stored for display and analysis, not the full time courses.
XPPAUT (Ermentrout 2002) was used to compute bifur-
cation curves. The computer code for XPPAUT containing
all parameter sets of interest is available for download at
http://www.math.fsu.edu/∼bertram/software/bursting/.

3 The model database

3.1 Generating the database

We consider a model database in which 8192 parameteriza-
tions of the model (hereafter referred to as “models”) pop-
ulate a parameter space consisting of ±75 % of the default
values of gCa , gK , gSK , gL, and kC . The extent of this
parameter space was chosen so that a non-trivial percentage

of models displayed different behaviors of interest, includ-
ing hyperpolarized and depolarized steady states, spiking,
and bursting. To uniformly sample parameter space we used
Latin hypercube sampling (McKay et al. 1979). Models are
classified based on the features of their numerical solutions.
Nonoscillatory models had steady states distributed between
-70 and +20 mV, but, interestingly, very few models had
membrane potential in the -30 to -20 mV range (Fig. 2a).
Because of this clear separation we classified the nonoscil-
latory models as “depolarized” if their resting potential was
above -30 mV, and as “hyperpolarized” otherwise. For oscil-
latory models, the number of local maxima per event was a

A

B

C

Fig. 2 Classification of models. The 8192 models were generated by
Latin Hypercube sampling of a 5-dimensional parameter space con-
structed as ±75 % of the default parameter set. a Silent models are
classified as hyperpolarized or depolarized if the resting potential is
below or above -30 mV, respectively. b Representative trajectories for
the spiking (top panel), one-spike bursting (middle panel), and burst-
ing (bottom panel) classes. The voltage trace is computed using the
model with the mean parameter values of all models for each class. c
Percentages of the 8192 models represented by each class
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key feature used in classification. Models showing one peak
per event could be divided into two groups; models with
events of area larger than 3 mV · s and amplitude > 30
mV were classified as one-spike bursting (Fig. 2b, mid-
dle). The remaining models were considered to be spiking
(Fig. 2b, top). Models with events that had more than one
peak per event were classified as bursting (Fig. 2b, bottom).
The percentages of each class of model in the parameter
space examined are shown in Fig. 2c.

3.2 Properties of the database subpopulations

We show in Fig. 3 how the models in each class cluster in
projections into a 3-dimensional subspace. For hyperpolar-
ized models (Fig. 3a), we project into the (gCa, gSK, kC)

subspace. This shows that hyperpolarized models tend to
occur for parameter values where kC is relatively low. This
is explained below in terms of the c-nullcline, the curve
dc/dt = 0. The remaining model classes show distinct
localization in the (gCa, gK, gSK) subspace. Spiking mod-
els (Fig. 3b) occupy the majority of parameter space, while
bursting models (Fig. 3c) and one-spike bursting models
(Fig. 3d) form a somewhat planar region separating spiking
models from depolarized models (Fig. 3e). Bursting mod-
els tend to have higher gK values than one-spike bursting
models, while the latter tend to have higher gSK . Depolar-
ized models tend to have low values of both gK and gSK

with simultaneously high gCa . The collection of all spiking,
bursting, and depolarized models are shown in Fig. 3f.

We now examine the behavior of a representative
model for each class using fast-slow analysis (Rinzel and
Ermentrout 1998). We consider as representative the mod-
els given by the mean parameter values of each class, since
in each case those models display the correct behavior for
its class. The slowest variable c is treated as a bifurcation
parameter, yielding a subsystem of the remaining fast vari-
ables (the fast subsystem). A bifurcation diagram is then
created which shows the solutions present in the fast subsys-
tem as a function of c (Fig. 4a–e). In the case of the mean
hyperpolarized model (Fig. 4a), for example, the fast sub-
system has a depolarized stable equilibrium for low values
of c, which loses stability at a subcritical Hopf bifurcation.
This gives rise to a branch of periodic spiking solutions,
which continues until its termination at c ≈ 0.2 μM at
a saddle-node on invariant circle (SNIC) bifurcation. For
larger c values the fast subsystem again has a stable equi-
librium, which is now at a hyperpolarized voltage. The
z-shaped curve of stationary solutions is often called the
“Z-curve”.

Superimposing the curve dc/dt = 0 (the c nullcline,
orange dash-dotted curve) on this diagram divides the plane
into regions of dc/dt > 0 and dc/dt < 0 (above and below
the nullcline in Fig. 4, respectively). The intersection of the

Fig. 3 Parameter values of models of each class projected into 3-
dimensional subspaces of parameter space. a Hyperpolarized model
parameters projected into the (gCa, gSK, kC) subspace. Spiking b,
bursting c, one-spike bursting d, and depolarized e models are located
in non-overlapping clusters f when projected into the (gCa, gK, gSK)

subspace. The conductance parameters have units of nS and kC has
units of ms−1

c nullcline and the Z-curve is an equilibrium point of the full
system. Indeed, how the c nullcline intersects the Z-curve
determines the behavior of the full system (full system tra-
jectories are plotted in blue in Fig. 4). In the case of the
hyperpolarized model, the c nullcline intersects the lower
branch of stable steady states, so the full system is at a stable
hyperpolarized steady state (Fig. 4a, blue point).

The mean spiking model (Fig. 4b) differs mainly in that
the c nullcline is higher and intersects the Z-curve in the
middle branch. Since this branch is unstable, the full system
equilibrium is unstable. However, the intersection with the
stable periodic branch leads to a periodic spiking solution
of the full system. In the figure, the trajectory moves with a
clockwise orientation. In the mean bursting model (Fig. 4c)
the Hopf bifurcation is moved to the right, creating a region
of bistability between the low and high stationary branches
for intermediate c values. The stable periodic branch has
been annihilated, and the unstable periodic branch now ter-
minates at a homoclinic bifurcation on the middle branch
of the Z-curve, as is characteristic of pseudo-plateau type
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Fig. 4 Fast-slow analysis of the
mean model of each class. a-e
Fast subsystem bifurcation
diagrams (black) for the mean
model of each class, showing
the stable and unstable steady
states (solid and dashed curves),
and stable and unstable periodic
orbits (large and small dots).
Superimposed are the
c-nullcline (orange dash-dotted)
and a trajectory of the full
system (blue). HB - Hopf
bifurcation; SN - Saddle node
bifurcation; SNP - Saddle node
of periodic orbits; HC -
Homoclinic bifurcation; SNIC -
Saddle node on invariant circle.
f Comparison of the parameter
values of each of the mean
models. The conductance
parameters have units of nS and
kC has units of ms−1

A B C

D E F

bursting (Stern et al. 2008; Teka et al. 2011b; Osinga et al.
2012). The mean one-spike bursting model (Fig. 4d) is sim-
ilar, with the Hopf bifurcation even closer to the second
saddle-node bifurcation (SN2). Finally, in the mean depo-
larized model (Fig. 4e) the upper and lower branches have
become disconnected and the c nullcline now intersects
the upper branch of stable steady states, so the full-system
equilibrium is stable at a depolarized voltage.

The fast/slow decomposition of the full model used here
is insufficient to understand why there are small oscilla-
tions (“spikes”) in the bursting case and not in the one-spike
bursting case. The distinction between these two cases is
best understood using a fast/slow analysis in which two
of the variables are considered slow (n and c). Detailed
analysis has shown that the bursting is due to a folded
node singularity, and the number of small oscillations in
the burst depends on the eigenvalues of the folded node
and on where the trajectory enters the so-called “singu-
lar funnel” (Teka et al. 2011a; Vo et al. 2013, 2014).
Although the fast/slow analysis shown in Fig. 4 is unable
to distinguish bursting from one-spike bursting, it is suffi-
cient to distinguish both classes of bursting from the other
behaviors.

The parameter values for the mean models of each class
are summarized in Fig. 4f. gCa increases monotonically in
panels A-E, while the profiles of other parameters vary.
Parameter values for hyperpolarized and spiking models are
mostly similar, with high values of gK promoting the pres-
ence of the stable periodic branch of the fast subsystem.
They differ in terms of the height of the c nullcline, con-
trolled by kC (low for the hyperpolarized model, higher for
the spiking model). gSK declines monotonically through

panels A-E, except for the one-spike bursting model, which
exhibits low gK and high gSK . Finally, the low value of
gSK and high value of gCa in the depolarized model under-
lie the extended stability of the upper branch as well as
the movement of SN1 to far higher c values, promoting the
intersection of the c nullcline with the upper branch of stable
steady states.

4 The effects of increasing potassium conductances
in the model database

4.1 Changes in model subpopulations

It is biologically important to know the effects of various
ionic conductances on the cell’s electrical activity. However,
the effect of adding a conductance may depend greatly on
the context, i.e., the values of other parameters. In fact, it
may not even be possible to identify a general effect. We
investigate this now, focusing on three conductances that are
often regulated by hormones in pituitary cells (Stojilković
et al. 2010). To each model in the database we indepen-
dently add each of the three potassium conductances, gKir ,
gA, and gBK . For each of these conductances, we simu-
late 21 increments evenly spaced over the ranges of gKir ∈
[0, 2] nS, gA ∈ [0, 100] nS, and gBK ∈ [0, 4] nS. At
each increment, the entire model database is re-classified
based on the new activity features. The net changes in
each subpopulation as a function of K+ conductances are
depicted in Fig. 5, with the percentages along the y-axis
(gKir = gA = gBK = 0) equal to those shown in
Fig. 2c. The changes due to gKir (left panel) and gA (center
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Fig. 5 Adding K+ conductances cause transitions between classes and changes in model subpopulation sizes. Increasing values of each of gKir

(left), gA (center), and gBK (right) were added to each model in the database and the database reclassified

panel) are similar. Initially there is a decline in the number
of hyperpolarized models, while bursting models of both
types increase in numbers. The spiking model population
increases slightly before an ultimate decline in the case of
adding gKir , while it declines monotonically when gA is
added. There is a gradual decline in numbers of depolarized
models, and eventually models of all classes become hyper-
polarized. This is expected since both of these currents can
be active at hyperpolarized potentials, and both tend to fur-
ther hyperpolarize the cell. The gBK -induced changes differ
significantly (Fig. 5, right panel). There is no change in the
numbers of hyperpolarized models, which is expected since
the BK current requires depolarization for activation. The
spiking population declines to a fraction of its initial per-
centage, and the one-spike bursting population disappears
as gBK is increased. The bursting and depolarized popula-
tions increase and all populations end up at a stable level for
high values of gBK .

The changes in size of each model population gives a
“macroscopic view” of the effect of each K+ conductance
on electrical activity, but does not offer insight as to which
transitions between model classes are actually occurring in
individual models. To get this “microscopic view”, we next
examine the first K+ conductance-induced transition for
each model in the database. Figure 6a shows the location
of the initially hyperpolarized (blue downward triangles,
left), spiking (pale blue squares, center), and bursting (green
diamonds, right) models in 3-dimensional parameter sub-
spaces, as in Fig. 3. The first transition, if any, due to adding
gKir (Fig. 6b), gA (Fig. 6c), or gBK (Fig. 6d) was then deter-
mined. The models’ parameter values are then depicted by
the marker and color of the model class after this first transi-
tion, or by the original class marker if no transition occurred
at any conductance value. For example, when gKir is added
to the population of hyperpolarized cells, many stay hyper-
polarized. However, some become spiking cells (light blue,
Fig. 6b left) and a few become one-spike bursters (yellow,
Fig. 6b left). These are just first transitions; for sufficiently
large gKir all cells become hyperpolarized (Fig. 5).

As was seen in Fig. 5, the effects of gKir and gA are sim-
ilar (Fig. 6b,c). It is unexpected to see that a significant frac-
tion of hyperpolarized models are converted to spiking (left
panels). In the case of initially spiking models, all models
are converted to another class (center panels). The majority
of spiking models transition to bursting, while the remain-
ing subset transition to one-spike bursting (orange circles)
or hyperpolarized steady states. Bursting models are again
entirely converted to other model classes, this time split
roughly evenly between one-spike bursting and hyperpolar-
ized (right panels). The effects of gBK are quite different
(Fig. 6d). Hyperpolarized models are unaffected by gBK ,
and remain quiescent. Spiking models largely become burst-
ing, while a small subset become depolarized (red upward
triangles) and some remain spiking for all values of gBK

tested. Many of the bursting models remain bursting when
gBK is increased, but a subset become depolarized. There
are a small number of models that show other transitions,
but due to their scarcity they will not be discussed.

A summary of all the first transitions induced by the
K+ conductances is presented in Fig. 7 as a first-transition
matrix. The initial, unstimulated model class (with gKir =
gA = gBK = 0) is presented as the row label of the
matrix. The class of the model after its first transition is
depicted as the column label of the matrix. The diagonal
entries of the matrix represent the fraction of models whose
class was unchanged by the addition of a K+ conductance.
The (i, j)th entry of the matrix represents the fraction of
models, initially of class i, that transition to another class,
given by column j . Thus, the transition matrix tracks the
fate of all models in the database as gKir (left), gA (cen-
ter), or gBK (right) are increased, up to the first transition
that was induced. These matrices offer a signature of the
effect of each K+ conductance across the whole database
of models. They clearly show the similarities between gKir

and gA, and the distinct profile of gBK -induced transitions
previously described in Figs. 5 and 6.

The major transitions depicted in Fig. 7 are, for gKir and
gA, hyperpolarized to spiking, spiking to bursting, bursting
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Fig. 6 Model class following
the first transition induced by
adding a K+ conductance. a The
sets of parameter values initially
associated with the
hyperpolarized (left), spiking
(center) and bursting models
(right). b-d The same set of
models, now showing the class
of the model after the first
transition (if any) induced by
gKir , gA, and gBK , respectively.
Blue downward triangles -
hyperpolarized; pale blue
squares - spiking; green
diamonds - bursting; orange
circles - one-spike bursting; red
upward triangles - depolarized

Fig. 7 Summary of all first transitions induced by increasing
gKir (left), gA (center), or gBK (right). The initial, unstimulated
model class is presented as the row label of the matrix. The class
of the model after its first transition is depicted as the column
label of the matrix. Those models whose class remains unchanged

across all values of added conductance are represented by the diago-
nal elements of the matrices. Values in each row sum to 1, accounting
for the fate of all members of each initial class. Hyp - Hyperpolar-
ized, Spk - Spiking, Bst - Bursting, OSB - One-spike bursting, Dep -
Depolarized
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Fig. 8 Hyperpolarized cells
with somewhat high resting
potential can be activated by
gKir or gA. a Increasing gKir

induces spiking in 39.5 % of
hyperpolarized models. b
Increasing gA induces spiking in
14.1 % of hyperpolarized
models. c Fast-slow analysis is
used to show the mechanism,
using the model with mean
parameter values of the subset of
models showing gKir -induced
spiking as a representative
example. The meaning of all
curves is the same as in Fig. 4.
The low saddle-node moves
down and left, so the crossing
point of the c nullcline and the
Z-curve moves from the lower
branch (blue point, gKir = 0) to
the middle branch. For clarity,
only the periodic branch for
gKir = 0.4 is shown. d
Fast-slow analysis of the model
with mean parameter values of
the subset of models showing
gA-induced spiking as a
representative example, showing
a similar mechanism to gKir .
e, f Full-system bifurcation
diagrams show that spiking
arises due to a supercritical
Hopf bifurcation in the full
system upon increasing gKir

and gA, respectively

A B

C D

E F

to one-spike bursting, and from all classes to hyperpolar-
ized. For gBK , the most prominent transitions are spiking to
bursting, bursting to depolarized, and one-spike bursting to
bursting. We next use bifurcation and fast/slow analysis to
understand some of these main transitions.

4.2 Inward rectifier and A-type conductances
can activate hyperpolarized models

The first counterintuitive transition considered is that
adding hyperpolarizing currents gKir and gA converts
a subset of hyperpolarized models to a spiking pattern
(Fig. 8). Figure. 8a,b shows, at each resting potential,
the number of models activated by gKir or gA (black
bars) and the number that remain hyperpolarized regard-
less of the amount of added conductance. Those that are
activated

by the conductance tend to have somewhat depolarized
resting potentials.

To understand the mechanism for this effect, we consider
the model with mean parameter values across the subset of
hyperpolarized models activated by gKir or gA as represen-
tative models. Fast/slow analysis shows that when gKir = 0
(Fig. 8c) the c nullcline intersects the stable hyperpolar-
ized branch of the Z-curve, leading to a hyperpolarized
steady state (blue point). As gKir is increased, the lower
saddle-node point moves down and to the left, so that the
c nullcline intersects the unstable middle branch of the Z-
curve and the stable spiking branch, so periodic spiking
occurs (blue loop, gKir = 0.4). A similar situation occurs
for the mean gA-activated model (Fig. 8d). In this case, for
gA = 0, there are no saddle-node points on the “Z”-curve,
but the c nullcline still intersects at a hyperpolarized sta-
ble steady state. Increasing gA leads to the appearance of
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the low and high saddle-node points through a cusp bifur-
cation, and the lower saddle-node moves down and left as
with gKir . It is clear from these two panels that if either
gKir or gA are increased enough, the lower saddle node will
pass beyond the c nullcline, resulting in a transition to a
hyperpolarized steady state. Indeed, this is the mechanism
for how sufficient levels of these two current cause hyperpo-
larization in all model classes. A bifurcation analysis of the
full system demonstrates that increasing both conductances
leads to the loss of stability of the hyperpolarized steady
state via a supercritical Hopf bifurcation (Fig. 8e, f). As the
conductances are further increased, the periodic orbit loses
stability at a saddle-node of periodic orbits, and the hyper-
polarized steady-state regains stability via a subcritical Hopf
bifurcation.

Two subpopulations of models are not activated by gKir

(light grey bars, Fig. 8a). The more hyperpolarized group is
characterized by low values of kC , leading to the crossing
of the c-nullcline with the hyperpolarized branch of steady
states, as in Fig. 4a. The other subpopulation is character-
ized by low values of gCa and a complete lack of a periodic
solutions in the upper branch of the Z-curve.

4.3 Potassium conductances promote bursting
in spiking models

One of the main effects seen in the first-transition matrix is
that adding K+ channels converts spiking models to a burst-
ing pattern. This effect has been studied in great detail for
gA and gBK using a similar system with parameters sim-
ilar to the default model parameters in Table 1 (Tabak et
al. 2007; Teka et al. 2011a; Toporikova et al. 2008; Vo et
al. 2010, 2014). Here, we observed this transition in 50.5
% of spiking models when gKir was increased, 64.4 % for
gA, and 68.5 % for gBK . For fast/slow analysis, we con-
sider here as representative example models the mean of the
subset of spiking models that are converted to bursting by
gKir , gA, and gBK (Fig. 9a, c, e, respectively). When all
three K+ conductances are zero (square marker in Fig. 9a
c and e), we have a situation similar to the mean spiking
model. There is a stable periodic branch, and the c null-
cline intersects the middle branch of the Z-curve giving
rise to spiking oscillations in the full model (the periodic
branch is omitted for clarity). When either gKir or gA are
increased, the lower saddle-node point moves to the left
and down (circle and diamond in Fig. 9a, c). The stable
branch of periodic orbits vanishes, and a region of bista-
bility increases toward low c values. The result is a picture
that is characteristic of pseudo-plateau bursting (Stern et al.
2008). In the case of gBK (Fig. 9e), the main effect is
that the Hopf bifurcation and associated branch of periodic
orbits are moved to the right. The interval of bistability
again increases, but this time toward higher c values. This

analysis predicts that adding gKir or gA will result in a
decrease in calcium entry due to the creation of a bistable
region to the left, while adding gBK should increase calcium
entry.

The transition from spiking to pseudo-plateau burst-
ing with changes in K+ conductance has been analyzed
previously in great detail using fast/slow analysis and bifur-
cation analysis of full systems similar to the one presented
here. In a 4-variable pituitary cell model, (Vo et al. 2013)
found that the transition from spiking to pseudo-plateau
bursting in the full system was similar for gK , gBK , and gA,
and involved the loss of stability of the spiking solution via
a period doubling bifurcation. A later study re-examined the
gBK -induced transition, but this time taking into considera-
tion the rate of activation of the BK channel (Vo et al. 2014).
These results were obtained for a fixed context of the other
model parameters. Another detailed study using fast/slow
analysis and full system bifurcation analysis, using a mod-
ified Hindmarsh-Rose model (Hindmarsh and Rose 1984),
has been used to show how the unstable full-system equi-
librium affects the number of spikes in a burst (Osinga and
Tsaneva-Atanasova 2010; Tsaneva-Atanasova et al. 2010).
Those studies showed similarities between the spike adding
bifurcations present in pseudo-plateau and those occurring
in plateau bursting, which were analyzed in detail earlier
(Terman 1992).

In the full system, we can rapidly compute the features
of solutions in a two parameter plane near each of the rep-
resentative models using the GPU (Fig. 9b, d, f). Here we
show how the number of peaks per event changes with each
K+ conductance and kC , which shifts the c nullcline verti-
cally. For low kC , each of the three models shows a region of
hyperpolarized steady states (white region), separated from
the oscillatory domain (gray shaded region) by a curve of
Hopf bifurcations (not shown, but approximated by the con-
tour separating hyperpolarized and oscillatory models in the
plane). In panels B and D, there is a small window of kC

values for which adding gKir and gA, respectively, con-
vert the model from hyperpolarized to spiking. Once above
some minimal kC value, bursting can be induced by a suffi-
cient increase in K+ conductance in all three cases. As kC

is increased, the bursting interval becomes wider, which is
expected since this brings the c nullcline nearer to the top
branch of solutions in the fast subsystem.

5 Discussion

In this study, we used a combination of a global sampling of
parameter space and local analysis of representative param-
eter sets to understand the effects of adding ionic currents
to a population of pituitary cell models. The global sam-
pling, or model database, ensured that we capture a wide
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Fig. 9 Increasing gKir , gA, and
gBK can convert spiking to
bursting. a, c, e. Effects of
increasing gKir , gA, and gBK on
the fast subsystem equilibria,
respectively. The meaning of all
curves is the same as in Fig. 4.
In each case, the mean model of
that subset is used as a
representative parameter set. For
clarity, the periodic branch and
full system trajectories of only
the highest value of added K+
are shown (diamonds). b, d, f
Peaks per event in the full model
as a function of kC and each of
gKir , gA, and gBK , respectively.
The white regions represent
hyperpolarized steady states,
while the gray shaded regions
represent solutions with one or
more peaks per event, indicated
by numbers. Square, circle, and
diamond markers in the right
panels correspond to the
parameter combinations used to
generate the bifurcation
diagrams in the left panels. Each
two-parameter plane consists of
contour plots generated from a
grid of 96x96 parameter
combinations, run to a final
simulation time of 30 s, which
required a computation time of 7
s on a laptop with an nVidia
GeForce GTX 870M

A B

C D

E F

variety of contexts of model parameters from which to
evaluate the effects of introducing K+ conductances. We
classified the models in the database according to their
activity patterns, and determined how the proportions of
these classes changed with increasing K+ conductances.
Furthermore, we identified the first transition between activ-
ity classes for each model, summarized as the first-transition
matrix. Together with the net changes in activity-class pro-
portions, this first-transition matrix is a signature of what
changes occur due to each potassium conductance. We
then identified the subpopulations of models that underwent
specific (and sometimes unexpected) transitions between
activity patterns. Finally, we used bifurcation analysis and
fast/slow analysis to investigate why those transitions occur
in representative individual models. Combining these two

approaches therefore allows us to predict the effects of addi-
tion of an ionic conductance, depending on the context of
other cell parameters to which the conductance is added,
and allows us to understand the mechanism underlying these
effects.

Using this combined approach we uncovered the coun-
terintuitive finding that adding the hyperpolarizing conduc-
tances gKir or gA could cause silent models to begin to spike
continuously. It seems unlikely that we would have found
this transition without using the global parameter search we
performed. It should be noted that adding an ohmic hyper-
polarizing current or negative current injection would also
trigger this transition, by the same mechanism. Furthermore,
this transition could also occur in reverse when recording
from pituitary cells; a depolarizing leak conductance due
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to a non-ideal seal might be sufficient to silence a spiking
cell. We also found that the conversion of spiking models to
bursting due to gKir , gA, and gBK is a robust effect, as it
occurred in the majority of spiking models in the database.
Furthermore, the switch to bursting due to gKir or gA is
unlikely to lead to increases in calcium entry, since fast/slow
analysis presented here and elsewhere (Tabak et al. 2007)
showed that bursting arises due to movement of the low knee
of the Z-curve toward lower values of c. Conversely, gBK

triggers bursting by increasing a region of bistability in the
fast subsystem via rightward movement of a Hopf bifurca-
tion on the top branch of the Z-curve, so that the mean c

increases.
The abundance and low cost of modern GPUs as well

as the increasing ease of software implementation offers
promise for acceleration of a wide range of parameter stud-
ies such as the one presented here, with increasing adop-
tion in various fields (Rodrı́guez et al. 2015; Barrio et al.
2015; Brette and Goodman 2012; DeWoskin et al. 2014).
The combined numerical simulation and extraction of fea-
tures on the GPU makes database and parameter sweep
computations, such as the two parameter planes shown in
Fig. 9, fast enough that they can be used in a “disposable”
way. This allows one to rapidly explore the dependence of
features on parameters over much larger regions of param-
eter space than would otherwise be possible, while main-
taining the intuition-building benefits of the “hand-tuning”
approach.

The use of the GPU to compute solution features allows
for rapid survey of how parameters and initial conditions
affect solution features. With random sampling of param-
eter space, this method will find solutions of a given type
with probability proportional to the volume of the region in
parameter space for which that qualitative type of behav-
ior occurs. It is unlikely to find special solutions that occur
for very limited regions in parameter space. For example,
this approach is unsuitable for directly finding the bifur-
cation manifolds which divide the parameter space into
regions of qualitatively distinct behaviors, since these tend
to occur as low dimensional subspaces of parameter space.
These must be inferred by the presence of two qualita-
tively different types of solutions in neighboring regions of
parameter space. For this reason, “local” techniques such
as numerical continuation are invaluable as complementary
tools, since they are specifically designed to track bifur-
cations. Fast/slow analysis can be used to understand the
mechanisms underlying the observed solutions at a point
in parameter space, and how this mechanism is altered by
changing parameters.

The ODEs of a model map a parameter set and initial
conditions to a solution trajectory, such that there may be
coexistence of stable attractors (multistability) for a single

parameter set. Here, we fixed the initial condition for all
parameter sets sampled, so regions in parameter space in
which there is multistability were not identified. We expect
that multistability should occur in some regions of param-
eter space, and that in general the effect of adding a con-
ductance may depend also on the initial condition in those
cases. Random sampling of both parameters and initial con-
ditions leads to a very large number of simulations for even
a few parameters, and for the same reasons explained above,
it is unlikely to discover solutions for which the basin of
attraction (in initial condition space) occupies a small vol-
ume in parameter space. These drawbacks highlight the fact
that direct brute simulation is likely not the best approach
for discovering multistability in model databases. A better
approach is to instead use numerical continuation for each
member of the database to discover the set of attractors that
exist, as was done by (Marin et al. 2013) for a subset of a
database of leech heart half-center oscillators (Doloc-Mihu
and Calabrese 2011). For the database presented here, we
leave the characterization of multistability to future work.

The wide variety of changes that occurred in the model
database highlights the challenge of making accurate model
predictions in light of cell-to-cell heterogeneity. This moti-
vates the need for understanding how to map heterogeneity
in behaviors of a population of cells to regions of parameter
space in a putative model for these cells, a task for which the
model database approach is well suited. Here we used this
approach to demonstrate context dependence of the effects
of adding new conductances to a lactotroph model, simulat-
ing the effects of stimulation by a hormone. Model database
approaches in other studies have yielded findings regard-
ing the robustness or context dependence of conductances.
(Goldman et al. 2001) used a database of STG neurons to
show that model behavior was robust to parameter changes
in some directions in a 5-D conductance space, while sen-
sitive in others, a result with implications for the action of
neuromodulators. (Günay et al. 2008) were able to account
for most variability in globus pallidus neurons using vari-
ability in conductances in a model database, while showing
that the role of each conductance could vary depending on
the context of other parameters. In a lactotroph model, the
robustness of burst-promoting effects of the BK-type potas-
sium conductance was demonstrated using a small database
(Tabak et al. 2011), and a robust effect of increasing sodium
conductance on the f-I curve of crab STG neurons (increas-
ing frequency at low applied current, while decreasing
frequency at high applied current) was demonstrated by
(Kispersky et al. 2012). (Caplan et al. 2014) examined
how temperature dependence of ion channel kinetics (using
databases of Q10 parameters) contributes to temperature
robustness of network output of the crab pyloric central pat-
tern generator of the STG. Model database approaches have
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also been used to answer several other types of biologi-
cally motivated questions. These include attempts to find
and study the region in parameter space which supports a
desired model behavior within some tolerance, yielding an
ensemble of models instead of just a single parameter set
(Foster et al. 1993; Prinz et al. 2003; Taylor et al. 2009;
Caplan et al. 2014). This type of parameter optimization
has led to evidence that in some conductance based mod-
els, very similar model behaviors have been found to arise
from disparate regions in parameter space (Prinz et al. 2004;
Günay et al. 2008). Model databases have also been used to
study the constraints on parameters that define connectivity
between neurons in pattern generating networks, and how
these give rise to the appropriate network behavior (Prinz
et al. 2004; Calin-Jageman et al. 2007; Doloc-Mihu and
Calabrese 2011; Williams et al. 2013).

Combining global parameter space sampling and local
analysis to explore the relationship between parameter sets
and model behavior holds general promise. In our study,
we use the word “model” to refer to a particular parame-
terization of a specific (fixed) set of differential equations.
In that sense, we are interested in mapping out the set of
all types of possible solutions to a given ODE model in
terms of the model parameters and initial conditions, i.e.,
the “modelome” generated by those equations. This is a
natural first step in the exploration of the properties of a
model and how they rely on parameter values, and it is now
becoming a feasible task even on desktop and laptop work-
stations by running simulations on GPUs. Techniques aimed
at gaining a global understanding of a particular system of
equations are analogous to global approaches appearing in
biology today. For example, the field of genomics is con-
cerned with the study of the structure and function of the
entire set of genetic information contained in an organism,
namely the genome. A similar large-scale global approach
is used to study metabolism (metabolomics), protein struc-
ture (proteomics), and neuron connectivity (connectomics).
The study of the relationships between parameters, initial
conditions, and the associated ODE solutions could simi-
larly be called “modelomics.” New tools will be needed to
explore the large amounts of data generated in order to dis-
cover the patterns and relationships that underlie structure
and function.
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