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Abstract Pituitary cells of the anterior pituitary gland secrete hormones in response
to patterns of electrical activity. Several types of pituitary cells produce short bursts
of electrical activity which are more effective than single spikes in evoking hormone
release. These bursts, called pseudo-plateau bursts, are unlike bursts studied mathe-
matically in neurons (plateau bursting) and the standard fast-slow analysis used for
plateau bursting is of limited use. Using an alternative fast-slow analysis, with one
fast and two slow variables, we show that pseudo-plateau bursting is a canard-induced
mixed mode oscillation. Using this technique, it is possible to determine the region of
parameter space where bursting occurs as well as salient properties of the burst such
as the number of spikes in the burst. The information gained from this one-fast/two-
slow decomposition complements the information obtained from a two-fast/one-slow
decomposition.
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1 Introduction

Bursting is a common pattern of electrical activity in excitable cells such as neurons
and many endocrine cells. Bursting oscillations are characterized by the alternation
between periods of fast spiking (the active phase) and quiescent periods (the silent
phase), and accompanied by slow variations in one or more slowly changing vari-
ables, such as the intracellular calcium concentration. Bursts are often more efficient
than periodic spiking in evoking the release of neurotransmitter or hormone [1–3].

The endocrine cells of the anterior pituitary gland display bursting patterns with
small spikes arising from a depolarized voltage [2–5]. Similar patterns have been
observed in single pancreatic β-cells isolated from islets [6–8]. Figure 1(a) shows
a representative example from a GH4 pituitary cell. Several mathematical models
have been developed for this bursting type [5, 8–10]. Prior analysis showed that the
dynamic mechanism for this type of bursting, called pseudo-plateau bursting, is sig-
nificantly different from that of square-wave bursting (also called plateau bursting)
which is common in neurons [11–13]. Yet this analysis did not determine the possi-
ble number of spikes that occur during the active phase of the burst. The goal of this
paper is to understand the dynamics underlying pseudo-plateau bursting, with a focus
on the origin of the spikes that occur during the active phase of the oscillation.

Minimal models for pseudo-plateau bursting can be written as

ε1V̇ = f (V,n, c) (1.1)

ṅ = g(V,n) (1.2)

ċ = ε2h(V, c) (1.3)

where V is the membrane potential, n is the fraction of activated delayed rectifier K+
channels, and c is the cytosolic free Ca2+ concentration. The velocity functions are
nonlinear, and ε1 and ε2 are parameters that may be small.

The variables V , n and c vary on different time scales (for details, see Section 2).
By taking advantage of time-scale separation, the system can be divided into fast and
slow subsystems. In the standard fast/slow analysis one considers ε2 ≈ 0, so that V

and n form the fast subsystem and c represents the slow subsystem. One then studies
the dynamics of the fast subsystem with the slow variable treated as a slowly vary-
ing parameter [12, 15–18]. This approach has been very successful for understand-
ing plateau bursting, such as occurs in pancreatic islets [19], pre-Bötzinger neurons
of the brain stem [20], trigeminal motoneurons [21] or neonatal CA3 hippocampal
principal neurons [14], Fig. 1(b). It has also been useful in understanding aspects of
pseudo-plateau bursting such as resetting properties [11], how fast subsystem man-
ifolds affect burst termination [17], and how parameter changes convert the system
from plateau to pseudo-plateau bursting [12].

An alternate approach, which we use here, is to consider ε1 ≈ 0, so that V is
the sole fast variable and n and c form the slow subsystem. With this approach, we
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Fig. 1 (a) Pseudo-plateau bursting in a GH4 pituitary cell line. (b) Plateau bursting in a neonatal CA3
hippocampal principal neuron. Reprinted with permission from [14].

show that the active phase of spiking arises naturally through a canard mechanism,
due to the existence of a folded node singularity [22–25]. Also, the transition from
continuous spiking to bursting is easily explained, as is the change in the number of
spikes per burst with variation of conductance parameters. Thus, the one-fast/two-
slow variable analysis provides information that is not available from the standard
two-fast/one-slow variable analysis in the case of pseudo-plateau bursting.

2 The mathematical model

We use a model of the pituitary lactotroph, which produces pseudo-plateau bursting
over a range of parameter values [10]. To achieve a minimal form, we use the model
without A-type K+ current (IA). It includes three variables: V (membrane potential),
n (fraction of activated delayed rectifier K+ channels), and c (cytosolic free Ca2+
concentration). The equations are:

Cm

dV

dt
= −(ICa + IK + IK(Ca) + IBK) (2.1)

dn

dt
= (n∞(V ) − n)

τn

(2.2)

dc

dt
= −fc(αICa + kcc) (2.3)

where ICa is an inward Ca2+ current, IK is an outward delayed rectifying K+ cur-
rent, IK(Ca) is a small-conductance Ca2+-activated K+ current, and IBK is a fast-
activating large-conductance BK-type K+ current. The currents in the equations
above are:

ICa = gCam∞(V )(V − VCa) (2.4)

IK = gKn(V − VK) (2.5)

IK(Ca) = gK(Ca)s∞(c)(V − VK) (2.6)

IBK = gBKb∞(V )(V − VK). (2.7)
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Table 1 Parameter values for the lactotroph model.

Parameter Value Description

Cm 5 pF Membrane capacitance of the cell

gCa 2 nS Maximum conductance of Ca2+ channels

VCa 50 mV Reversal potential for Ca2+
vm −20 mV Voltage value at midpoint of m∞
sm 12 mV Slope parameter of m∞
gK 4 nS Maximum conductance of K+ channels

VK −75 mV Reversal potential for K+
vn −5 mV Voltage value at midpoint of n∞
sn 10 mV Slope parameter of n∞
τn 43 ms Time constant of n

gK(Ca) 1.7 nS Maximum conductance of K(Ca) channels

Kd 0.5 μM c at midpoint of s∞
gBK 0.4 nS Maximum conductance of BK-type K+ channels

vb −20 mV Voltage value at midpoint of f∞
sb 5.6 mV Slope parameter of f∞
fc 0.01 Fraction of free Ca2+ ions in cytoplasm

α 0.0015 μM fC−1 Conversion from charge to concentration

kc 0.16 ms−1 Rate of Ca2+ extrusion

The steady state activation functions are given by:

m∞(V ) =
(

1 + exp

(
vm − V

sm

))−1

(2.8)

n∞(V ) =
(

1 + exp

(
vn − V

sn

))−1

(2.9)

s∞(c) = c2

c2 + K2
d

(2.10)

b∞(V ) =
(

1 + exp

(
vb − V

sb

))−1

. (2.11)

Default parameter values are given in Table 1.
The variables V , n and c vary on different time scales. The time constant of V

is given by τV = Cm/gT otal , where gT otal = gKn + gBKb∞(V ) + gCam∞(V ) +
gK(Ca)s∞(c). During a bursting oscillation, the minimum of gT otal is 0.483 pS and
the maximum is 3 pS. Hence, Cm

maxgT otal
≤ τV ≤ Cm

mingT otal
, or 1.7 ms ≤ τV ≤ 10.4 ms,

for Cm = 5 pF, a typical capacitance value for lactotrophs. The time constant for n is
τn = 43 ms. For the variable c, the time constant is 1

fckc
= 1

(0.01)(0.16)
ms = 625 ms.

Thus, n and c change more slowly than V . This time scale separation between V and
(c, n) can be accentuated when Cm is made smaller than the default 5 pF, i.e., when
Cm → 0, τV gets smaller and V varies much faster. Thus, we can view the capacitance
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Cm as a representative of the dimensionless singular perturbation parameter ε1 in this
model (Eq. 1.1).

All numerical simulations and bifurcation diagrams (both one- and two-parameter)
are constructed using the XPPAUT software package [26], using the Runge-Kutta in-
tegration method, and computer codes can be downloaded from the following web-
site: http://www.math.fsu.edu/~bertram/software/pituitary. The surface in Fig. 9 was
constructed using the AUTO software package [27]. All graphics were produced with
the software package MATLAB.

3 Geometric singular perturbation theory

3.1 The reduced system

We consider the full system (Eqs. (2.1)-(2.3)) as having one fast variable V and two
slower variables n and c. The time-scale separation can be accentuated by decreasing
the singular perturbation parameter Cm. This facilitates analysis of the system dy-
namics [28]. In the limit Cm → 0, the trajectories of the system lie on a 2-D surface
called the critical manifold. If we define the right hand side of Eq. (2.1) by

f (V, c,n) = −(ICa + IK + IK(Ca) + IBK) (3.1)

then the critical manifold is the surface S satisfying

S ≡ {(V , c, n) ∈ R
3 : f (V, c,n) = 0}. (3.2)

The equation f (V, c,n) = 0 can be solved in explicit form for n as

n = n(c,V ) = − 1

gK

[
gCam∞(V )

(V − VCa)

(V − VK)
+ gK(Ca)s∞(c) + gBKb∞(V )

]
. (3.3)

The critical manifold (3.3) is a folded surface (Fig. 2) that consists of three sheets
separated by two fold curves (L− and L+). The lower and upper sheets are attracting
( ∂f
∂V

< 0) and the middle sheet is repelling ( ∂f
∂V

> 0). The lower (L−) and upper (L+)
fold curves are given by

L± ≡
{
(V , c, n) ∈ R

3 : f (V, c,n) = 0 and
∂f

∂V
(V, c,n) = 0

}
. (3.4)

This yields two constant V values and two equations for n in the form of n = n(c).
Thus, the fold curves (L±) are (V ±, c, n±(c)) where V − and V + are constant V

values. The curve L+ is projected vertically (along the fast variable V ) onto the lower
sheet to obtain the projection curve P(L+), and similarly for the (L−) projection
onto the upper sheet. Figure 2 shows the critical manifold, the fold curves and the
projections of the fold curves.

The reduced flow (when Cm → 0) is described by (3.3), the differential equation
for c (Eq. (2.3)), and a differential equation for V which can be obtained by differen-
tiating f (V, c,n) = 0 with respect to time. That is,

− ∂f

∂V

dV

dt
= ∂f

∂c

dc

dt
+ ∂f

∂n

dn

dt
(3.5)

http://www.math.fsu.edu/~bertram/software/pituitary
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Fig. 2 The critical manifold
and fold curves with their
projections for gK = 4 nS and
gBK = 0.4 nS. The curves L−
and L+ are the lower and upper
fold curves, respectively. P(L−)

and P(L+) are the projections of
L− and L+ onto the upper and
lower sheets of the critical
manifold, respectively. FN is a
folded node singularity, and SC
(green curve) is the strong
canard. The singular periodic
orbit (black curve) is
superimposed on the critical
manifold.

where n satisfies Eq. (3.3), and ṅ, ċ satisfy Eqs. (2.2), (2.3). The two differential
equations for the reduced system are thus

− ∂f

∂V

dV

dt
= (−fc(αICa + kcc)

)∂f

∂c
+

(
(n∞(V ) − n)

τn

)
∂f

∂n
(3.6)

dc

dt
= −fc(αICa + kcc). (3.7)

Since ∂f
∂V

= 0 on L±, the reduced system is singular along the fold curves. The sys-

tem can be desingularized by rescaling time with τ = −(
∂f
∂V

)−1t . The desingularized
system is then

dV

dτ
= (−fc(αICa + kcc)

)∂f

∂c
+

(
(n∞(V ) − n)

τn

)
∂f

∂n
(3.8)

dc

dτ
= fc(αICa + kcc)

∂f

∂V
. (3.9)

Defining

F(V, c,n) = (−fc(αICa + kcc)
)∂f

∂c
+

(
(n∞(V ) − n)

τn

)
∂f

∂n
, (3.10)

we have the desingularized system

dV

dτ
= F(V, c,n) (3.11)

dc

dτ
= fc(αICa + kcc)

∂f

∂V
. (3.12)

The desingularized system describes the flow on the critical manifold. Because of
the time rescaling, the flow on the middle sheet, where ∂f

∂V
> 0, must be reversed to

obtain the equivalent reduced flow.
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3.2 Folded singularities and canards

Equilibria of the desingularized system are classified as ordinary singularities and
folded singularities. An ordinary singularity is an equilibrium of Eqs. (2.1)-(2.3) and
satisfies

f (V, c,n) = 0 (3.13)

n = n∞(V ) (3.14)

c = −αICa

kc

. (3.15)

A folded singularity lies on a fold curve (L+ or L−), and satisfies:

f (V, c,n) = 0 (3.16)

F(V, c,n) = 0 (3.17)

∂f

∂V
= 0. (3.18)

A folded singularity is classified as a folded node if the eigenvalues are real and have
the same sign, a folded saddle if the eigenvalues are real and have opposite signs, or
a folded focus if the eigenvalues are complex [22, 23, 25, 29]. For parameter values
used in Fig. 2, the system has a folded node (with negative eigenvalues) on L+ (FN,
blue point, in Fig. 2), and a folded focus on L− (not shown).

There are an infinite number of singular trajectories on the top sheet that pass
through the folded node (FN). These are called singular canards [22]. The singular
canard that enters the FN in the direction of the strong eigenvector is called the strong
canard (SC, green curve, in Fig. 2). This curve and the fold curve L+ delimit the
singular funnel that consists of all initial conditions whose trajectories for the reduced
system pass through the folded node. The singular funnel and key curves are projected
onto the (c,V )-plane in Fig. 3. The different panels are obtained with different values
of the parameter gK .

3.3 Singular periodic orbits, relaxation oscillations, and mixed mode oscillations

A singular periodic orbit (Fig. 2, black curve with arrows) can be constructed by
solving the desingularized system for the flow on the top and bottom sheets of the
critical manifold, and then projecting the trajectory from one sheet to the other along
fast fibers when the trajectory reaches a fold curve. The singular periodic orbit is
the closed curve constructed in this way. This process was discussed in detail in [22,
28, 30]. Briefly, the trajectory moves along the bottom sheet until L− is reached. At
this point the reduced flow is singular ( ∂f

∂V
= 0). The quasi-steady state assumption

f (V, c,n) = 0 is no longer valid and there is a rapid motion away from the fold curve
L−. This rapid motion is seen as vertical movement to the top sheet (the dynamics
are governed by the layer problem, see [22, 28]). The trajectory moves to a point on
P(L−) and from there is once again governed by the desingularized equations, mov-
ing along the top sheet until L+ is reached. The fast vertical downward motion along
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Fig. 3 The critical manifold is projected onto the (c,V )-plane for (a) gK = 5.1 nS, gBK = 0.4 nS and
(b) gK = 4 nS, gBK = 0.4 nS. L− and L+ are the lower and upper fold curves, respectively. P(L−) and
P(L+) are the projections of L− and L+. The shaded regions are singular funnels which are delimited by
the curves L+ and the strong canards (SC, green curves). The singular periodic orbits (black curves with
arrows) are superimposed. FN is a folded node singularity. δ < 0 in panel (a) and δ > 0 in panel (b).

fast fibers returns the trajectory to a point on P(L+) on the bottom sheet, completing
the cycle.

When the singular periodic orbit reaches L− it jumps up to a point on P(L−). If
this point on P(L−) is in the singular funnel, then the orbit will move through the
FN. Otherwise it will not. Let δ denote the distance measured along P(L−) from the
phase point on P(L−) of the singular periodic orbit to the strong canard (SC in Fig. 3).
When the phase point is on the strong canard, δ = 0. Let δ > 0 when the phase point
is in the singular funnel and δ < 0 when the phase point is outside the singular funnel.
Singular canards are produced when δ > 0.

In Fig. 3(a) the singular periodic orbit jumps to a point on P(L−) outside of the
singular funnel (δ < 0), so it does not enter the FN. This orbit is a relaxation oscilla-
tion [31]. In Fig. 3(b) δ > 0, so the orbit is a singular canard. Away from the singular
limit, this singular canard perturbs to an actual canard that is characterized by small
oscillations about L+ [22]. The combination of these small oscillations with the large
oscillations that occur due to jumps between upper and lower sheets yields mixed
mode oscillations [24, 32]. The small oscillations have zero amplitude in the singular
case, which grows as

√
Cm for Cm sufficiently small [23]. A discriminating condition

between relaxation and mixed mode oscillations is δ = 0, where the singular periodic
orbit jumps to P(L−) on the SC curve.

When Cm > 0 the full system (Eqs. (2.1)-(2.3)) produces spiking for δ < 0 and
mixed mode oscillations for δ > 0. Figure 4 shows these two different cases for
gBK = 0.4 nS. For gK = 5.1 nS (δ < 0 in Fig. 3(a)), the nearly-singular periodic
orbit produced when Cm = 0.001 pF (Fig. 4(a)) perturbs to continuous spiking when
Cm = 10 pF (Fig. 4(e)). When gK = 4 nS the singular periodic orbit enters the singu-
lar funnel (Fig. 3(b)), so when Cm is increased the singular orbit transforms to mixed
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Fig. 4 Nearly-singular periodic orbits perturb to continuous spiking or mixed mode oscillations. In both
cases gBK = 0.4 nS, and gK = 5.1 nS in the left column, gK = 4 nS in the right column. Cm is increased
from top row to bottom row. (a), (c), (e) The singular periodic orbit does not enter the singular funnel
(δ < 0) so it perturbs to continuous spiking. (b), (d), (f) The singular periodic orbit enters the singular
funnel (δ > 0) so it perturbs to mixed mode oscillations or pseudo plateau bursting.

mode oscillations. For Cm = 0.5 pF mixed mode oscillations with small spikes are
produced (Fig. 4(d)). As Cm is increased to 10 pF, mixed mode oscillations with
larger spikes are produced. This is the genesis of pseudo-plateau bursting (Fig. 4(f)).

4 Analysis of the desingularized system and folded nodes

We next discuss the singularities of the desingularized system for a range of gK

and gBK values (Fig. 5). The system (with gBK = 0.4 nS) has a single-branched V -
nullcline (green curve) that satisfies F(V, c,n) = 0 and a three-branched c-nullcline
(orange curves) L−, L+ and CN1. The curves L−, L+ satisfy ∂f

∂V
= 0, and are the

same as the fold curves in Fig. 3. The curve CN1 satisfies αICa + kc = 0. There are
folded singularities that are located at intersections of the V -nullcline with L− or L+,
and ordinary singularities that are located at intersections with CN1. For fixed gBK ,
changing gK affects the position of the V -nullcline but not the c-nullcline.

For values gK < 0.5131 nS, there is a stable node on CN1 (A1), which would be
on the top sheet of the critical manifold. There are also two folded saddles on L+ (B1
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Fig. 5 V -nullclines (green), the three-branched c-nullcline (orange), and singularities for gBK = 0.4 nS
and different values of gK (units in nS). Filled circles represent stable singularities and unfilled circles
represent unstable singularities. Red circles (filled or unfilled) are ordinary singularities. Filled and unfilled
circles in blue are folded nodes and folded saddles, respectively. Filled circles in cyan are folded foci. The
points TR1 and TR2 are transcritical bifurcations (type II folded saddle-node bifurcations) and SN1 and
SN2 are standard saddle-node bifurcations (type I folded saddle-node bifurcations).

and C1) and two folded foci on L− (D1 and E1). When gK is increased to 0.5131 nS
the stable node A1 moves down and to the left and the folded saddle B1 moves to the
left. These two equilibria coalesce at a transcritical bifurcation (TR1). This transcrit-
ical bifurcation corresponds to a bifurcation of folded singularities called a type II
folded saddle-node [22, 30, 33]. Following this bifurcation, the folded singularity is
a folded node. For gK = 4 nS, the equilibria on L+ are the folded node (B3) and the
folded saddle (C3). The equilibrium on CN1 (A3) is now a saddle point. There is no
qualitative change of equilibria on L−.

When gK is increased to 7.588 nS the equilibria B3 and C3 coalesce at a saddle-
node bifurcation point (SN1). This is a standard saddle-node bifurcation of folded
singularities and is called a type I folded saddle-node [22, 30, 33]. As gK is increased
to 43.1 nS, the folded focus D5 moves to the left and changes to a folded node at D6.
The saddle points on CN1 move downward and to the left as gK is increased. For
gK = 129.2 nS, the saddle point A6 coalesces with the fold node D6 at a second
transcritical bifurcation (TR2); again a type II folded saddle-node. Beyond this, the
ordinary singularity (A8,A9) is stable and the folded singularity becomes a folded
saddle. Moreover the folded focus E6 has become a folded node (E7). As gK is in-
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creased further to 137.2 nS, there is a second type I saddle-node bifurcation (SN2) at
which the folded node and the folded saddle coalesce and disappear. For the values
gK > 137.2 nS, the only equilibrium is on CN1 and is an ordinary stable node (A9).
This is on the bottom sheet of the critical manifold.

Varying gBK slightly affects the V -nullcline and strongly affects the c-nullcline
in the (c,V )-phase plane. Increasing gBK moves the fold curves together, eventually
taking the fold out of the critical manifold. Figure 6 shows qualitative changes in the
equilibria when gBK is varied, with gK = 7.588 nS. When gBK = 0.2 nS there is
a saddle point on CN1 (A) and two folded foci (D and E) on L− (Fig. 6(a)). When
gBK is increased to 0.4 nS, the curve L+ moves down and a type I folded saddle-node
bifurcation occurs (SN1 in Fig. 6(b)). When gBK is increased further, the saddle-node
splits into a folded node (B) and a folded saddle (C) on L+, as shown for gBK = 1
nS in Fig. 6(c).

The folded node (B) and the saddle point (A) coalesce at a transcritical bifurcation
(type II folded saddle-node) when gBK = 3.96 nS (TR1 in Fig. 6(d)). Beyond this,
the ordinary singularity (A) is a stable node that lies on the top sheet of the criti-
cal manifold. When gBK = 20 nS the folded singularities are either saddles or foci,
Fig. 6(e). For gBK ≈ 32.12 nS the two folded foci on L− change to folded nodes.
Finally, when gBK is increased to 32.1224 nS, the fold curves L+ and L− merge. As
a result, the folded saddles coalesce with the folded nodes at type I folded saddle-
node bifurcations (SN3 and SN4 in Fig. 6(f)). Beyond this, there is only a stable
node (A in Fig. 6(g)). The disappearance of the L+ and L− curves correspond to the
disappearance of the fold in the critical manifold.

The two-parameter bifurcation diagram in Fig. 7 summarizes the variations of the
bifurcations in Fig. 5 and Fig. 6 over a range of gK and gBK values. The curves
TR1 and TR2 correspond to the transcritical bifurcations (type II folded saddle-node
bifurcations), and SN1-SN4 correspond to the saddle-node bifurcations (type I folded
saddle-node bifurcations). At gBK = 32.1224 nS the L+ and L− lines coalesce into
a single line. This contains the SN3 and SN4 bifurcations, up until SN3 and SN4
coalesce at a codimension-2 bifurcation (for gK = 83.7122 nS). For large gK , the
L+/L− line contains no folded singularities (dashed line).

For gK and gBK values in regions A, D and E there is only a stable node and the
full system is in a depolarized (A) or hyperpolarized (D or E) steady state. In the left
portion of region C there is a folded focus which becomes a folded node in the right
portion of C. This family of folded singularities is on L−. In region D there is a folded
node on L− for negative values of c. Region B consists of the folded nodes on L+,
and it is the key region for the existence of mixed mode oscillations, since δ > 0 for
much of this region (shown below).

5 Twisted slow manifolds and secondary canards

The folded nodes discussed above are important since they yield small oscillations
(for Cm > 0) in all trajectories entering the singular funnel. In this section we explain
the genesis of those oscillations (for more details, see [22, 23, 28, 32]).
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Fig. 6 V -nullclines (green), c-nullclines (orange) and ordinary and folded singularities for a range of gBK

values with gK = 7.588 nS. (a) gBK = 0.2 nS, (b) gBK = 0.4 nS, (c) gBK = 1 nS, (d) gBK = 3.96 nS,
(e) gBK = 20 nS, (f) gBK = 32.1224 nS, and (g) gBK = 32.2 nS. The color convention for equilibria is
as in Fig. 5.
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Fig. 7 Two-parameter
bifurcation structure for the
desingularized system. The
curves TR1 and TR2 represent
the transcritical bifurcations
(type II folded saddle-nodes).
The curves SN1-SN4 represent
saddle-node bifurcations (type I
folded saddle-nodes). The
horizontal line is where the fold
curves L+ and L− coalesce.
A codimension-2 bifurcation
occurs at the intersection of the
SN curves.

Folded nodes or saddles are characterized by the ratio of their eigenvalues. Let λ1
and λ2 be the eigenvalues of the folded singularity on the fold curve L+ such that
|λ1| < |λ2|. Define μ as

μ = λ1

λ2
. (5.1)

In region A of Fig. 7, which consists of folded saddles, μ < 0. On the TR1 curve
μ = 0 since λ1 = 0. Folded nodes occur in region B, so μ > 0. For Cm > 0, but small,
a trajectory approaching a folded node will oscillate, due to twists in the attracting
and repelling sheets of the slow manifold. The maximum number of oscillations is
given by [23, 32]

Smax =
[
μ + 1

2μ

]
, (5.2)

which is the greatest integer less than or equal to μ+1
2μ

. At a point in region B and
close to the TR1 curve in Fig. 7, μ > 0 but small. Hence, Smax is large. Similarly on
SN1 μ = 0, so in region B and close to the SN1 curve μ > 0 and small, so Smax is
large. Between these curves μ increases and Smax declines. This is shown in Fig. 8
for the case gBK = 0.4 pS. The small value of μ over the full range of gK values
in (Fig. 8a) suggests the system is close to a folded saddle-node bifurcation, either
type I (SN1) or type II (TR1).

The attracting sheets of the critical manifold (Sa) and the repelling middle sheet
(Sr ) come together at the fold curves L+ and L−. For Cm > 0, Fenichel theory [34]
tells us that the critical manifold perturbs smoothly to invariant attracting (Sa,Cm ) and
repelling (Sr,Cm ) manifolds away from L+ and L−. However, the critical manifold
is non-hyperbolic on L+ and L−, and perturbs to twisted sheets near these curves
to preserve uniqueness of solutions [23, 35]. Figure 9 shows how the top attracting
S+

a,Cm
(blue) and middle repelling Sr,Cm (red) sheets of the slow manifold intersect

and twist. The numerical method used to compute the slow manifolds was developed
by Desroches et al. [36, 37].

The primary weak canard corresponds to the weak eigendirection of the folded
node. It is at the intersection of the invariant manifolds S+

a,Cm
and Sr,Cm and serves
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Fig. 8 The effects of varying gK on the eigenvalue ratio (μ) and the maximum number of oscillations
(Smax ) for gBK = 0.4 nS. (a) μ = 0 at TR1 and SN1. (b) Smax is largest near the bifurcation points.

Fig. 9 A portion of the twisted slow manifold for Cm = 2 pF, gK = 4 nS and gBK = 0.4 nS. The top
attracting (S+

a,Cm
, blue surface) and middle repelling (Sr,Cm , red surface) sheets of the slow manifold

are twisted around the blue dashed curve, which is the axis of rotation. The primary strong canard (SC,
green) moves from the attracting to the repelling sheet without any rotations. The secondary canards ξ1
(gray curve, one rotation), ξ2 (purple curve, two rotations) and ξ3 (gold curve, three rotations) flow from
the attracting to repelling sheet with different numbers of rotations. A portion of the pseudo-plateau burst
trajectory (PPB, black curve) is superimposed and has two small oscillations. The full system has unstable
equilibrium (cyan, filled curcle).

as their axis of rotation. All other canards twist about the primary weak canard; they
follow S+

a,Cm
as it twists and then follow Sr,Cm for a distance as it twists. The primary

strong canard, which corresponds to the strong eigendirection of the folded node,
moves along S+

a,Cm
to Sr,Cm without any rotation (SC, green curve in Fig. 9). Other,

secondary, canards rotate a number of times, depending on how close they are to
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Fig. 10 (a) Pseudo-plateau burst trajectories are projected onto the (c,V )-plane for gK = 4 nS and
gBK = 0.4 nS, and different values of Cm. Key structures from the desingularized system are also shown.
WED (pink curve) is the line tangent to the weak eigendirection of the folded node. (b) Magnification of
panel (a) in the vicinity of the weak eigendirection and fold curve L+.

the primary strong canard. A secondary canard that makes k small rotations in the
vicinity of the folded node is called the kth secondary canard. Figure 9 shows the
first (ξ1, gray), second (ξ2, purple) and third (ξ3, olive) secondary canards that make
one, two and three rotations, respectively. For Cm > 0, but small, there are Smax − 1
secondary canards which divide the funnel region between the primary canards into
Smax subsectors [24]. The first subsector is bounded by the strong canard SC and the
first secondary canard ξ1 and trajectories entering here have one rotation. The second
subsector is bounded by ξ1 and ξ2 and trajectories entering here have two rotations.
The last subsector is bounded by the last secondary canard and the primary weak
canard. The maximal rotation number is achieved in the last subsector; trajectories
entering here have Smax rotations [23, 28, 32].

Figure 9 also shows a portion of the pseudo-plateau burst trajectory (PPB, black
curve) for Cm = 2 pF. It enters the funnel region in the rotational subsector bounded
by ξ1 and ξ2, and hence, makes two full rotations and then leaves the repelling sheet
as it moves towards the lower attracting manifold S−

a,Cm
. These rotations are the small

oscillations or “spikes” during the burst active phase.
Figure 10(a) shows burst trajectories for three values of Cm projected onto the

(c,V )-plane. Also shown are L+, L−, the singular strong canard SC and the folded
node of the desingularized system. Finally, the line along the weak eigendirection of
the folded node is included (WED, pink curve). With Cm = 0.001 pF the system is
nearly singular and the “bursting” trajectory enters and leaves the folded node along
the WED. The small oscillations near the folded node are too small to see. The region
near the folded node is magnified in Fig. 10(b). With Cm = 0.1 pF the burst trajectory
again passes through the folded node along the WED, but now the small oscillations
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Fig. 11 (a) Mixed mode oscillation borders for Cm → 0. The region of mixed mode oscillations (MMOs)
is bounded by the two curves TR1 and δ = 0. Steady state and spiking solutions occur to the left of the
TR1 curve and to the right of the δ = 0 curve, respectively. (b) Magnification of panel (a) for a smaller
range of values of gK and gBK .

are visible in Fig. 10(b). The small oscillations of this burst trajectory first decrease
and then increase in amplitude. This is often seen in mixed mode oscillations that
are associated with a folded node singularity, in contrast to those associated with a
singular Hopf bifurcation, where the amplitude of successive small oscillations in-
creases [38]. Finally, with Cm = 2 pF (the value used in Fig. 9) the small oscillations
are prominent even in the larger vertical scale used in Fig. 10(a).

6 The boundaries of mixed mode oscillations

For a periodic mixed mode oscillation (i.e., pseudo-plateau bursting) solution to exist,
there must be a folded node singularity and the periodic orbit must enter the funnel.
In this section we construct curves in the two-parameter gK -gBK plane that form
boundaries for the existence of mixed mode oscillations.

From Fig. 7 we know that folded node singularities only occur in regions B and C
(and in region D for negative values of the Ca2+ concentration). Those in region C
occur on L− and the periodic orbit never enters the corresponding singular funnel. We
therefore focus on region B. This region is highlighted in Fig. 11(a). Above the TR1
curve the system has a depolarized stable steady state. Below the SN1 curve the sys-
tem spikes continuously. Between these curves a folded node singularity exists, and
the requirement for periodic mixed mode oscillations is that δ > 0. That is, the sin-
gular orbit must enter the singular funnel. Thus, the final curve delimiting the MMOs
region is δ = 0 (the set of gK and gBK values at which the singular periodic orbit
intersects both the strong canard and the curve P(L−)), shown in green in Fig. 11.
For parameter values between the δ = 0 and TR1 curves periodic mixed mode os-
cillations, i.e., pseudo-plateau bursting, exist and are stable. This critical region is
magnified in Fig. 11(b).

Figure 12 shows how the burst duration and the number of spikes in a burst vary
over a range of gK and gBK values for Cm = 5 pF. A similar map of parameter
space was used previously in the analysis of a parabolic burster [39]. Two-parameter
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Fig. 12 The active phase duration and the number of spikes per burst of the full system for Cm = 5 pF.
The system displays steady state, spiking or bursting solutions. Steady state and spiking solutions are
represented by black dots and small black circles, respectively. The bursting region is bounded by the
supercritical Hopf bifurcation (HB, black) and the right branch of the period doubling (PD, green) curves.
The bursting patterns in this region are represented by colored circles. The size of a circle represents the
active phase duration, with larger circles corresponding to longer active phase durations. The color of a
circle represents the number of spikes per burst. Cyan circles correspond to smaller number of spikes per
burst (minimum of two spikes) and the largest dark red circle corresponds to the largest number of spike
per burst (36 spikes in a burst).

bifurcation curves of the full system (Eqs. (2.1)-(2.3)) are also shown. These include
a curve of supercritical Hopf bifurcations (HB, black) and a curve of period doublings
(PD, green). To the left of the HB curve the system is at a steady state (black dots), and
to the right of and above the PD curve the system produces continues spiking (small
black circles). For the values of gK and gBK inside the PD curve the system produces
pseudo-plateau bursting oscillations (MMOs), represented by colored circles.

In the bursting region the active phase duration and the number of spike per burst
vary with respect to the values of gK and gBK . The size of each circle represents the
active phase duration, and the color of the circle (from cyan to dark red) represents
the number of spikes in a burst. A burst with larger number of spikes has longer
active phase duration, and in an actual cell this determines the amount of Ca2+ influx
and hormone released. The bursts that have the shorter active phase duration and the
smaller number of spikes occur near the right branch of the PD curve. These bursts
are represented by smaller cyan circles in Fig. 12. For example, when gBK = 1 nS
and gK = 6 nS the system produces bursting oscillations with three spikes per burst
(as in Fig. 4(f)). When one moves away from the right to the left branch of the PD
curve by increasing gBK or decreasing gK the burst duration becomes longer and
the number of spikes in a burst becomes larger. The longest active phase duration is
about 8.4 sec and the largest number of spikes per burst is about 36, represented by
the largest dark red circle. These values will change when Cm is changed.

The region between the HB and the left branch of the PD curves is bistable be-
tween bursting and continuous spiking. Orange circles with small black circles at the
centers represent bistable solutions that are simulated by varying the initial condi-
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tions. This shows that the borders of the bursting region are the HB and the right
branch of the PD curves. The dark blue circles represent bursting oscillations without
small oscillations since the amplitudes of the spikes are almost zero, i.e., the small
oscillations are too small to see.

The results that are shown in Fig. 12 are very consistent with the analysis of the
mixed mode oscillations in Fig. 11. The HB and TR1 curves overlap, demonstrating
that for small Cm the HB of the full system corresponds to a type II saddle-node
bifurcation of the desingularized system. Also, the HB curve and the left branch of
the PD curve are almost indistinguishable for small Cm. For these Cm values (Cm <

0.001 pF), the right branch of the PD curve converges to the δ = 0 curve of the
desingularized system. Hence, the left and right borders of the MMOs in the singular
limit Cm → 0 pF correspond to the left and right borders of the bursting region of
the full system for Cm > 0, with the exception that the bursting region is smaller for
larger values of Cm. Also, the bistable region between the PD and HB curves only
exists as the left PD moves away from the HB, which occurs as Cm is increased.

In Fig. 11 the MMOs region delimited by the TR1 and δ = 0 curves can be divided
into subregions that have different numbers of small oscillations. For parameter val-
ues in the subregion near the curve δ = 0 the periodic orbit enters the funnel region
near the strong (primary) canard. This subregion corresponds to the first subsector
of the funnel region, and for Cm > 0 only one small oscillation occurs in a burst.
This corresponds to the jump from the lower attracting sheet to the upper attracting
sheet and is not due to the folded node. When one moves leftward by decreasing gK ,
δ increases and the periodic orbit enters the funnel region through other subsectors.
As a result, the number of small oscillations in a burst increases. When one moves
to the subregion near or on the TR1 curve by decreasing gK further, the periodic
orbit enters the funnel region through the last subsector. The number of small oscil-
lations is closer to Smax , the maximum number of spikes in a burst as determined
by the eigenvalues of the folded node. Moreover, increasing gBK has the same effect
as decreasing gK . These trends in the number of small oscillations obtained from an
analysis of the desingularized system [28] are expressed far from the singular limit as
shown in Fig. 12 where Cm = 5 pF. Here the longest bursts occur near the HB curves,
as predicted.

7 A comparison with a two-fast/one-slow variable analysis

Using a one-fast/two-slow variable analysis we have shown the genesis of the spikes
in a burst and how the number of spikes in a burst varies in the gK -gBK parameter
space. The regions for steady states, pseudo-plateau bursting (mixed mode oscilla-
tions) and spiking are clearly identified in this parameter space (Fig. 11). This has
been done by investigating the qualitative changes of the desingularized system when
parameters gK (Fig. 5) and gBK (Fig. 6) are varied, which are summarized in Fig. 7.

Here we investigate whether this information can be obtained from a standard two-
fast/one-slow variable analysis. Figure 13(a) shows a bifurcation diagram of the V -n
fast subsystem with c treated as a parameter (referred to as a “z-curve”). The subsys-
tem is bistable over a large range of c values, with stable depolarized and hyperpolar-
ized steady states, separated by saddle points. The c-nullcline is superimposed, now
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Fig. 13 Two-fast/one-slow analysis for gBK = 0.4 nS, Cm = 10 pF and different values of gK . The black
“z-curve” is the curve of equilibria of the V -n fast subsystem. This has stable (solid) and unstable (dashed)
branches. (a) gK = 0.1 nS, the full system with stable equilibrium (A1) is in a depolarized steady state.
(b) gK = 4 nS, the fast subsystem has an unstable limit cycle that emerges from the subcritical Hopf bifur-
cation (subHB). Pseudo-plateau bursting (PPB, black trajectory) is produced. The equilibrium of the full
system (A3) is unstable. (c) gK = 5.1 nS, the full system produces periodic spiking that appears unrelated
to the fast subsystem bifurcation structure. The equilibrium point of the full system (A) is unstable. In all
panels the system is bistable over a range of c-values. The points A1 and A3 are the same equilibrium
points as A1 and A3 in Fig. 5, respectively.

thinking of c as a slowly-changing variable rather than as a parameter. This is the
standard approach used in a two-fast/one-slow variable analysis. In all three panels
of Fig. 13 parameters are set at gBK = 0.4 nS, Cm = 10 pF, and gK is varied.

In Fig. 13(a), with gK = 0.1 nS, there is an intersection of the c-nullcline on
the upper stable branch at location A1. This is a stable equilibrium of the full 3-
dimensional system, and corresponds to A1 in the analysis shown in Fig. 5. Thus,
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both types of analysis indicate that the system will come to rest at a depolarized
steady state when gK = 0.1 nS.

When gK is increased there is a subcritical Hopf bifurcation on the upper branch
with emergent unstable periodic solutions of the fast-subsystem. This is shown in
Fig. 13(b) for the case gK = 4 nS. Pseudo-plateau bursting occurs for this and nearby
values of gK . The full system unstable equilibrium (A3) corresponds to A3 in Fig. 5.

The superimposed burst trajectory in Fig. 13(b) only weakly follows the fast-
subsystem bifurcation diagram. Most notably, there are no stable periodic solutions
of the fast subsystem, only bistability between two steady states. Also, the trajec-
tory never follows the lower branch of stationary solutions and greatly overshoots the
lower knee.

The subcritical Hopf bifurcation migrates leftward when gK is increased to 5.1 nS.
The unstable branch of periodics goes through a saddle-node bifurcation, yielding a
branch of stable periodic solutions of the fast subsystem (Fig. 13(c)). There is bista-
bility between upper and lower branches of the z-curve which is typically a necessary
condition for bursting with this type of analysis. However, bursting is not produced
for this value of gK . Instead, the system spikes continuously.

This example illustrates that features well described by the one-fast/two-slow vari-
able analysis are not at all well described by a standard two-fast/one-slow variable
analysis. Most notably, the transition from bursting to spiking is well characterized in
the one-fast/two-slow variable analysis as the point at which δ = 0. Note that this is
not a bifurcation point of the desingularized system, but reflects the jump point from
the lower sheet of the slow manifold to the upper sheet. In contrast, the bursting to
spiking transition is not predicted from the two-fast/one-slow analysis, and indeed the
periodic spiking trajectory of the full system occurs over a range of the fast-subsystem
bifurcation diagram that contains only stable equilibria. The one-fast/two-slow ap-
proximation is good even at higher values of Cm, for example, when Cm = 5 pF
(Fig. 12). Similar remarks apply for smaller values of Cm, where the one-fast/two-
slow approximation becomes more accurate while the two-fast/one-slow approxima-
tion does not. The two-fast/one-slow approximation becomes more accurate when c

is much slower than both V and n, but in this case only a stable steady solution or a
relaxation oscillation is produced.

8 Discussion

The canard mechanism has been used to understand mixed mode oscillations in sev-
eral neuronal models [30, 37, 40–44]. In these examples, the small oscillations cor-
respond to subthreshold oscillations that occur between the electrical impulses. We
have previously analyzed pseudo-plateau bursting in a pituitary lactotroph model us-
ing canard theory [28]. However, the model used was a simplification in which the
cytosolic free Ca2+ concentration was treated as a fixed parameter and the second
slow variable (in addition to the variable n used here) was an inactivation variable
for an A-type K+ current. In the current paper, we again focused on pseudo-plateau
bursting in a pituitary lactotroph model, but now with emphasis on a BK-type K+
current. In this analysis, we have examined the effects of changing the parameters



Journal of Mathematical Neuroscience (2011) 1:12 Page 21 of 23

Cm, gK and gBK . The parameter gBK is important for producing bursting oscilla-
tions in actual pituitary cells in which bursting is converted to spiking when BK-type
K+ channels are blocked [45].

Here, using Cm to control the separation in time scales, we identified two slow
variables (n, c) and one fast variable (V ). Using the one-fast/two-slow variable anal-
ysis we showed that pseudo-plateau bursting is a canard-induced mixed mode oscilla-
tion. There are two main requirements for the existence of these bursting oscillations
[22–24, 32]. One is that the desingularized system must have a folded node singular-
ity, i.e., the eigenvalue ratio (μ) has to be positive. The second requirement is that the
singular periodic orbit should enter the singular funnel and pass through the folded
node, i.e., δ should be positive. In short, canard-induced mixed mode oscillations
exist if both μ and δ are positive.

Using this technique we can understand several features of the burst and several
trends that occur as parameters are varied. When both μ and δ are positive, small
oscillations are produced during the active phase of a burst and their amplitude is
proportional to

√
Cm for Cm sufficiently small [23]. We obtained the bursting borders

in the (gK,gBK)-plane (Figs. 11 and 12), and predicted how the active phase duration
and the number of spikes per burst vary with changes in parameters.

The singular perturbation analysis performed here is technically more effective
and informative in the singular limit (i.e., for sufficiently small values of Cm) [22,
23]. However, it provides useful information even far from this limit, as we showed
in Figs. 11 and 12. Eventually, as the singular parameter (Cm) is increased suffi-
ciently, new dynamics will be introduced, and the insights from the singular analysis
are no longer valid.

The one-fast/two-slow decomposition used here contrasts with the two-fast/one-
slow variable analysis used previously for pseudo-plateau bursting [10–13]. Our anal-
ysis explains the origin of the small-amplitude spikes that occur during the active
phase of pseudo-plateau bursting, the transition between spiking and bursting, and
information about how the number of spikes per burst varies with parameters. While
the two-fast/one-slow variable analysis provides little information on these things,
it does provide valuable information about how one can make a transition between
plateau and pseudo-plateau bursting as one or more parameters are changed [12]. It
also provides information about complex phase resetting properties [11] and the ter-
mination of spikes in a burst [17]. Both fast/slow decompositions are approximations,
however, to a system that evolves on three time scales. Some studies [13, 17, 18] fo-
cus on the dynamics of the full system, and illustrate the complexity of the seemingly
simple set of equations. The advantage of obtaining useful information of the full sys-
tem by a two-fast/one-slow or one-fast/two-slow decomposition points to the fact that
system (2.1)-(2.3) actually evolves on three time scales: V fast, n intermediate and c

slow. This can also be seen by the magnitude of μ which is bounded from above by
μmax ≈ 0.07 (Fig. 8(a)). Hence, we are close to folded saddle-node regimes (type I
and type II) [33, 38] and a more detailed bifurcation analysis may explain the relation
between the two-fast/one-slow and one-fast/two-slow splitting. This is left for future
work.
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