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Models of bursting in single cells typically include two subsystems with
different timescales. Variations in one or more slow variables switch
the system between a silent and a spiking state. We have developed a
model for bursting in the pituitary lactotroph that does not include any
slow variable. The model incorporates fast, noninactivating calcium and
potassium currents (the spike-generating mechanism), as well as the fast,
inactivating A-type potassium current (IA). IA is active only briefly at the
beginning of a burst, but this brief impulse of IA acts as a burst trigger,
injecting the spike trajectory close to an unstable steady state. The spi-
raling of the trajectory away from the steady state produces a period of
low-amplitude spiking typical of lactotrophs. Increasing the conductance
of A-type potassium current brings the trajectory closer to the unstable
steady state, increasing burst duration. However, this also increases in-
terburst interval, and for larger conductance values, all activity stops.
To our knowledge, this is the first example of a physiologically based,
single-compartmental model of bursting with no slow subsystem.

1 Introduction

Bursting, a common pattern of electrical activity in excitable cells, is char-
acterized by brief periods of fast spiking (the active phase) and quiescent
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periods (the silent phase). The bursting pattern is usually associated with a
higher level of hormone or neurotransmitter secretion (Cazalis, Dayanithi,
& Nordmann, 1985; Nunemaker, Straume, DeFazio, & Moenter, 2003;
Stojilkovic, Zemkova, & Van Goor, 2005) when compared with continous
spiking patterns. There is evidence that bursting may have important roles
in signaling in neurons (Gabbiani, Metzner, Wessel, & Koch, 1996; Lisman,
1997).

Numerous mathematical models of bursting in neural and endocrine
cells have been developed (Coombes & Bressloff, 2005). Typically the model
can be split into fast and slow subsystems, and bursting oscillations are
driven by slow activity-dependent oscillations in the slow variables. The
fast subsystem is usually bistable, with a stable steady state coexisting with
a stable periodic (spiking) solution. One or more slow variables then switch
the system between these attractors (Rinzel, 1985, 1987). The duration of
the burst depends on the dynamics of the slow variable(s).

In a recent mathematical model of the pituitary lactotroph, we demon-
strated that adding a fast A-type K+ current can increase secretion (Tabak,
Toporikova, Freeman, & Bertram, 2007). This is in spite of the fact that IA

is a hyperpolarizing current and would typically be expected to reduce
secretion by hyperpolarizing the membrane. The stimulatory action occurs
by converting the spiking pattern to bursting. Surprisingly, we found cases
of bursting in which bistability was not present in the fast subsystem. Also,
bursting persisted when the only slow variable in the model, the intracel-
lular Ca2+ concentration, was held fixed. Figure 1 illustrates the difference
between this type of bursting and standard bursting based on bistability and
a slow variable. In both panels, slow oscillations of Ca2+ occur in parallel
with the slow voltage oscillations. Nevertheless, Ca2+ plays a different role
in each case. In Figure 1A , bursting is terminated if intracellular Ca2+ is held
constant. This is classic bursting, where the slow changes in Ca2+ are driving
the bursts. In contrast, for the case shown in Figure 1B, clamping Ca2+ does
not stop the bursts. This indicates that Ca2+ is not driving the bursts but sim-
ply follows them. The goal of this work is to analyze the latter type of burst-
ing and contrast its mechanism with the standard bursting mechanisms.

To facilitate the analysis, we removed nonessential elements from the
lactotroph model. The slow variable in the original model (Ca2+ concen-
tration) is removed, and the original Ca2+-activated K+ current is treated
as a constant conductance current. This results in a simplified model with
only three variables, all of which vary on a fast timescale relative to the
burst period. We show that bursting can be produced with this model in
the absence of a slow variable and analyze the dynamic mechanism for this
novel form of bursting.

2 Model

The model is a simplification of a recent model for the electrical activ-
ity of the pituitary lactotroph (Tabak et al., 2007). The simplified model



438 N. Toporikova, J. Tabak, M. Freeman, and R. Bertram

Figure 1: Bursting in a lactotroph model with different A-type current con-
ductances (Tabak et al., 2007). (A) For gA = 25 nS, bursting is terminated if
intracellular Ca2+ is held constant. The bursting mechanism relies on slow vari-
ations of Ca2+. (B) For gA = 8 nS, clamping Ca2+ does not stop the bursts. This
indicates an intrinsic bursting mechanism independent of Ca2+.

incorporates three voltage-gated currents: a Ca2+ current (ICa ), a delayed
rectifier K+ current (IDR), and a fast and transient A-type K+current (IA).
There is also a non-voltage-gated leak current IL . The dynamics of the three
variables V (membrane potential), n (activation of IDR), and e (inactivation
of IA) are described by:

C
dV
dt

= − (ICa + IDR + IA + IL ) (2.1)

τn
dn
dt

= n∞(V) − n (2.2)

τe
de
dt

= e∞(V) − e. (2.3)

The ionic currents are given by

ICa = gCa m∞(V − VCa ) (2.4)

IDR = gDRn (V − VK ) (2.5)

IA = gAa∞e (V − VK ) (2.6)

IL = gL (V − VK ), (2.7)
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Table 1: Parameter Values.

Parameter Value Definition

C 10 pF Membrane capacitance
gCa 2 nS Maximal conductance of Ca2+ channels
VCa 50 mV Reversal potential for Ca2+
vm −20 mV Voltage value at midpoint of m∞
sm 12 mV Slope parameter of m∞
gDR 4.4 nS Maximal conductance of DR K+ channels
VK −75 mV Reversal potential for K+
vn −5 mV Voltage value at midpoint of n∞
sn 10 mV Slope parameter of n∞
τn 43 ms Time constant of n
gA 0–20 nS Maximal conductance of A channels
va −20 mV Voltage value at midpoint of a∞
sa 10 mV Slope parameter of a∞
ve −60 mV Voltage value at midpoint of e∞
se 5 mV Slope parameter of e∞
gL 0.3 nS Maximal conductance of leak current
τe 20 ms Time constant of e

and the steady-state activation functions have the form

x∞ = 1

1 + exp
(

Vx−V
sx

) , (2.8)

where x represents an activation variable (m, n, and a ). The inactivation
steady-state function is

e∞ = 1

1 + exp
(

V−Ve
se

) . (2.9)

When IA is not present (gA = 0), the model has the form of the Morris-
Lecar model (Morris & Lecar, 1981).

Parameter values are given in Table 1. Values of the kinetic parameters
for ICa were obtained from Lledo, Legendre, Israel, and Vincent (1990),
and the values for IDR and IA are based on Herrington and Lingle (1994).
Equations were integrated, and bifurcation diagrams were constructed,
using the software package XPPAUT (Ermentrout, 2002). The fourth-order
Runge-Kutta integration method was used, with a time step of 0.5 ms.
Reducing the time step had no effect on the simulations. The code for this
model is freely available online at www.math.fsu.edu/bertram/software/
pituitary.
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Figure 2: IA converts spiking to bursting. (A) For gA = 0 nS, the model cell
is spiking. (B) Increasing the A-type K+ channel conductance to gA = 13 nS
converts spiking to bursting.

3 Results

3.1 IA Converts Spiking into Bursting. In our recent model of the
pituitary lactotroph we found that adding a small amount of A-type K+

current converts the model cell from a spiker to a burster (Tabak et al.,
2007). Figure 2 illustrates the effect of increasing gA from 0 to 13 nS in
the reduced lactotroph model. For gA = 0 (see Figure 2A), the model cell
is spiking. When gA is increased to 13 nS (see Figure 2B), the spiking is
converted into bursting. The duration of the burst, approximately 600 ms,
is much larger than the time constants of all model variables (τ n = 43 ms,
τe = 20 ms and the membrane time constant is 33 ms).

Rush and Rinzel (1995) also obtained a switch to bursting by adding an
A current to a spiking model. In their case, though, the inactivation vari-
able of the A current acted as a slow variable, switching the fast subsystem
between a high (oscillatory) state and a low, stable state. To demonstrate
that this is not the case in our model, we plot in Figure 3 the bifurcation
diagram of the V-n subsystem with e treated as a parameter. For e = 0, the
system has a single unstable steady state surrounded by a stable limit cy-
cle. As e is increased, the steady state becomes stable through a subcritical
Hopf bifurcation (HB). The periodic branch born at the Hopf bifurcation
emerges as unstable but gains stability at a saddle node of periodics (SNP)
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Figure 3: (A) Bifurcation diagram of the V-n subsystem with inactivation vari-
able e treated as a parameter (gA = 13 nS). Thick lines represent stable solutions,
and thin lines represent unstable ones. The maximum and minimum of the pe-
riodic solution are shown as upper and lower periodic branches, respectively.
The projection of the burst trajectory of the full system is superimposed, and
does not follow the bifurcation diagram of the V-n subsystem. (B) The same for
the smaller range of e. Most of the active phase of the burst occurs near e = 0.
HB: Hopf bifurcation. SNP: saddle node periodic bifurcation.

bifurcation. Between the HB and SNP bifurcations is a region of bistability,
with coexisting stable steady state and periodic solutions. However, the
burst trajectory (superimposed) does not utilize this bistability region, and
indeed does not follow the bifurcation diagram of the V-n subsystem. The
spikes of the active phase occur for low values of e, and indeed it is clear
from Figure 3B that e is nearly zero during the most of the active phase;
therefore, variations of e do not terminate the burst. Together, these obser-
vations indicate that the bursting shown in Figure 2B cannot be described
using fast-slow analysis with e as the slow variable.

3.2 IA Acts as a Burst Trigger. To investigate the mechanism of burst
generation, we plot the two potassium currents of the model, IDR and
IA, during one full burst cycle. IDR reflects the burst trajectory. IA is near
zero during most of the active phase, peaking at the onset of the burst
(see Figure 4). Is the entire IA impulse necessary for bursting? To address
this question, we blocked IA at different time points during the burst. In
Figure 5A we blocked IA (set gA = 0) after 80 ms, which is midway along
the downstroke of the impulse. As a result, the burst is totally eliminated,
and only a single large-amplitude spike is produced. Note also that when
IA is blocked, subsequent bursts do not occur.
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Figure 4: Two K+ currents during one full burst cycle (gA = 13 nS). There is
an impulse in IA at the beginning of the burst, and IA is near zero during the
remainder of the active phase.

Thus, a nearly complete IA impulse is necessary to induce bursting, but
is it sufficient? If we block IA only 7 ms later, at 87 ms (see Figure 5B),
then the burst appears, but it is short, with only 2 spikes per burst. If IA is
blocked at 90 ms (see Figure 5C), when the IA impulse is almost complete,
the burst is complete. That is, the burst has the same length as the control
burst in Figure 4. Thus, the IA impulse alone is sufficient to induce bursting;
IA can be set to zero throughout the remainder of the burst, and the burst
will proceed. Therefore, the IA impulse acts as a trigger for bursting.

How does the IA impulse trigger the burst? To address this question, we
view the burst trajectory in the V-n-IA space. Figures 6A to 6C correspond
to the IA current profiles of Figures 5A to 5C. Figure 6D shows the trajectory
without any block of IA (current profile in Figure 4).

When gA = 0 the system spikes, and the spiking trajectory is in the V-
n plane, surrounding an unstable steady state. This spiking trajectory is
shown in gray in Figure 6D. When gA = 13 nS (see Figure 6A), the trajectory
leaves the V-n plane during the IA impulse. Blocking IA at 80 ms returns
the trajectory to the V-n plane, where it approaches the spiking limit cycle
around the unstable steady state (open circle).

When IA is blocked later, at 87 ms, the trajectory reenters the V-n
plane closer to the unstable steady state and spirals around it twice be-
fore approaching the spiking limit cycle (see Figure 6B). Each spiral is a
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Figure 5: The effect of blocking IA at different time points. (A) IA blocked at
80 ms eliminates the burst. (B) IA blocked at 87 ms reduces the burst to two
spikes. (C) IA blocked at 90 ms results in a complete burst. Before the block,
gA = 13 nS.

low-amplitude electrical impulse during the active phase of the burst (see
Figure 5B). If IA is blocked later, at 90 ms, the trajectory reenters even closer
to the unstable steady state (see Figure 6C). As a result, more spirals occur
before the trajectory moves out toward the spiking limit cycle. This pro-
duces a burst with more low-amplitude spikes (see Figure 5C). When IA

is not blocked, the trajectory enters the V-n plane near the unstable steady
state at the end of the IA impulse (see Figure 6D). The remainder of the
burst takes place in the V-n plane, so IA plays no role after the impulse.

3.3 Increase in IA Increases Burst Duration. Not only does the IA im-
pulse trigger the burst, but its magnitude determines the burst length. In
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Figure 6: The effect of IA block shown in the V-n-IA space. (A) IA blocked at
80 ms. The open circle in the V-n plane represents the unstable steady state.
(B) IA blocked at 87 ms. (C) IA blocked at 90 ms. (D) Trajectory with unblocked
IA (gA = 13 nS). The gray curve represents the continuous spiking limit cycle
(gA = 0).

Figure 7A, gA is increased from 0 to 23 nS in steps. When gA is increased
to 3 nS, the spiking pattern switches to a two-spike burst. Another spike is
added when gA is increased to 7 nS. Increasing gA to13 nS adds a fourth
spike to the burst, and so on. There are also more complex spiking patterns
between the regular n-spike bursts. We found chaotic patterns between the
two- and three-spike bursts, three- and four-spike bursts, as well as between
the four- and five-spike patterns (see Figure 7C). Further increase of gA ,
larger than 20.85 nS, stops all activity.

Figure 7B shows the bifurcation diagram of the V-e subsystem with n
treated as a parameter for different values of gA. The n-nullcline is also
shown. The lower and upper branches of the z-shaped bifurcation diagram
consist of stable equilibria of the V-e subsystem, while equilibria on the
middle branch are unstable. For lower values of gA (gA = 0 and gA = 7
nS), there is a single depolarized unstable steady state of the full V-e-n
system. Increasing gA stretches the bifurcation diagram so that the lower
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Figure 7: (A) Increasing gA increases the number of spikes per burst until ac-
tivity stops. (B) Bifurcation diagram for the V-e subsystem with n treated as a
parameter. gA = 0 (dotted line), gA = 7 nS (dashed line), and gA = 23 nS (solid
line). The n-nullcline is also shown. Open circles represent unstable steady
states, and the closed circle denotes a stable steady state. (C) Number of spikes
per burst as function of gA. The chaotic bursting regions are between the dashed
lines.

knee moves to the left. When gA = 23 nS, the lower knee intersects the
n-nullcline, and two new steady states appear, one of which is stable. The
trajectory is now attracted to this lower stable steady state, and bursting
stops.

To explain how the burst increases in length with an increase in gA,
we project the burst trajectory onto the V-n plane. Figure 8A shows the
superimposed trajectories with gA = 0 and gA = 3 nS. The dashed curve is
the spiking trajectory when gA = 0. The unstable steady state (open circle)
is the intersection of the V and n nullclines (dot-dashed curves). When gA

is increased to 3 nS (solid curve), the rapidly activating hyperpolarizing
current reduces the rise in voltage during the upstroke of the spike (arrow),
so the trajectory comes closer to the unstable spiral. Movement around
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Figure 8: Mechanism by which increasing the IA impulse magnitude increases
the burst duration. (A) Trajectories projected onto the V-n plane with gA = 0 nS
(dashed line) and gA = 3 nS (solid line). The dot-dashed lines are the V and n
nullclines for gA = 0. The arrow indicates the beginning of the spike upstroke,
and the open circle is an unstable steady state. (B) The V-n phase plane for
gA = 3 nS (dashed line) and gA = 7 nS (solid line). The increase in gA moves the
trajectory closer to the unstable steady state, producing more spikes per burst.

this spiral produces a burst with two spikes. For larger IA (gA = 7 nS),
the trajectory has a closer approach to the unstable spiral (see Figure 8B),
making three turns around it before entering the silent phase of the burst.
Thus, a larger IA moves the trajectory closer to the unstable spiral, creating
a longer active phase of the burst. Note that the number of revolutions
around the unstable spiral is highly sensitive to the way that the trajectory
approaches the spiral at the beginning of the burst. Thus, chaotic spiking
patterns can be produced, as mentioned above.
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Figure 9: Bending of the trajectory in V-n space for τe = 80 ms. Points a–e corre-
spond to values of e of 0.5, 0.2, 0.1, 0.05, and 0.02. For each of these points, the cor-
responding V-nullcline of the V-n subsystem is represented (dashed z-shaped
curve), as is the n-nullcline (dot-dashed). As V increases, e decreases, moving
the V-nullcline upward and to the right. The intersections of the n-nullcline
and the V-nullclines corresponding to points a–e are steady states of the V-n
subsystem, not of the V-n-e system. Only the intersection for e = 0 defines a
steady state of the full system. Inset: Time course of membrane potential during
one “burst.” Most of the burst period is spent in the active phase where e ≈ 0.

3.4 How Is the Trajectory Driven Toward an Unstable Steady
State?. The previous results show that by turning on at the beginning of
a burst, IA pushes the trajectory toward the unstable steady state of the
V-n subsystem. For larger IA, the trajectory passes closer to that unstable
steady state. How can IA bring the trajectory so close to a repellent state?
As shown in Figure 3, the steady state of the V-n subsystem becomes stable
when e increases above its value at the Hopf bifurcation (∼0.02). At the
beginning of a burst, before IA is fully inactivated, this stable steady state
can behave as an attractor and thus bend the trajectory as shown above,
before becoming unstable as e reaches 0.

This is shown in Figure 9. Although e is not a slow variable, we have
slowed it (τe increased fourfold to 80 ms) to better demonstrate the effect,
as Drover, Rubin, Su, & Ermentrout (2004) did. The figure shows the tra-
jectory of the system projected in the V-n plane. Five points (a–e) along
the trajectory at the onset of a burst are represented. They correspond to
values of e of 0.5, 0.2, 0.1, 0.05, and 0.02. For each of these points, the cor-
responding V-nullcline of the V-n subsystem is shown (z-shaped, dashed).
The intersection of each V-nullcline and the n-nullcline (dot-dashed curve)
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is a stable steady state of the V-n subsystem for the corresponding e and
a pseudo steady state for the full system. Thus, if e were frozen when the
trajectory is at point a, it would be attracted to the stable steady state just
above a. However e decreases, so the z-shaped curve moves up and to
the right, and so does the attracting steady state. The trajectory thus never
reaches any of the pseudo steady states, but it is bent while tracking these
moving targets. When e is near zero, the steady state becomes unstable,
but only weakly so. Thus, the trajectory spirals away, but slowly. A similar
situation occurs when e is not slowed, but then the z-shaped curves move
faster, so the trajectory is less affected and does not come as close to the
unstable steady state as IA fully inactivates.

Figure 9 illustrates the fundamental difference between standard burst-
ing (i.e., square wave bursting) and the bursting presented here. In standard
bursting, a slow variable slowly takes the system to transition points where
activity abruptly switches between high (oscillatory) and low (stationary)
states. In our model, a fast variable quickly moves the only steady state
of the V-n subsystem between a high, unstable position to a series of low,
stable positions, thus creating the different phases of the burst.

Finally, this highlights the two characteristics of IA needed to produce
this type of bursting. First, IA needs to activate quickly, so that the unstable
steady state of the V-n subsystem can become attracting. Second, it needs to
inactivate; otherwise, the system would remain indefinitely in that steady
state.

4 Discussion

We have shown a new mechanism for bursting in a simplified excitable
cell model. In classical bursters, the system can be split into fast and slow
subsystems, and bursting oscillations are driven by slow activity-dependent
oscillations in the slow variables. The fast subsystem is usually bistable,
with a stable steady state coexisting with a stable periodic (spiking) solution.
One or more slow variables then switch the system between these attractors.
Unlike classical bursting, the bursting that we describe is produced without
a slow variable. An A-type K+ current converts the spiking pattern to
bursting by injecting the trajectory to a location near an unstable spiral.
Motion around the spiral creates low-amplitude spikes riding on a voltage
plateau, similar to what is observed in pituitary lactotrophs (Oxford &
Tse, 1993; Van Goor, Zivadinovic, Martinez-Fuentes, & Stojilkovic, 2001),
somatotrophs (Van Goor, Li, & Stojilkovic, 2001), corticotrophs (Kuryshev,
Childs, & Ritchie, 1996; Kuryshev, Haak, Childs, & Ritchie, 1997), and clonal
pituitary cells (Adler et al., 1983). IA also plays its traditional role of slowing
the next occurrence of an impulse, contributing to the silent phase duration
between the bursts.

The A-type potassium current is widely known to delay spiking or re-
duce firing frequency (Connor, Walter, & McKown, 1977). It has been shown
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that changes in this current’s conductance and dynamic properties can re-
sult in bursting (Rush & Rinzel, 1995). However, in the Rush-Rinzel model,
the A-current inactivation acts as a slow variable to terminate the burst. This
is a classic fast-slow system, with the IA inactivation variable accumulating
during the burst. The hyperpolarization following each spike decreases the
inactivation of IA until the current becomes large enough to terminate the
burst. Thus, increasing gA decreases the burst duration. In our model, IA

does not terminate the burst since it quickly inactivates and no deinacti-
vation occurs during the burst since the model cell stays depolarized until
the end of the burst. Also, in our model, increasing gA increases the burst
duration, although if gA is too large, the bursting is terminated altogether,
and the model cell becomes silent. Thus, the transition sequence from tonic
spiking to bursting to quiescence as gA is increased in our model differs
from the sequence in the square-wave burster of Rush and Rinzel.

Another example of bursting driven by a slowly inactivated K+ current is
a model of pyramidal cells in the electrosensory lateral lobe of weakly elec-
tric fish (Doiron, Laing, Longtin, & Maler, 2002). This is a two-compartment
model, with impulse propagation between the soma and an active den-
drite. Like the Rush and Rinzel model, this “ghostbuster” model has two
timescales. The single slow variable is the K+ current inactivation in the
dendrite, which accumulates during the burst. The soma begins to spike,
and the spike is transmitted to the dendrite and back again to the soma. As
this Ping-Pong effect continues, the K+ current in the dendrite inactivates.
This speeds up the spiking, so that eventually the soma spikes so fast that
the dendrite cannot keep up. The lack of a dendritic spike then terminates
the burst. Thus, in contrast to the model of Rush and Rinzel, it is the accu-
mulation of inactivation, not deinactivation, that terminates the bursting.
In our model, however, there is no slowly accumulating process.

The A-type K+ current has been used in a wide variety of excitable
cell models (Connor, Walter, & McKown, 1977; Gerber & Jakobsson, 1993;
Rybak, Paton, & Schwaber, 1997; Wustenberg et al., 2004). However, there
are no examples of IA inducing bursting of the nature described here. Why
does this happen in our model? The physiological set of parameters used in
the lactotroph model puts the unstable steady state at a depolarized value.
This is just below the upper branch of the z-shaped bifurcation diagram (see
Figure 7B). Had the intersection been on the upper branch, the steady state
would have been stable. Thus, the unstable steady state is only weakly
repelling, so that the trajectory spirals several times before leaving the
neighborhood of the steady state. If the steady state had occurred lower
on the bifurcation diagram (e.g., by shifting IDR activation to lower V), the
steady state would be more repelling, and it would require more IA current
to bend the trajectory toward the steady state. Bursting could be recovered
by decreasing the time constant of IDR activation, which would make the
steady state less repelling. Also, increasing the efficiency of IA by slowing
its inactivation variable or increasing its conductance would help bring the
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trajectory toward the unstable steady state. However, note that increasing
gA could create a stable hyperpolarized steady state (see Figure 7B) of the
full V-n-e system, so the steepness of the activation function of IA would
need to be increased. Thus, bursting is robust to parameter changes, but
others may not have observed this type of IA-induced bursting because of
the location of the unstable steady state or the time-dependent properties of
the IA and IDR currents used in their models. To our knowledge, this is the
first example of bursting without a slow variable in a single-compartment,
physiologically based cell model.
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