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a b s t r a c t

In this article, we report the numerical discovery of multi-mode attractors for reaction–diffusion
systems in which the kinetics feature slow/fast dynamics. Multi-mode attractors (MMAs) are a class
of attractors in which different regions of the spatial domain exhibit different modes of (temporal)
oscillation. These modes include spiking modes, bursting modes of many different types with s small-
amplitude oscillations at the end of each burst event, as well as alternating modes in which various
sequences of spiking and bursting are exhibited in alternation. We present the numerical discovery of
MMAs in the context of a spatially-extended pituitary cell model with diffusive coupling and a spatially
inhomogeneous applied current. We demonstrate that the MMAs are robust, occurring on large open
parameter sets and for a variety of biophysically-relevant spatially-inhomogeneous currents, including
Gaussian and mollified step profiles. Also, we provide evidence that the MMAs exhibit new types of
maximal spatio-temporal canards. These lie in the transition intervals between adjacent regions in
which the MMA exhibits distinct modes of oscillation, and they are necessary for the smooth and
gradual transitions between bursting and spiking, as well as between bursting modes with different
numbers of small oscillations. Furthermore, we study how the structures of the MMAs change as the
amplitude of the diffusivity decreases and the PDE model limits on a family of uncoupled ODEs, one
for each point in the domain. Also, we show that the MMAs, which are spatially non-uniform, can
coexist in the reaction–diffusion system with other types of attractors which are spatially-uniform.
Finally, we report that the MMAs discovered here are also present in numerical simulations of other
reaction–diffusion systems, especially those that arise in neural and cardiac models.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

We report the numerical discovery of multi-mode attractors
MMAs) of spatially extended systems in which the kinetics fea-
ure a slow/fast structure. The MMAs are a class of attractors of
eaction–diffusion systems in which different parts of the spatial
omain exhibit different modes of oscillation, and they may be
eriodic or quasi-periodic in time. The spatial transition intervals
etween the different modes of activity exhibit spatio-temporal
anard dynamics.
A representative MMA, discovered in a spatially extended

odel for the electrical activity in pituitary lactotrophs/somato-
rophs with spatially inhomogeneous applied current and dif-
usive coupling, is shown in Fig. 1. The MMA consists of three
odes, each of which occurs in a different region of the spatial
omain: one in which the attractor is in the spiking mode, one
n which the attractor is in a pseudo-plateau bursting mode with
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0167-2789/© 2020 Elsevier B.V. All rights reserved.
one small oscillation per burst event, and a region in which the
attractor is in an alternator mode, alternatively exhibiting spikes
and pseudo-plateau bursts. Since the mode of oscillation in this
attractor differs across the three regions, we refer to this as a
3-mode multi-mode attractor.

1.1. Spatially extended pituitary cell model

In an in vivo setting, somatotrophs and, likely, lactotrophs
(which secrete growth hormone and prolactin, respectively) form
networks of coupled cells where the coupling is through gap
junctions [1]. This provides nearest-neighbour diffusive electrical
coupling between the cells that, in the continuum limit, is de-
scribed by the diffusion operator. In this limit, and for a linear
network of coupled cells, the partial differential equations (PDEs)
have the form

Cm
∂V
∂t

= Iapp(x) − Iion + D
∂2V
∂x2

,

ds
=

s∞(V ) − s
, s = n, e,

(1.1)
dt τs
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Fig. 1. A representative 3-mode MMA, which is period-2 in time, in a spatially extended model for the electrical activity in pituitary somatotrophs/lactotrophs with
patially heterogeneous applied current and diffusive coupling. (a) Voltage dynamics of the attractor. In the inner region, the attractor exhibits 11 pseudo-plateau
ursts (olive curve; x = 2). In the outer region, the attractor exhibits 10 spiking (purple curve; x = 40). Between the spiking and bursting regions, there is a region
n which the temporal dynamics alternate between spiking and bursting (black curve; x = 22). The voltage heat map has been projected into the (x, t) plane; active
hases are indicated by the red bands and silent phases by the blue bands. (b) Time series for representative x values in each of the spiking (top), alternator (middle),
nd bursting (bottom) regions.
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here V (x, t) is the membrane potential at position x at time
, and s(x, t) represents the two (slow) gating variables for the
onic currents, Iion, intrinsic to the cells (see Appendix A.1). The
pplied current, Iapp(x), is spatially dependent, reflecting the fact
hat different cells in the network are exposed to different levels
f neurohormones that serve to activate or inhibit the cells’
lectrical activity. For most of this article (except in Section 8),
e set Iapp(x) to be a Gaussian

app(x) = Ibase + (Imax − Ibase) exp
(

−
x2

4σ

)
, (1.2)

where Ibase is the baseline applied current, Imax is the maximal
pplied current, and σ is the half-width. This is partially moti-
ated by the fact that experiments show portions of the brain
re inhomogeneous media, with localized synaptic currents. For
xample, auditory cortex EEG data in certain primates exhibits
ocalized currents (see Fig. 2 of [2]). In these experiments, a multi-
lectrode array was placed to span -and sample from- all layers
f the auditory cortex. It was reported that the locally generated
ntracortical synaptic currents exhibited localized maxima at cer-
ain spatial locations, including in the supragranular layers and
he granular layer of the cortex. While the exact functional form
f these synaptic currents is unknown, as yet, a Gaussian profile
rovides a good first qualitative model for these tapered peaks.
The kinetics of the reaction–diffusion system (1.1) are de-

cribed by the one-parameter family of x-dependent ordinary dif-
erential equations (ODEs),

Cm
dV
dt

= Iapp(x) − Iion,

ds
dt

=
s∞(V ) − n

τs
, s = n, e,

(1.3)

and are based on a minimal model for the electrical activity in
pituitary cells [3]. The family of x-dependent ODEs is obtained
from (1.1) by setting D = 0 (so that all cells are decoupled), and
s a useful auxiliary system for studying the dynamics of the PDE
1.1). A key feature of the kinetics is that it evolves over multiple
imescales, with fast voltage dynamics and slow gating dynamics.
eometric singular perturbation techniques [4–6] have been used
o leverage the slow/fast structure of such systems and hence
ncover the origins and properties of the pseudo-plateau bursting
hat evokes hormone release. In the setting of pituitary lac-
otrophs, the pseudo-plateau bursting is a canard-induced mixed-
ode oscillation [7,8]. The small-amplitude oscillations (SAOs) of
1s attractor arise from local canard dynamics around a folded

node singularity [9–11], and the large-amplitude oscillations are
of relaxation type. There is a rich and robust family of (1s)k(1s+1)ℓ
alternator states between the 1s and 1s+1 states, and these are
shown over a wide range of (gK , gA) parameter space in Figures
2, 3, and 5 of [12]. More specifically, the folded node gives rise to
a family of maximal canards, γk for k = 0, 1, . . . , smax, each pair of
which delimits subsets of the phase space with different numbers
of SAOs. The s SAOs of the 1s attractor occur because the orbit is
periodically re-injected into the sector of phase space enclosed
by the (s − 1) − th and s − th maximal canards. Consequently,
bifurcations of the pseudo-plateau bursts are often related to
bifurcations of the maximal canards (see Appendix A.2).

1.2. Main contributions

In reporting on the discovery of the MMAs in the context of
the continuum pituitary somatatroph/lactotroph model (1.1) with
spatially inhomogeneous applied current and diffusive coupling,
we present the following main contributions. First, we establish
the existence of a base case 3-mode MMA which exhibits three
regions, each with its own distinct mode of oscillation, including
a central region in which the cells oscillate in a 11 bursting mode,

1 0
a middle region in which the cells exhibit a 1 1 alternator mode,



T. Vo, R. Bertram and T.J. Kaper / Physica D 411 (2020) 132544 3
and an outer region in which the cells are in the 10 spiking mode.
This base case 3-mode MMA is created by a Gaussian applied
current in (1.1), which models a spatially-localized current. Cells
in the centre of the line receive a larger applied current than cells
toward the end of the line, and as a result cells in the central
region exhibit bursting, whereas cells toward the outer end of the
line are in the spiking mode. We show that the key properties
of the Gaussian applied current, including the base current level,
the maximum current amplitude, and the half-width, determine
which cells exhibit which mode. We also use various diagnostics,
including the action potential duration, to study the dynamics and
geometry of this base case 3-mode MMA.

Next, in the context of this base case 3-mode MMA, we iden-
tify the new maximal spatio-temporal canards that exist within
MMAs in the transition intervals between regions of distinct
modes. In particular, we show that the time traces at key spatial
locations in the transition intervals between adjacent modes of
the MMAs exhibit features that are highly similar to the maximal
canards known to exist in the single-cell ODE model [12]. These
spatio-temporal canards must exist in the transition intervals
between adjacent regions with distinct modes in order for the
number of SAOs to transition continuously in space along the
cell line. In particular, we find that maximal spatio-temporal
canards exist in time traces taken at key locations in the transition
intervals between adjacent regions with a 11 bursting mode and
a 1110 alternator mode, as well as in the intervals between
adjacent alternator modes and the 10 spiking mode. For all of
these different types of MMAs, we find that the maximal spatio-
temporal canards mediate the loss (or gain) of SAOs in the active
phase.

Then, we illustrate the richness of the n-mode MMAs of (1.1)
by providing examples with n = 4 and 5, as well as by describing
a general method for generating n-mode MMAs of different types.
We show that there are n-mode MMAs which exhibit several
different types of (11)k(10)ℓ alternator modes for positive integers
k and ℓ, in addition to the basic 11 bursting and 10 spiking
modes. Also, we show that there are n-mode MMAs in which
the modes consist of 1s bursting, with s SAOs at the end of each
burst, for various positive integers s, providing a rich tapestry
of patterns. For these MMAs in which adjacent regions have
1s+1 and 1s bursting modes, maximal spatio-temporal canards
also exist in the time traces at key locations x in the transition
intervals, and also here they mediate the loss (or gain) of SAOs.
Throughout this study of general n-mode MMAs, we show that for
understanding how the distinct modes of oscillation are created
in different regions along the line of cells, it is exceptionally useful
to have the detailed available knowledge from the single-cell
models [8,12] about the distinct 10 spiking attractors, 1s bursting
attractors and (1s+1)k(1s)ℓ alternating attractors, as well as about
the large regimes in parameter space for which they exist, and
their bifurcations.

Having established the existence and fundamental properties
of these different types of general n-mode MMAs, we turn to a
study of their robustness in parameter space, establishing their
ubiquity as attractors of the PDE (1.1). This is done primarily in
the context of the base case 3-mode MMA. We show that this
MMA (and other MMAs) exist in large open sets of parameter
space and that they are robust with respect to the main control
parameters of the spatially-localized Gaussian currents. More-
over, we demonstrate that MMAs can be generated by other types
of spatially-dependent applied currents, not just the spatially-
localized Gaussian currents used throughout most of this study.
Specifically, MMAs are also generated by biophysically-relevant
step function type currents in which half the cell line receives
one level of applied current and the other half receives a different

level of applied current, mollified bump function currents, and
inverse bump function currents, as well as by spatially-dependent
maximal conductivities. For each of these, detailed knowledge
available about parameter dependence in the single-cell model
is useful for understanding how the various MMAs are generated
by these different types of spatially-dependent currents.

Furthermore, for the PDE (1.1), we carry out a study of the
effect of the magnitude of the spatial coupling. This includes
a comparison, over a range of D values, between the geome-
try and dynamical structures of the n-mode MMAs of the PDE
(1.1) and the structures and invariant manifolds of the family of
x-dependent ODEs (1.3). Also, it includes some analysis of how
the dynamics of the MMAs change in the limit in which D → 0,
in which the PDE (1.1) limits on the family of x-dependent ODEs
(1.3).

Finally, we demonstrate that (1.1) is bistable, showing that
there is also a single-mode 11 bursting attractor of the PDE that
coexists with the various n-mode MMAs of (1.1) reported on
here in each of the respective regimes of parameter space over
which these n-mode MMAs are found. Moreover, we briefly show
that MMAs also exist in three other reaction–diffusion models,
including in a diffusive forced van der Pol PDE, in a biophysically
detailed rabbit heart tissue model that generates early after de-
polarizations, and in a simplified model for the electrical activity
in cardiomyocytes.

1.3. The new MMAs and larger context of spatio-temporal canards

In this section, we describe how the new phenomenon of
MMAs for reaction–diffusion PDEs fits into the larger context of
the nascent literature on spatio-temporal canards.

Some of the earliest instances of canards in PDEs were iden-
tified as travelling wave solutions of the PDE, and they were
constructed as homoclinic and heteroclinic connections with ca-
nard segments in the travelling wave ODE. Hence, these first
occurrences follow directly from classical theory of canards for
ODEs. Such constructions can be found, for instance, in a spruce
budworm reaction–diffusion population model [13]; in a scalar
viscous conservation law with nonlinear source (i.e., advection–
reaction–diffusion equation) as often occurs in nozzle flow prob-
lems [14]; and in combustion waves for an autocatalytic
reaction where canard solutions of the underlying ODE separate
the slow combustion regime from the explosive one [15]. Jump
and entropy conditions for shocks in coupled advection–reaction–
diffusion equations were formulated in terms of canards [16]
in the corresponding travelling wave ODE. These results were
applied to shock-fronted travelling waves in models of wound
healing angiogenesis [17] and (melanoma) tumour invasion [18].
Moreover, shock solutions that arise in the steady spherically
symmetric outflow from the surface of a star were identified as
canard trajectories in the ODE for the density as a function of the
radial variable, allowing for an explanation of the location of the
shock and its sensitivity to parameters [19].

More recently, non-travelling wave canard-type phenomena
have been investigated in reaction–diffusion systems. For in-
stance, diffusion-induced instabilities of small-amplitude phase
waves leading to the initiation of large-amplitude trigger waves
were studied in a one-dimensional (1D), two-component model
of the Belousov–Zhabotinsky reaction [20]. There, it was demon-
strated that the trigger waves could be initiated at any point
in the excitable medium provided the kinetics were sufficiently
close to a canard point. Rigorous studies of spatio-temporal bi-
furcation delays associated with canard solutions in singularly
perturbed parabolic PDEs have also been carried out for several
configurations. For example, the subcases of transcritical and
pitchfork bifurcations of the fast subsystem kinetics were treated
in [21], and the case of turning points in the linear part of the
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kinetics was studied in [22]. For the reaction–diffusion equations
with turning points, sub- and super-solutions were constructed
analytically to prove that there are canard solutions of the PDE
which stay near repelling states for long times. Moreover, it was
established that for sufficiently small diffusivities, the duration of
the canard segments can be spatially inhomogeneous.

The next major breakthrough in the spatio-temporal canard
phenomenon occurred in a deterministic Amari-type neural field
model [23,24]. In this system, coherent structures in which the
spatial patterns, in their entireties, display temporal canard
behaviour were identified and described for generic choices of
firing rates and synaptic kernels. Moreover, the existence of
complex spatiotemporal patterns containing canard segments
was reported, and a theory for the classification of such spatio-
temporal canards was derived from interfacial dynamics. Both
canards of folded node and folded saddle types were demon-
strated, paving the way for a systematic study of spatio-temporal
MMOs.

Further progress in spatio-temporal canards came in the con-
text of transitions from convective to absolute instabilities in
advection–reaction–diffusion systems of the type encountered in
shear flow problems [25]. It was demonstrated that for Dirich-
let boundary conditions, the system evolves to a trivial steady
state. However, when the inlet boundary condition is taken to
be a non-zero constant, η, the steady state to which the sys-
tem evolves exhibits extremely sensitive dependence on η. This
parameter sensitivity was explained by canard segments of the
spatial boundary value problem for the steady states of the PDE.

The MMAs presented in this article contain completely new
types of spatio-temporal canards. In particular, we show that
the time traces at certain values of x, located in the transition
intervals between regions of distinct and adjacent modes of the
MMA, are maximal spatio-temporal canards. They mediate the
transitions between adjacent 1s and 1s+1 regions in the MMAs.
Indeed, for the time courses to vary continuously from a 1s mode
to a 1s+1 mode as one steps through the cell locations x in the
transition intervals, there must be (at least) one cell location
at which the new small-amplitude oscillation is first created.
In this manner, certain fundamental maximal canards from the
family (1.3) of x-dependent ODEs persist in the PDE with diffusive
coupling.

1.4. Relation to chimera states for coupled oscillators

Chimera states were discovered in two models of densely
and uniformly distributed identical oscillators subject to finite-
range nonlocal coupling, including a non-locally coupled complex
Ginzburg–Landau equation, by Kuramoto and Battogtokh [26,27].
In chimera states, there are coexisting domains of mutually syn-
chronized oscillators and domains of desynchronized oscillators
with distributed frequencies. In the former, the oscillators are
coherent and phase-locked, and the states may be either sta-
tionary or propagate. In contrast, in the latter, the oscillators are
decoherent, and their phases drift relative to each other and to
the phase-locked oscillators [26–31].

Chimera states have been discovered experimentally, [32,33],
and are the subject of intensive further study both theoretically
and experimentally, see for example [34] for a recent review
and [35]. Moreover, chimera states have also been found to occur
due solely to global coupling (i.e., without the non-local cou-
pling originally thought necessary) in an array of coupled Stuart–
Landau oscillators and in a modified complex Ginzburg–Landau
equation [36], and with local coupling [37,38].

In a generalized sense, MMAs have some qualitative features
in common with chimera states in coupled oscillators and in
nonlinear reaction–diffusion equations. In the MMAs, as we show
here, there are distinct modes of coherent, phase-locked oscilla-
tion coexisting on different regions; there are parameter regimes
in which the coherent states are stationary (as studied here) and
regimes in which they propagate into other coherent states; and,
there is bistability with a homogeneous bursting attractor, just as
there is often bistability of an asynchronous chimera state with a
spatially-symmetric synchronous state.

However, in the MMAs studied here, each of the regions con-
tains distinct modes of synchronous oscillation, and the oscilla-
tions are all of the types generated by folded singularities, unlike
the types of coherent states studied to date in chimera states. Of
equal import, in MMAs, the transition intervals between different
modes in adjacent regions exhibit maximal spatio-temporal ca-
nards, a feature which does not appear to have been observed yet
along the boundaries of different domains in chimera states. Fur-
thermore, the PDE (1.1) and the PDEs in Section 9.3 have purely
local coupling, so that there is no need to have non-local or global
coupling for the MMAs. Finally, for small D, close to the limit in
hich the PDE (1.1) approaches the family of x-dependent ODEs,
he alternator regions exhibit propagating fronts, hence also these
re coherent, in contrast with the incoherence observed in certain
omains of chimera states.

.5. Outline of the article

This article is organized as follows. In Section 2, the geometric
tructures and dynamics of the three modes in the base case
-mode MMA are presented in detail, along with the maximal
patial temporal canards in the transition intervals. Section 3 con-
ains the presentation and analysis of the general n-mode MMAs.
n Section 4, the robustness of n-mode MMAs is illustrated.

Next, in Section 5, we present the comparison of the geometric
tructures of the PDE (1.1) and the family of x-dependent ODEs
1.3), illustrating this in detail for the base case 3-mode MMA.
hen, in Section 6, there is an examination of how the magni-
ude of the spatial coupling affects the geometric structure and
ynamics of the MMAs, again focusing on the base case 3-mode
MA.
We follow in Section 7 by presenting the bistability results

or the PDE (1.1). In Section 8, the different forms of applied
urrents are examined, to provide further evidence of how spatial
nhomogeneity induces the attractors of (1.1) to be of multi-
ode type. Finally, in Section 9, we summarize our main results,
rovide a (partial) list of the many open questions raised by this
iscovery of MMAs, and briefly report on the existence of MMAs
n three other models.

. A base case 3-mode MMA with spiking, bursting, and alter-
ator regions

In this section, we introduce a base case 3-mode MMA of
ystem (1.1) with D = 1, which consists of three regions, each
ith its own distinct mode of behaviour (Fig. 2(a)). In the bursting
egion (0 ≤ x ≲ 9), the attractor is in a 11 bursting mode (where
he bursts have one SAO at the end of each event and are known
s pseudo-plateau bursts). A representative time series of the
oltage, V (x, t), in the bursting region is shown in the top panel
f Fig. 2(b). Next, in the alternator region (16 ≲ x ≲ 22), the
ttractor is in the alternator mode with the voltage time series
witching between 11 bursts and 10 spikes (Fig. 2(b), middle). In
he spiking region (27 ≲ x ≤ 50), the attractor is in the spiking
ode where it exhibits 10 spikes (Fig. 2(b), bottom).
In each of these regions, the solution is time-periodic. In

the alternator region, the period is approximately 336 ms and
corresponds to the duration of a pair of spike and burst events,
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Fig. 2. Steady state dynamics of the voltage, V (x, t), of the MMA of (1.1) with D = 1, α = 10, β = 90 and p = 0.4, corresponding to Ibase ≈ −0.0058 mA,
Imax ≈ 0.9033 mA and σ ≈ 97.296. (See Section 4 for interpretation of the control parameters α, β and p in terms of Ibase, Imax and σ .) The initial conditions were
normalized as described below. (a) Contour plot of the voltage with blue corresponding to hyperpolarization and red corresponding to depolarization. The dark wine
red ledges in the bands of depolarization correspond to SAOs. (b) Time series of V (x, t) at representative values of x in the 11 bursting region (x = 8; top), 1011

alternator region (x = 20; middle), and 10 spiking region (x = 35; bottom). (The results are only shown on the spatial domain [0,50], due to the symmetry.).
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whereas in the spiking and bursting regions, the period is approx-
imately half that. Therefore, in this base case, the entire 3-mode
MMA is period-2, with a total period of approximately 336 ms
corresponding to two successive events.

For a cell at a fixed location x, the action potential duration
(APD) is defined to be the amount of time the cell spends in the
active phase (i.e., with V (x, t) > −45 mV). More precisely, for
each x we consider the sets

Σ+

x =
{
(t, V , n, e) : V = −45 mV and ∂V

∂t > 0
}
,

Σ−

x =
{
(t, V , n, e) : V = −45 mV and ∂V

∂t < 0
}
,

f points at which the voltage is at the threshold (set here at
45 mV) and the solutions pass through the threshold with

ncreasing and decreasing voltage, respectively, and construct the
ap
A
x : Σ+

x → Σ−

x

o measure the duration of the active phase (Fig. 3(a) and (b)).
hus, the APD is the first return time to the voltage threshold,
s measured by ΠA

x . These APD measurements vary as functions
f x, due to the nonlinearities in the system and the spatial
ependences of the attractors.
The APD profile for the base case 3-mode MMA shown in Fig. 2

s presented in Fig. 3(c) (blue diamonds and blue circles). In the
ursting region (0 ≤ x ≲ 9), the APD profile (blue diamonds)
f the MMA has two branches, which are close to each other
Fig. 3(c), near x = 0). In the alternator region (16 ≲ x ≲ 22), the
pper branch (blue diamonds) has longer APD corresponding to
he 11 bursting, which reflects the longer return time (on account
f the small oscillation) of the map ΠA

x between the sections Σ+
x

nd Σ−
x (recall Fig. 3(a) and (b)). The lower branch (blue circles)

as shorter APD corresponding to the 10 spiking, which reflects
he shorter return time of the solution (as measured by ΠA

x ) from
+
x to Σ−

x . The third region is the spiking region (27 ≲ x ≤ 50).
In between adjacent regions of the base case 3-mode MMA,

here are transition intervals over which the structure of the
MA transitions from one mode to another. The first transition

nterval is 9 ≲ x ≲ 16. Here, there is a transition in space from
he bursting mode to the alternator mode. We examine the time
eries of the attractor sampled at different values of x in Fig. 4.
There is a location x (x ≈ 9) at which the amplitudes of the SAOs
n the odd bursts reach a maximum (Fig. 4(b)). This marks the
ight edge of the bursting region and the left edge of this first
ransition interval. It corresponds to the time series of a maximal
anard in the x-dependent ODE (1.3). Then, as one examines the
oltage time traces of the MMA for x ≳ 9, the amplitudes of the

SAOs in the odd bursts of the attractor decrease and go below
those of the single-mode 11 burster (Fig. 4(c)–(e), x ≈ 13, 14 and
x ≈ 15). Finally, once one reaches x ≈ 16, the odd burst events
no longer have SAOs. This value of x marks the right endpoint
of this first transition interval, and for x ≳ 16 the attractor is in
the alternator mode (Fig. 4(f)). In this manner, over the span of
this first transition interval, the odd bursts have become the 10

spiking events, and the even bursts have remained as 11 events.
Moreover, the APD provides a clear diagnostic about this loss of
the SAO in the odd burst events, because there is an inflection
point at x ≈ 16 on the lower branch, exactly where the SAO
disappears.

The spatial derivative of the APD profile provides further in-
sight; Fig. 4(g) shows the spatial derivative of the lower (blue)
branch of the APD profile from Fig. 3(c), corresponding to the
odd burst events. There is a minimum at x ≈ 16 with relatively
sharp slope. This corresponds to the inflection point of the APD
profile where the diamonds transition to circles, see Fig. 3(c), and
marks the boundary between the first transition interval and the
alternator mode.

Next, we describe the transition from the alternator region
to the spiking region (22 ≲ x ≲ 27). There is a value of x
(x ≈ 22) for which the SAOs of the even bursts have maximal
amplitude. This corresponds to a maximal spatio-temporal canard
and is also where the upper APD branch in Fig. 3(c) attains
its maximum. This marks the right boundary of the alternator
region and the left edge of this second transition interval. As one
examines time traces of the MMA for x ≳ 22, the even burst SAOs
decrease in amplitude (Fig. 5(a)–(c)) and eventually disappear
at x ≈ 27 (Fig. 5(d)), corresponding to the right boundary of
this second transition interval and the left edge of the spiking
region. The spatial derivative of the APD profile for the even burst
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a
c

Fig. 3. Illustration of some useful diagnostics of the base case 3-mode MMA, with the same parameters as in Fig. 2. (a) For each x ∈ [0, L], the time course of the
ttractor at that location x is shown as the black curve Γx in the (V , n, e) space (here x = 5 for illustration). For each x, the map ΠA

x is the map from the point (red
hicken) at which Γx crosses the section Σ+

x (red surface) to the point (blue turtle) at which Γx crosses the section Σ−
x (blue surface). (b) For each x, the APD is

the length of time between the red chicken and the blue turtle. (c) The APD profiles as functions of x for the 3-mode MMA (blue) of the PDE (1.1), and for the limit
cycle attractors (red) of the family of x-dependent ODEs (1.3). In the blue APD profiles, a burst or spike event is indicated by an open diamond or circle, respectively.
The spike/burst boundaries occur at the inflection points. (d) First full return time (blue curves) measured by the composite map Π S

x ◦ΠA
x (see text), and second full

return times (red curve) measured by the map
(
Π S

x ◦ ΠA
x

)2 , which indicates that the 3-mode MMA is a time-periodic solution of (1.1) with period of approximately
336 ms. Here, and in Figs. 6, 7, 13, and 16, the symbols are chosen arbitrarily; there is no significance attached to the particular animals.
events (Fig. 5(e)) reveals that the inflection point is the boundary
between this second transition interval and the spiking modes.

Having discussed the features of the APD profiles for the PDE
in each of the three primary regions as well as in the transition in-
tervals, we discuss how they compare to the APD measurements
for the x-dependent ODEs (Fig. 3(c), red curves). First, the (red)
APD profile for the attractors of (1.3) consists of a 10 spiking
branch (30 ≤ x ≤ 50), a 11 bursting branch (0 ≤ x ≲ 29.4),
and a region of (11)k(10)ℓ alternator branches (29.4 ≲ x < 30).
The transitions between the branches are mediated by maximal
canards of (1.3), see Appendix A.2 or [12]. As shown in Fig. 3(c),
for large segments of each of the three regions, the (blue) APD
curves of the MMA are close to the (red) APD curves of the
spiking attractors of (1.3). In particular, for most x (0 ≤ x ≲ 8)
in the bursting region and for most x (32 ≲ x ≤ 50) in the
spiking region, the difference in the APD measurements between
the MMA (blue) and the 10 and 11 attractors of the family of x-
dependent ODEs (red) is less than 0.8 ms. Similarly, for most x
(17 ≲ x ≲ 22) in the alternator region, the APD measurements
for the burst events in the alternator mode of the PDE (upper,
blue diamonds) are also within 0.8 ms of the APD measurements
for the 11 bursting attractors of (1.3). The PDE and ODE measure-
ments deviate from each other near where there is a loss or gain
of a small oscillation in the active phase, corresponding either to a
transition through a maximal canard of the family of x-dependent
ODEs or through a spatio-temporal canard of the PDE. Thus, for
D = 1, the MMA of the PDE preserves the spiking and bursting
behaviour of the ODE, however, it stretches the alternator interval
of (1.3) and only preserves the 1110 rhythms.

Finally, we observe for this base case 3-mode MMA that the
APD profile shows that the entire attractor is a 2-periodic solution
of (1.1). For each fixed x, we calculate the nth return times, T (x).
n
More precisely, the first full return time, T1(x), measured from
the composite map Π S

x ◦ ΠA
x , is the time taken for an orbit to

complete one active phase and one silent phase, where Π S
x is the

map defined by

Π S
x : Σ−

x → Σ+

x .

Similarly, the second full return time, T2(x), measured from the
composite map

(
Π S

x ◦ ΠA
x

)2, is the time taken for an orbit to
complete two active phases and two silent phases, and so on. In
terms of the contour plot in Fig. 2, Tn(x) is the total horizontal
width of n (active) red bands and n (silent) blue bands. The
first and second full return times are shown in Fig. 3(d). The
first full return profile (blue curves) shows the same qualitative
information as the APD profile in Fig. 3(c). The second full return
profile (red curve) is uniform in x. Thus, the base case 3-mode
MMA is a 2-periodic solution in time of (1.1).

3. General n-mode MMAs

In this section, we present a series of n-mode MMAs with
different types of alternators and with different types of 1s burst
events. First, in Section 3.1, we present 4-mode MMAs of (1.1),
which have spiking and bursting modes, as well as distinct types
of (11)k(10)ℓ alternator modes. Then, in Section 3.2, we generalize
to n-mode MMAs in (1.1), including examples with n = 5 and 1s

bursts with different numbers, s, of SAOs. Further, in Section 3.3,
we describe how the minimal periods of the MMAs which are
time-periodic may be determined.

To construct the general n-mode MMAs, we take advantage of
the rich structure of the bursting oscillations of the x-dependent
family of ODEs. For the standard parameter set (see Table A.1 in
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Fig. 4. Maximal spatio-temporal canards mediate the transition from the bursting mode to the alternator mode for the base case 3-mode MMA. Time series are
shown for (a) x = 3, (b) x = 9, (c) x = 13, (d) x = 14, (e) x = 15 and (f) x = 16. These illustrate the loss of the SAO in the odd burst events due to the transition
through a maximal spatio-temporal canard. (g) Spatial derivative of the lower APD profile from Fig. 3(c), corresponding to the odd burst events in the time series.
There is a local minimum at x ≈ 16 with relatively sharp spatial slope, corresponding to the inflection point in the APD profile.
Fig. 5. Maximal spatio-temporal canards mediate the transition from the alternator mode to the spiking mode for the base case 3-mode MMA. Time series for (a)
x = 24, (b) x = 25, (c) x = 26, and (d) x = 27. Insets: zoom on the active phases of the last two events. These illustrate the loss of the SAO due to the transition
through a maximal spatio-temporal canard. (e) Spatial derivative of the upper APD profile from Fig. 3(c), corresponding to the even events. The local minimum at
x ≈ 27 with relatively sharp spatial slope corresponds to the inflection point in the APD profile, and is the boundary between the alternator and spiking modes.
Appendix), the family of x-dependent ODEs (1.3) contains spiking
cells, bursting cells, and cells that alternate between 10 spikes
and 11 bursts. Moreover, within the window of alternator modes,
there are sub-intervals on which the cells exhibit (11)k10 MMO
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Fig. 6. Dynamics of a 4-mode MMA (of period 3) of (1.1) with α = 4, β = 90, and p = 0.4, corresponding to Ibase ≈ 0.0482 mA, Imax ≈ 0.9033 mA, and σ ≈ 71.03
n (1.2), and all other parameters set at the standard values. (See Section 4 for the relation between the control parameters α, β, p and Ibase, Imax, σ .) (a) Voltage
ynamics of the MMA. (b) The APD profiles of the MMA (blue curves) show that it has 4 distinct modes of activity; burst/spike events are indicated by open
iamonds/circles. For 0 ≤ x ≲ 15, the attractor is in the 11 bursting mode. A representative time series (for x = 6; rabbit marker) is shown in (c). For 15 ≲ x ≲ 25,

the attractor is in the (11)210 alternator mode. A representative time series (for x = 20; owl marker) is shown in (d). For 25 ≲ x ≲ 27, the attractor is in the 11(10)2
alternator mode. A representative time series (for x = 26; star marker) is shown in (e). For 27 ≲ x ≤ 50, the MMA is in the 10 spiking mode. A representative time
series (for x = 40; kangaroo marker) is shown in (f). The APD profiles of the family of x-dependent ODEs (red curves) are also shown for comparison.
attractors, k = 1, 2, 3, . . .. There are also sub-intervals on which
the cells exhibit 11(10)ℓ MMO attractors, ℓ = 1, 2, 3, . . .. The
single-cell ODE model also possesses parameter regions in which
the attractors of the x-dependent family of ODEs exhibit 1s bursts
with various s, which we use in Section 3.2.

3.1. Four-mode MMAs with different types of alternator modes

The first example of a 4-mode MMA is obtained with a Gaus-
sian applied current for α = 4, β = 90 and p = 0.4 (see
Appendix), and these correspond to Ibase ≈ 0.0482 mA, Imax ≈

0.9033 mA, and σ ≈ 71.03 in (1.2). All other parameters fixed
at their usual values as in the base case studied in Section 2. The
MMA exhibits four different modes of activity, and is period-3
(Fig. 6). In the bursting region (0 ≤ x ≲ 10), the MMA is in
the 11 bursting mode. Here, the three branches of the (blue) APD
consist of diamonds and essentially lie on top of each other, since
each has one SAO and they are close to being identical. In the
interval 15 ≲ x ≲ 24, the MMA exhibits a (11)210 alternator mode
(k = 2) in which one period consists of two 11 bursts followed by
a 10 spike. In this first alternator region, there are three distinct
branches of the APD, with the top two branches (blue diamonds)
denoting the bursting oscillations and the bottom branch (blue
circles) being the spiking oscillation. This pattern repeats, so that
this mode of the attractor has period 3. In the interval 24 ≲ x ≲
27, the MMA exhibits a 11(10)2 alternator mode also of period 3.
In this second alternator region, the APD has one branch of burst
events (blue diamonds) and two lower branches of spiking events
(blue circles). Finally, in the spiking region (27 ≲ x ≤ 50), the
MMA is in the 10 spiking mode, and the APD consists exclusively
of three branches of blue circles in this spiking region. Overall,
this four-mode MMA has 3 events per period, which is the least
common multiple of the periods of the component rhythms.

Each of the blue APD branches contains an inflection point
along the segment on which it is monotonically decreasing, in-
dicating the presence of maximal spatio-temporal canards in the
transition intervals between modes with different numbers of
small oscillations. Specifically, in the transition interval (10 ≲ x ≲
15) between bursting and (11)210 alternation, there is an inflec-
tion point (at x ≈ 15) in the lowermost APD profile corresponding
to the loss of a small oscillation in every third event. There are
inflection points at x ≈ 25 and x ≈ 27. These correspond, in order
of increasing x, to the loss of a small oscillation in the transition
from the (11)210 alternator mode to the 11(10)2 alternator mode,
and to the loss of a small oscillation in the transition from the
11(10)2 mode to the spiking mode.

The nth full return maps,
(
Π S

x ◦ ΠA
x

)n, were also calculated for
the MMA for n = 1, 2, 3. The 3rd full return time (not shown) is
the first of these which is constant in x, which confirms that the
MMA is period-3.

Another example of a 4-mode MMA is shown in Fig. 7 for α =

10, β = 4, and p = 0.4, corresponding to I ≈ −0.0058 mA,
base
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Fig. 7. Dynamics of a 4-mode MMA (of period 4) of (1.1) with α = 10, β = 4 and p = 0.4, corresponding to Ibase ≈ −0.0058 mA, Imax ≈ 0.1292 mA, and σ ≈ 554.92
n (1.2), with all other parameters fixed at their standard values. (See Section 4 for the relation between α, β, p and Ibase, Imax, σ .) (a) Voltage dynamics of the MMA.
b) APD profiles (blue curves) with burst/spike events indicated by diamonds/circles. The all-diamond branch corresponds to the 2nd , 6th, and 10th active bursting
ed bands in (a). The other three branches possess inflection points where the SAO of the burst disappears. Representative time series from each of the four regions
re shown. Starfish: 11 bursting. Elephant: (11)310 . Frog: (11)2(10)2 . Ostrich: 11(10)3 .
w
x

max ≈ 0.1292 mA, and σ ≈ 554.92 in (1.2). This second 4-mode
MA consists of a bursting region (0 ≤ x ≲ 17.5) in which the

attractor is also in the 11 bursting mode, just as in the above
example. However, for this 4-mode MMA, the cells in the bursting
region oscillate with minimal period four (not period one), since
the APD has four distinct branches (blue diamonds) and the SAOs
have different heights and durations in each of the four events
per period (see Fig. 7(b) and (c)). Next, there is a (11)310 region
17.5 ≲ x ≲ 29) in which the attractor is in this k = 3 alternator
ode. The APD has three branches of bursting oscillations (blue
iamonds), each with SAOs of distinct heights and durations, and
ne branch of spiking (blue circles). This is followed by a second
lternator region (29 ≲ x ≲ 32.5) in which the attractor is in
he (11)2(10)2 mode (k = 2, ℓ = 2), and the APD has two (upper)
ranches of burst events and two (lower) branches of spike events
er period. Finally, there is a region of 11(10)3 alternator modes
32.5 ≲ x ≲ 50) in this 4-mode MMA, and the APD has three
ranches of spiking events and only one branch of burst events
er period.
We conclude this subsection with three observations. First, the

-mode MMA in Fig. 7 has period 4, in contrast to the 4-mode
MA of period-3 shown in Fig. 6. This is because each of the

our distinct modes is of period 4. Second, along the monoton-
cally decreasing segments of the APD branches of the 4-mode
MA shown in Fig. 7, there are inflection points (marked by

he switches from diamonds to circles) that correspond to the
ransition points in space where small oscillations are lost. Third,
the fact that this 4-mode MMA is more complex is expected,
based on the known dynamics of the family of x-dependent ODEs
(Fig. 7(b), red).

3.2. n-mode MMAS with different types of 1s bursts

So far, we have studied MMAs of (1.1) with 3 and 4 modes,
which possess 10 spiking, 11 bursting, and (10)k(11)ℓ alternator
regions. We now consider n-mode MMAs that emerge in (1.1)
hen the applied current is such that the set of attractors of the
-dependent ODEs (1.3) consists of 1s pseudo-plateau bursts for
s = 1 up to s = N , for general N .

A representative example of a 5-mode time periodic MMA of
(1.1) is shown in Fig. 8. For each fixed x, the temporal profile of
the solution is a 1s pseudo-plateau burst, where s ∈ {2, 3, 4, 5, 6}.
Cells near the left edge of the domain (i.e., near x = 0) exhibit
bursts with 6 SAOs. As x is increased towards the right edge
(i.e., towards x = L), the number and amplitudes of the SAOs
continuously change so that s = 2 for the cells near the right
edge. Thus, the MMA has a region of 16 bursts, a region of 15

bursts, and so on down to 12 bursts.
For this 5-mode MMA, the system parameters are such that

the attractors of the family of x-dependent ODEs (1.3) are 1s

pseudo-plateau bursts, where s = 2, 3, . . . , 13 (Fig. 8(b), red
curves). Between each pair of 1s+1 and 1s intervals, there ex-
ist (extremely thin) alternator regions in which the attractor of
(1.3) has Farey sequence (1s+1)k(1s)ℓ, where k, ℓ = 2, 3, . . . , 13
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Fig. 8. A 5-mode MMA of (1.1) which is time-periodic (with a period of approximately 272 ms). Here, gK = 4.4 nS, and Ibase = −1.5 mA, Imax = 5.5 mA and σ = 150
n (1.2). (a) The voltage dynamics show that the cells in the region where the applied current has greatest magnitude (near x = 0) have the greatest number of
mall oscillations and hence the longest durations. (b) The APD profile of the 5-mode MMA (blue) compared to the APD measurements of the x-dependent ODEs
(red). The number, s, of small oscillations is indicated by the marker type: pentagram for s = 6, square for s = 5, cross for s = 4, triangle for s = 3, and asterisk for
s = 2. Representative time series for the (c) 14 bursting mode (x = 27) and (d) 13 bursting mode (x = 35). Insets: zoom on the SAOs.
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(Fig. 8(b), nearly vertical red segments). Despite the fact the
x-dependent ODEs span all of the modes from the 12 state up
to the 113 state, this 5-mode MMA of the PDE only exhibits the
12 to 16 bursting modes and there are no alternator intervals.
This is due to choice of the Gaussian applied current. (With
other choices of, for instance, the half-width one can see more
distinct modes.) Moreover, in the transition intervals between the
different bursting regions the dynamics of the maximal spatio-
temporal canards are slightly different from those observed in
the 3-mode and 4-mode MMAs. In particular, some of the SAOs
disappear in the merger of two interior SAOs (data not shown).
Also, the APD profile of the 5-mode MMA (Fig. 8(b), blue curve)
does not show the inflection points that were characteristic of the
loss/gain of a small oscillation associated with the transition from
a 1s+1 region to a 1s region (cf. blue APD profiles in Figs. 3, 6, and
7). This appears to be due to the fact that, as the amplitude of
the last SAO in each event decreases, the amplitude of the SAO
immediately preceding it is already increasing.

More generally, an n-mode MMA of (1.1) can easily be con-
structed. A necessary condition is that the parameter gK and the
control parameters for the Gaussian applied current must be such
that the x-dependent ODEs span the 1s up to 1s+N modes, where
s ≥ 0 and N ≥ 1. Under these conditions, an n-mode MMA
(with n ≤ N) will generically emerge as an attractor of the PDE
(1.1). We have found in our simulations that for N sufficiently
large, the inequality n < N is strict and only the 1s rhythms with
smaller s actually manifest in the attractor. The reason why these
particular bursting modes (and how many of them) are present in
the n-mode MMA is currently unknown and the subject of future
work.

3.3. A note about the periods of time-periodic n-mode MMAs

In this brief subsection, we emphasize that – for n-mode
MMAs which are periodic in time – the period is determined by
the least common multiple of the periods of the modes in the
MMA. This was already observed for 4-mode MMAs in Section 3.1,
where we presented one with period 3 (recall Fig. 6) and one
with period 4 (recall Fig. 7). For the former, each of the spiking,
bursting, and two different alternator modes are of period 3. For
the latter, each mode is period 4.

In order to show more generally that this is how the periods of
n-mode MMAs are determined, we return to 3-mode MMAs. The
base case 3-mode MMA studied in Section 2 is of period 2, since
that is the least common multiple of the periods of the bursting,
single alternator, and spiking modes. Here, we present a 3-mode
MMA of period 4. For α = 10, β = 6, and p = 0.4, corresponding
to Ibase ≈ −0.0058 mA, Imax ≈ 0.1472 mA, and σ ≈ 424.03
in (1.2), and all other parameters fixed at the base case values,
this MMA exhibits three regions of activity and the APD consists
of four branches; see Fig. 9. For 0 ≤ x ≲ 16, the attractor
exhibits (11)2(10)2 alternations with two burst events followed by
wo spike events in each period. This transitions into a region of
1(10)3 rhythms (for 16 ≲ x ≲ 24) in which each burst is followed
y three spikes per period. The cells on 24 ≲ x ≤ 50 are in
he spiking mode. Overall, this 3-mode MMA is period-4, because
hat is the least common multiple of the individual modes. For
onfirmation, we also plotted the 4th full return time, T4(x), and
bserved it to be constant in x (data not shown). Finally, we note
hat spatio-temporal canards mediate the loss/gain of SAOs in the
ransition intervals, as reflected by the inflection points on the
wo upper APD branches.

. Robustness of the MMAs

In this section, we analyse the robustness of MMAs under
ariations in the fundamental parameters of the Gaussian applied
urrent. We focus on the robustness of the base case 3-mode
MA studied in Section 2. Similar observations can be made
bout the robustness of the 4-mode and n-mode MMAs presented
n Sections 3.1 and 3.2.
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Fig. 9. A 3-mode MMA (of period 4) of (1.1) with α = 10, β = 6 and p = 0.4, corresponding to Ibase ≈ −0.0058 mA, Imax ≈ 0.1472 mA, and σ ≈ 424.03. (We again
efer to Section 4 for the relation between α, β, p and Ibase, Imax, σ .) (a) Voltage dynamics over approximately 3 periods. On the interval 0 ≤ x ≲ 16, the attractor is
n the (11)2(10)2 alternator mode. On the interval 16 ≲ x ≲ 24, the attractor is in the 11(10)3 alternator mode. For 24 ≲ x ≤ 50, the MMA is in the spiking mode.
b) The APD profile of the MMA (blue curves) has four branches; open diamonds and circles indicate burst and spike events, respectively. The two uppermost APD
ranches possess inflection points, corresponding to the boundaries where a SAO vanishes.
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Recall from (1.2) that a standard representation for Gaussians,
entred at the origin, has the form,

app(x) = Ibase + (Imax − Ibase) exp
(

−
x2

4σ

)
, (4.1)

here Ibase is the baseline applied current, Imax is the maximal
pplied current, and σ is the half-width of the Gaussian. It turns
ut to be convenient to measure these three parameters relative
o key values of the applied current determined by the family of
-dependent ODEs (1.3), see Fig. 10.
In particular, let I0 be such that for each x for which Iapp(x) < I0

he x-dependent ODE (1.3) is in the 10 spiking mode. Similarly,
et I1 be such that for each x for which Iapp(x) > I1 the x-
dependent ODE (1.3) is in the 11 bursting mode. Also, let δ =

1−I0. This parameter δ measures exactly the width of the interval
I0, I1) over which the family of x-dependent ODEs (1.3) exhibits
lternating states.
Then, we set

base = I0 − α δ, and Imax = I1 + β δ.

ere, α and β measure how deeply the applied current brings
he cells into parameter regimes corresponding to the spiking
nd bursting modes of (1.3), respectively. Also, let p denote the
ercentage of the cells in the line of cells which are in the spiking
ode, i.e., let p be such that the cells with x ∈ [L − pL, L] exhibit
0 spiking, based on (1.3); see Fig. 10.

emark. The half-width of the Gaussian is related to the three
arameters p, α, and β via

=
1

log
(
1 +

1+β

α

) [
L
2

(1 − p)
]2

. (4.2)

Variations in each of these three control parameters, p, α,
nd β , offer a natural way to measure how the fundamental
roperties of the Gaussian impact the robustness of the base
ase 3-mode MMA. Considering each of these control parameters
eparately, we plot in Fig. 11 the modes of the attractor of the PDE
1.1) as functions of these control parameters and of the location
∈ [0, L]. The other system parameters in (1.1) are kept fixed

t the same values as in Section 2. The spatial regions in which
he MMA is in the 11 bursting mode, the 1110 alternator mode,
and the 10 spiking mode are indicated in blue, green, and red,
espectively. We examine the results in each of the frames in
ig. 11, beginning with frame (a), which shows the robustness of
he 3-mode MMA to variations in p.

All three modes of the MMA persist across the entire range of
p values shown in Fig. 11(a), where we note that the values of α

and β used to generate the data shown in Fig. 11(a) are the same
as those in the base case in Section 2. Moreover, for each fixed
p, the spiking region occupies approximately the same fraction of
the spatial domain as predicted from the family of x-dependent
ODEs (1.3). For example, for p = 0.4, the spiking region observed
in the PDE (1.1) is approximately 26 ≲ x ≤ 50, which is 48%
of the domain, and this is close to the interval 30 ≤ x ≤ 50
over which the family of x-dependent ODEs (1.3) is in the spiking
mode. Similarly, for p = 0.6, the spiking region observed in the
PDE (1.1) is 18 ≲ x ≤ 50, which is 64% of the domain, and this
is close to the interval 20 ≤ x ≤ 50 over which the family of
x-dependent ODEs (1.3) is in the spiking mode. These two exam-
ples are representative, in that the spiking region in the PDE (1.1)
is close to the interval observed in (1.3) for all other values of p
in the range simulated. The difference in measurements between
the PDE (1.1) and the family of x-dependent ODEs is due to the
spatial coupling and will be discussed further in Section 6.

Not only does the width of the spiking region increase with
increasing p, as shown in Fig. 11(a), but also the location of the
alternator region shifts, and the widths of the alternator and
bursting regions decrease. The decreased width of the alternator
region may be understood as follows. Recall from (4.2) that in-
creases in p are equivalent to (quadratic) decreases in the spread,
σ , so that the Gaussian becomes narrower. Consequently, the
x locations at which Iapp(x) = I0 (where the 10 spikes change
stability) and Iapp(x) = I1 (where the 11 bursts change stability)
shift to smaller values, and the slopes of the Gaussian at these
locations have increased. Thus, the width of the alternator region
decreases.

Next, we study the robustness of the 3-mode MMA under vari-
ations in the control parameter α, with p and β kept constant at
the same values used in the base case in Section 2; see Fig. 11(b).
In this case, the MMA also exhibits the same three regions, and
the locations of the transition intervals stay relatively constant,
over the range of α shown. That the width of the spiking region

stays nearly constant reflects the fact that p is fixed so that the
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Fig. 10. Representative Gaussian applied current, Iapp(x), used to generate the base case 3-mode MMA. It partitions the cells of the family of x-dependent ODEs
(1.3) into regions of distinct activity. Cells in the bursting region exhibit 11 canard-induced mixed-mode oscillations. Cells in the spiking region exhibit 10 relaxation
oscillations. Cells in the alternator region can exhibit simple 1110 alternations or have complex signatures of the form (11)k(10)ℓ , especially for x such that Iapp(x) ≈ I0
r Iapp(x) ≈ I1 . (For the other MMAs reported on, the Gaussian applied current is chosen to cross other bifurcations of the x-dependent ODEs including I2, I3, . . ..).
Fig. 11. Structure of the MMAs of (1.1) under variations of the control parameters of the Gaussian applied current. The MMAs consist of bursting (blue), 1110

lternator (green), and spiking (red) regions. The base case MMA studied in Section 2 is indicated in each panel by the black dashed line. (a) Increases in the fraction,
, of the cell line that is initialized in the spiking mode results in MMAs with larger spiking regions. (b) Changes in the baseline applied current, via α, have little

effect on the widths of the three regions. (c) The maximal applied current, controlled by β , significantly affects the widths of the bursting and alternator regions.
cells on 30 ≤ x ≤ 50 are spiking in (1.3). Moreover, increases
in α result in more negative baseline applied currents and only
slightly larger spreads, σ . This means the x locations at which
he 10 and 11 modes change stability in (1.3) only vary slightly,
hich is reflected in the PDE by the nearly horizontal red and blue
oundaries. We note that whilst the qualitative trends observed
or increasing α can be interpreted in terms of the x-dependent
ODE (1.3), the width of the alternator region in the MMA is
substantially larger than that predicted by the x-dependent ODE
and is a result of the diffusive coupling in (1.1).

Under variations in β , with p and α kept constant at the values
of the base case in Section 2, the MMA exhibits either three
modes or two modes (Fig. 11(c)). For β ≳ 27, the MMA exhibits
three modes: bursting, alternator, and spiking, exactly as in the
base case. For these values of β , the width of the bursting region
increases with β . This is expected from (1.3) because increases
in β make the Gaussian applied current taller and steeper, so
the width of the alternator region shrinks. Consequently, a larger
portion of the domain (beginning at x = 0) for the x-dependent
ODEs is in the 11 bursting state. In addition, the width of the
spiking region saturates (at x ≈ 26), since p is fixed.

On the other hand, at β ≈ 27, the bursting mode disappears,
and for all values of β ≲ 27, the MMA only exhibits two
modes: spiking and alternator. This is a structural change from
the base case 3-mode MMA. Moreover, for β ≲ 27, the spiking

region occupies a larger domain than is expected from (1.3). For
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example, for β = 10 the spiking region occurs on 19 ≲ x ≤ 50
which is 62% of the domain (whereas only 40% of the domain is
spiking in the family of x-dependent ODEs (1.3)). For these values
of β , the amplitude of the Gaussian is such that the x-dependent
ODE is only weakly in the bursting mode, i.e., β is small enough
that many cells in the uncoupled system (1.3) remain close to the
bursting/alternator transition interval.

Robustness of the other n-mode MMAs, for n = 3, 4, 5, . . .,
may be established in a similar manner. Moreover, in quantitative
studies of these MMAs, it is of interest to examine the Gaussian
applied current with control parameters Ibase, Imax, and σ based
on the values of Is, for s = 0, 1, 2, . . ., which are known from
the ODE kinetics as the boundaries in parameter space for the 1s

bursts.

5. Comparison with the ODE critical and slow manifolds

In this section, we make a qualitative comparison of the
structures of the base case 3-mode MMA of the PDE (1.1) for
D = 1 with the geometric structures that organize the family of
x-dependent ODEs, i.e., the critical and slow invariant manifolds
of (1.3). We show that the attractor of the PDE stays close to
the geometric structures of the family of x-dependent ODEs for
large diffusivities by comparing the MMA to the critical and slow
manifolds of the underlying ODEs at fixed slices in x (Fig. 12).

5.1. Geometric structures of the family of x-dependent ODEs

We begin with the geometric structures of the x-dependent
family of ODEs (1.3) that exist in the singular limit (i.e., for ε ∝

Cm → 0) for the base case parameter set. For each fixed x, the
slow/fast system (1.3) possesses a cubic-shaped critical manifold,
S0(x), which has outer attracting sheets, S0a,+(x) and S0a,−(x), and
an inner repelling sheet, S0r (x) (Fig. 12; left column, blue surface).
These are separated by curves, L+(x) and L−(x), of fold bifurcations
of the layer problem (Fig. 12; left column, red curves). That is, the
critical manifold is partitioned as

S0(x) = S0a,+ ∪ L+(x) ∪ S0r (x) ∪ L−(x) ∪ S0a,−(x).

Moreover, there is a folded singularity on L+(x), which is either
a folded node (FN) or a folded focus (FF), depending on the
value of x. In the case of the FN, there is an associated singular
strong canard (Fig. 12(a); green curve), γ 0

sc(x), which (together
with L+(x)) encloses the singular funnel region.

Remark. The curves, L+(x) and L−(x), meet in a cusp bifurcation
and form a single continuous curve, as shown in Fig. 12(a), (c),
and (e). Here, our interest is in the region of phase space centred
on the folded singularity, which stays far away from the cusp for
the chosen parameter set. That is, S0a,+(x) from S0a,−(x) are well
separated in the regions of phase space that we examine. (We
refer to Figure 8(b) of [8] for more information.)

Fenichel theory [4,5] and canard theory [10,11] describe how
the geometric objects from the singular limit (ε → 0) persist and
unfold for sufficiently small perturbations (i.e., for 0 < ε ≪ 1).
First, the attracting and repelling sheets, S0a,±(x) and S0r (x), of the
critical manifold persist as attracting and repelling slow invariant
manifolds, Sε

a,±(x) and Sε
r (x), respectively. Moreover, in an O(

√
ε)

neighbourhood of the FN, Sε
a,+(x) and Sε

r (x) twist around each
other and, generically, intersect n + 1 times, where n ≥ 1 is
determined by the eigenvalues of the desingularized reduced flow
at the FN. The first intersection is the primary strong canard,
γsc(x), which separates solutions of (1.3) that exhibit SAOs from
those that do not. The n + 1st intersection is the primary weak
canard, γ (x), and is the local axis of rotation for the twisting.
w
Each of the remaining n − 1 secondary canards (intersections),
γk(x), exhibits k SAOs about γw(x), and separates solutions with k
AOs from solutions with k+1 SAOs. For the base case parameters
nd x ∈ [0, L], the FNs of (1.3) (whenever they exist) have n =

1, so that the only canards are γsc(x) and γw(x), and solutions
xhibit, at most, 1 SAO. By varying the parameters gK and/or gA,

FNs with almost any n can be generated (see Figs. 2, 3, and 5
of [12]).

As the perturbation parameter (in our case, Cm) is increased,
the invariant manifolds, the dynamics on the invariant manifolds,
and their number of intersections all change. The slow manifolds
become less twisted and, for some suitably large Cm, the weak
canard of the FN disappears. For Cm = 2 pF, the slow manifolds,
Sε
a,+(x) and Sε

r (x), intersect precisely once for all x ∈ [0, L] (Fig. 12;
right column). That is, only the strong canard of the FN persists
for large perturbations.

The parameter regions where canards exist also change as
Cm is increased. For instance, for the parameters used in the
base case, the slow invariant manifolds, Sε

a,+(x) and Sε
r (x), of the

family of x-dependent ODEs with Cm = 2 pF intersect for all
x ∈ [0, L] (Fig. 12(d) and (f)). That is, there is a strong canard
for all x ∈ [0, L], even when the underlying folded singularity of
the x-dependent ODE is a FF.

Remark. We refer to [11] for the bifurcation theory of FN canards
when ε is sufficiently small. For a case study on how the slow
manifolds and associated family of canards unfold and bifurcate
in the unforced pituitary cell ODE model, we point to [12].

5.2. The MMAs closely follow the slow manifolds in the cores of the
main regions

We now compare the geometric structures of the 3-mode
MMA of the PDE (1.1) with D = 1 to the geometric structure
of the family of x-dependent ODEs (1.3). The slow manifolds,
maximal strong canard, and solutions of the PDE and ODE are
shown in a cross-section passing through the folded node (insets
in the right column).

Examining time traces at constant x for each x in the bursting
region (0 ≤ x ≲ 9), we see that the MMA (Fig. 12(a) and
(b), black curves, Γx) closely follows the mixed-mode oscillatory
attractors (Fig. 12(a) and (b), cyan curve) of (1.3). That is, at
each fixed value of x, the time trace of the MMA has a slow
segment (lower single arrow) that closely follows S0a,−(x). The
time trace of the MMA passes through the neighbourhood of
L−(x) and exhibits a fast transition (double upward arrows) from a
neighbourhood of S0a,−(x) to a neighbourhood of S0a,+(x). This fast
transition injects the solution into the funnel of the FN. Conse-
quently, at each fixed x in the region, the time trace of the MMA
exhibits a slow drift (upper single arrow) toward the FN, where
it executes a single SAO before returning to the neighbourhood
of S0a,−(x). For each x in the bursting region, the time trace of
the 3-mode MMA (black curve) is so close to the attractor of
the corresponding x-dependent ODE (cyan curve) that they are
almost indistinguishable.

For all x in the spiking region (27 ≲ x ≤ 50), the MMA exhibits
relaxation oscillations with slow segments that closely follow the
attracting sheets of the critical manifold, and with fast transitions
between the upper and lower sheets initiated near the fold curves
(Fig. 12(e), Γx). In this spiking region, the folded singularity is a
folded focus, however, as noted in Section 5.1 the slow manifolds
still intersect for large Cm (including Cm = 2 pF) in a strong canard
(Fig. 12(f), γsc(x)). We observe that, for each x in the spiking
region, the attractors of the PDE and the x-dependent ODE stay
outside the rotational sector enclosed by γ (x), and hence there
sc
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Fig. 12. Comparison of the 3-mode MMA (black curves, Γx) with the attractor (cyan curves) and manifolds of the x-dependent ODE (1.3) in (V , n, e) space for fixed x
in the bursting region (top row; x = 5), alternator region (middle row; x = 17), and spiking region (bottom row; x = 40). Left column: comparison with the singular
limit (Cm → 0 pF) structures, i.e., the critical manifold, S0(x), fold curve, L(x), folded singularity (FN/FF), and singular strong canard, γ 0

sc(x). Right column: comparison
with the attracting (blue surface) and repelling (red surface) slow invariant manifolds of (1.3) for Cm = 2 pF, computed using pseudo-arclength continuation [39,40].
Insets: intersection with a hyperplane through the folded singularity; black pentagrams and cyan circles correspond to the solutions of the PDE and ODE, respectively,
and demonstrate that the two are close in each of the three regions. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
are no SAOs. Again, the solutions of the PDE and ODE lie close to
each other in the (V , n, e) phase space.

For x values in the alternator region (16 ≲ x ≲ 22), the MMA
exhibits a 11 burst followed by a 10 spike. As in the bursting
region, the 11 part of the solution is a mixed-mode oscillation
with the SAO emerging from the canard dynamics around the
FN. This 11 part of the MMA again lies close to the attractor of
the x-dependent ODE (1.3). The 10 part of the MMA does not
closely follow the attractor of (1.3). However, it does exhibit
relaxation-type oscillations, as in the spiking case.

5.3. Only some modes of the x-dependent ODEs emerge in the MMAs,
many are suppressed

We now compare and contrast the MMA of the PDE (1.1)
and the attractors of the family of x-dependent ODEs (1.3) in
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Fig. 13. Comparison of the base case 3-mode MMA with the attractors of the family of x-dependent ODEs (1.3) with Cm = 2 pF. (a) APD measurements of the
MA (blue branches) and of the ODE attractors (red branches). Inset: zoom on the region featuring alternator modes with complex Farey sequences of the form

11)k(10)ℓ . Alternators with k > 1 (not labelled) exist entirely in the interval between the 11 and 1110 branches, and alternators with k = 1, ℓ > 1 (not labelled)
xist entirely in the interval between the 1110 and 10 branches. Middle row: projection of the MMA (black), ODE attractor (cyan), and strong canard (green) into the
V , e) plane for x values (b) before, (c) at, and (d) after the first inflection point (at x ≈ 16) in the APD profile. Bottom row: ODE attractors with (e) (k, ℓ) = (2, 1),
f) (k, ℓ) = (5, 4), (g) (k, ℓ) = (1, 2), and (h) (k, ℓ) = (1, 7) for x values in the thin interval between the 11 bursting and 10 spiking intervals of (1.3). Also shown in
ll four frames are the strong canard and the trace of the MMA (which is in the spiking mode for x ≳ 27, i.e., beyond the inflection point of the upper blue APD
urve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
o
E

he transition intervals between different modes of oscillation,
here the maximal spatio-temporal canards arise. We focus on
he transition from the bursting mode to the alternator mode,
hich is representative.
The 3-mode MMA, and the attractor and strong canard of the

amily of x-dependent ODEs are shown in Fig. 13 (middle row) in
he (V , e) plane for x values around the inflection point at x ≈ 16.
or all x in this interval, the even burst events (uppermost black
urves) in the period-2 MMA closely follow the attractor of the
-dependent ODE (cyan curves). The odd events (lowermost black
urves), however, do not closely follow the ODE attractor. More
pecifically, to the left of the inflection point, the odd events in
he MMA exhibit one SAO in which the orbit has a small upward
oltage deflection before rapidly transitioning to a hyperpolarized
tate (Fig. 13(b)). At successively larger values of x, the SAOs in
he odd burst events decrease in magnitude until they disappear
t the inflection point at x ≈ 16 (Fig. 13(c)). For even larger
alues of x to the right of the inflection point, the odd events
n the MMA spend progressively less time following the ODE
ttractor (i.e., they peel away from the ODE attractor at larger
nd larger values of e) and simply transition to hyperpolarization
ithout SAOs (Fig. 13(d)). This sequence for the MMA is similar to
he sequence of ‘jump-back’ and ‘jump-away’ canards (i.e., ‘ducks
ithout heads’ and ‘ducks with heads’, respectively) associated
ith the exponentially close family of canard solutions that can
e observed around a maximal canard by variation of initial
onditions (see also Fig. 13 of [12]). It provides further numerical
vidence of the existence of a maximal spatio-temporal canard for
ome x in the transition interval. A similar jump-back/jump-away
anard-like sequence is observed for the MMA in the transition
rom the alternator region to the spiking region.

The other location where the MMA of the PDE and the at-
ractors of the family of x-dependent ODEs differ significantly
rom each other is the x-interval where the ODEs exhibit ex-
tic (11)k(10)ℓ mixed-mode oscillations. As shown in the inset
f Fig. 13(a), the 1110 alternator occupies the largest x-interval.
xotic (11)k(10)ℓ alternators with k ≥ 2 (Fig. 13(e) and (f)) exist

entirely in the thin x-interval between the 11 bursting branch and
the 1110 alternator branch. Similarly, the interval between the
1110 alternator branch and the 10 spiking branch is filled with
exotic (11)k(10)ℓ alternators with k = 1 and ℓ ≥ 2 (Fig. 13(g) and
(h)).

Numerically, the exotic (11)k(10)ℓ alternator modes of the fam-
ily of x-dependent ODEs are not seen in the MMA of the PDE (for D
sufficiently large) because the simpler 11, 1110, and 10 states exist
on wider x-intervals in the domain of the PDE, are more robust
and stable, and essentially drive the more exotic alternators out
due to the diffusive coupling. The survival of these (11)k(10)ℓ
alternator modes depends on the parameters (most prominently
D and Cm) and the relative widths of the intervals on which they
exist in the family of x-dependent ODEs.

In short, in the cores of the main regions of the distinct modes,
the MMA of the PDE (1.1) closely follows the geometric structures
of the underlying family of x-dependent ODEs, even at large
diffusivities. The key similarities and differences highlighted here
for the base case 3-mode MMA are representative of n-mode
MMAs that exhibit inflection points in their APD profiles, such as
those reported on in Sections 3 and 4. The comparison for n-mode
MMAs with no inflection points in the APD profiles (such as the
5-mode MMA in Fig. 8) is more complicated, and is the subject of
ongoing work.

6. Variations in the diffusivity

In this section, we show that there is a wide range of dif-
fusivities over which the fundamental structure of the 3-mode
MMA stays qualitatively the same as in the base case with D =

1. In addition, we show that as the diffusivity becomes smaller
and smaller, the dynamics in the alternator region become much
more complex.
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Fig. 14. APD profiles of the base case 3-mode MMA (blue curves) for various diffusivities showing two distinct branches. In all panels, an open diamond/circle
indicates a burst/spike event. The APD measurements for the family of x-dependent ODEs (red curves) are the same across all panels. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. The structure of the MMA becomes increasingly complex in the limit as D → 0. Here, D = 0.0005. (a) The voltage dynamics consist of backward propagating
waves of (11)k(10)ℓ activity and forward propagating waves of 10 spiking activity. (b) The APD measurements for 20 successive events in the MMA show the
complexity of the spatial structure of the attractor.
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The APD curves are qualitatively the same as in the base case
with D = 1 over a broad range of diffusivities (at least 0.01 ≤

D ≤ 2) for the 3-mode MMA with these parameters, see Fig. 14.
For the APD profiles in Fig. 14, the branches are again close to
those of x-dependent ODEs in the centres of the three regions.
In particular, for all x in the spiking region, the blue and red APD
curves are still almost coincident. In addition, for x in the centre of
the alternator region, the upper (blue) APD branch (11 bursting)
stays close to the x-dependent ODE (red) branch, and the lower
(blue) APD branch (10 spiking) has shorter durations. Finally, for
a large portion (from 0 ≤ x ≲ 8) of the bursting region, the blue
APD branch lies close to the red APD branch.

In the transition intervals between the adjacent regions, the
APD curves of this 3-mode MMA of the PDE (1.1) also differ here
for small values of D from those for the ODE (1.3), as was the
case with D = 1 in Section 2. In particular, for the locations x
in the bursting region close to the transition interval between
the bursting and alternator regions, the APD curve splits into two
branches which remain close to each other (Fig. 14(a) and (b)).
This again reflects the fact that one period of the attractor consists
of two burst events, and the durations of the odd and even bursts
are slightly different. For smaller D still, the two branches begin
to show oscillations in the APD measurements (Fig. 14(c) and (d),
near x ≈ 16).

For smaller diffusivities, D, the spatial structure of the MMAs
becomes increasingly complex (the branches of the APD curves
cross each other more and more). A representative example, with
D = 0.0005, is shown in Fig. 15. Here, the voltage dynamics of
the MMA (Fig. 15(a)) possess travelling wave structures, which
radiate out from a common source at x ≈ 35. For 0 ≤ x ≲ 35,
the active and silent phases are backward propagating, moving
to smaller x values in time. These back-propagating fronts have
numerous regions of complex (and seemingly aperiodic) Farey
sequences (Fig. 15(b), solid blue curves). For 35 ≲ x ≤ 50,
the activity consists entirely of forward propagating 10 spikes
Fig. 15(b), open blue circles).

Based on our simulations, it is currently unknown whether the
MAs of the PDE (1.1) will converge to attractors of the family
f x-dependent ODEs (1.3).

. Bistability

Having introduced and studied an array of n-mode MMAs
f (1.1) and demonstrated their robustness in Sections 2–4, as
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Fig. 16. Single-mode time periodic 11 bursting attractor (with period approximately 170 ms) of (1.1) with the same parameter set as in Figs. 2 and 3. (a) The voltage
ynamics show that the SAOs (dark wine red segments) persist for all x. (b) APD profiles of the single-mode attractor (blue diamonds) and the x-dependent ODE

(red), cf. panel (c) of Fig. 3. (c) Voltage series at x = 5. (d) Voltage series at x = 40.
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well as having compared them to the various bursting and al-
ternator states of the family of x-dependent ODEs and stud-
ied the effects of the diffusivity, D, in Sections 5–6, we now
show numerically that the PDE with Gaussian Iapp(x) is (at least)
bistable. Over a large regime of parameter space, there also exists
a time-periodic single-mode attractor, which consists entirely of
11 bursting (Fig. 16). It is periodic because the first full return
times of the composite map Π S

x ◦ΠA
x are uniform in x (not shown).

Most interestingly, the amplitudes of the SAOs in the single-mode
attractor vary with position (Fig. 16(b), (c) and (d)).

For a wide range of initial conditions, all solutions were ob-
served to converge to one of two attractors: the base case MMA
with three regions Fig. 2 or the single-mode bursting attrac-
tor (Fig. 16). We verified this by performing 100 simulations
of (1.1) subject to (A.2) with the randomized initial conditions,
u0(x) = (−75 + 95X(x), X(x), X(x)), where, for each fixed x, X(x)
∼ U(0, 1) is a uniformly distributed continuous random variable
on the unit interval. Moreover, we observed the same type of
bistability for all p, α, and β shown in Fig. 11.

The presence and persistence of the single-mode bursting
attractor is not predicted by the family of x-dependent ODEs
(1.3). In fact, the attractors of the family of x-dependent ODEs are
identical for the single-mode bursting attractor and for the base
case 3-mode MMA; compare Figs. 3(c) and 16(b), which have the
same (red) APD profiles for the x-dependent ODEs but different
(blue) APD profiles for the attractor of the PDE.

8. Spatial inhomogeneity facilitates MMAs

Until this point, we have focused exclusively on the MMAs of
the PDE (1.1) generated by Gaussian applied currents (1.2), which
model localized currents. In this section, we show numerically
that MMAs are also observed for several other types of applied
current profiles, which reinforces the notion that spatial hetero-
geneity is a key factor that facilitates the emergence of MMAs in
(1.1).

First, we study mollified (decreasing) step currents of the form

Iapp(x) = Ibase +
Imax − Ibase

2

(
1 + tanh

(
x0 − x

ρ

))
. (8.1)

nder variations of the control parameters Ibase and Imax (which
re distinct from those of the Gaussian), the PDE exhibits all of
he behaviours reported previously, including the n-mode MMAs,
aximal spatio-temporal canards mediating the transitions, ro-
ustness with respect to parameter changes, as well as bistability
ith single-mode bursting attractors. For representative illus-
rations, we show 3-mode and 5-mode MMAs (see Fig. 17).
hese and other n-mode MMAs are produced by constructing the
pplied current (8.1) based on the knowledge of the attractors of
he x-dependent ODEs (1.3), just as was done in the case of the
aussian applied current in Sections 2 and 3.
Second, MMAs are also observed for other applied current

rofiles Iapp(x), including sigmoids and mollified bumps, as well as
or spatially varying conductances, gK (x) and gA(x). To understand
he PDE dynamics in these cases, it is also useful to compare to
he known dynamics of the single-cell ODE model, for which the
oundaries in parameter space of the 1s bursting and (1s+1)k(1s)ℓ

lternating modes are well known, see Fig. 5 of [12].

. Discussion

In this section, we summarize our results, present a partial list
f open questions, and discuss MMAs in the context of three other
eaction–diffusion systems.
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Fig. 17. MMAs with (a) 3 modes and (b) 5 modes, obtained by simulating (1.1) with mollified step currents (8.1). (Here, x0 = 20 and ρ = 10.) The 3-mode MMA
in panel (a) has a 11 bursting region (0 ≤ x ≲ 19), a 1011 alternator region (20 ≲ x ≲ 27), and a 10 spiking region (28 ≲ x ≤ 50). The same parameters were used
as in Fig. 2, i.e., gK = 6.1 nS, α = 10 and β = 90, so that Ibase ≈ −0.0058 mA and Imax ≈ 0.9033 mA in (8.1). For the 5-mode MMA in panel (b), the attractor
exhibits 1s bursting oscillations with s varying with x (with s = 6 near x = 0 and s = 2 near x = L). The same parameters were used as in Fig. 8, i.e., gK = 4.4 nS,
Ibase = −1.5 mA, and Imax = 5.5 mA. The width of the alternator region is larger for larger values of ρ, due to the step from Ibase to Imax being more gradual for
larger ρ.
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9.1. Summary

In this article, we have introduced the novel pattern formation
phenomenon of Multi-Mode Attractors observed numerically in a
model of pituitary lactotroph cells coupled spatially via diffusion.
The n-mode MMAs consist of distinct modes of oscillation in n
different regions of the spatial domain. In particular, we have
presented 3-mode and 4-mode MMAs in which there are 3,
respectively 4, different regions, each exhibiting its own mode of
oscillation. The different modes include 10 spiking, 11 bursting
(with one SAO at the end of the active phase), as well as various
types of (11)k(10)ℓ alternators, with k, ℓ = 1, 2, . . .. We have
also presented the existence of 3-, 4-, 5-, and n-mode MMAs in
which the modes consist of 1s bursts with s = 1, 2, 3, . . . small-
mplitude oscillations, with s increasing from one region to the
ext.
The n distinct regions in n-mode MMAs are generated by

pplied currents that vary spatially. We have extensively stud-
ed Gaussian applied currents as a model for spatially-localized
urrents, for which the maximum amplitude is at one end of the
ine of cells and the amplitude decreases in space. We have also
tudied mollified step function applied currents, in which half
f the cells receive one level of constant current and the other
alf a different level of constant current. In all cases, it is the
patial variation in the applied current which is responsible for
he existence of the n distinct modes of oscillation, and we have
sed the known mixed-mode oscillatory dynamics of single cells
1.3) and how they vary with applied current to generate the
-mode MMAs.
By carrying out a complete analysis of the base case 3-mode

MAs, we have also discovered that there exist new types of
aximal spatio-temporal canards in this (and other) reaction–
iffusion models. These maximal spatio-temporal canards lie
n the transition intervals between adjacent regions of distinct
odes. In particular, by examining how the time traces of the
oltage (at constant values of x) change as one varies the location
, we have studied how SAOs are lost in the transition intervals
etween adjacent regions of 11 bursting, 1110 alternation, and
0 spiking. In each transition interval, there is a unique value
f x such that along the time series at that location the profile
f the MMA is a maximal spatio-temporal canard. (Visually, the
ime trace at this unique location resembles the position of the
ool thread in knitting when one pulls it over the tip of the
eedle!) This is an exciting new type of spatio-temporal canard,
omplementing those that were found recently in an Amari-
ype integral differential equation, in which it was shown that
he entire solution in space can exhibit a temporal oscillation of
anard type [23].
Furthermore, we have shown that the n-mode MMAs with

aximal spatio-temporal canards in the transition intervals are
obust, by systematically studying them over broad portions of
arameter space. Variations in the fraction p of the cells that are

in the 10 spiking state, as measured based on the (uncoupled)
single cell dynamics (1.3), directly impact in an approximately
linear manner the width of the region in which the MMA of the
PDE (1.1) is in the spiking mode. Also, increases in the maxi-
mum amplitude of the Gaussian applied current directly result
in increases in the number of cells (near the location of max-
imal current) being in the 11 bursting mode. Moreover, as the
steepness of the Gaussian is decreased, more of the middle region
exhibits alternating modes, with the number of (11)k(10)ℓ alterna-
tor modes with different k and ℓ increasing as the slope becomes
ess steep in the region between the spiking and bursting regions.
his systematic study was carried out explicitly for the base case
-mode MMA, and (data not shown) the trends are similar for the
-mode, 5-mode, and higher mode MMAs of this type.
For all aspects of the MMAs summarized so far, the action

otential duration (APD) was shown to be a useful diagnostic.
t each location x in the domain, the APD measures the length
f time for which the voltage is above threshold (V = −45 mV
n our case). We have shown that the APD curves can be used
o identify the types of the modes of oscillation that exist in
he different regions, the number of different (and more exotic)
ypes of alternators that exist in n-mode MMAs, the periods of
he oscillations in the distinct regions of the MMA, the period
f an overall MMA of the PDE (1.1), as well as the location of
he boundary between different modes of the MMA, via inflection
oints of the APD.
In addition to establishing all of these properties of the MMAs,

e have also established the bistability of the model (1.1). In par-
icular, we reported that there is a 1-mode MMA which co-exists
ith the different types of 3-mode, 4-mode, and 5-mode MMAs,

or all of the various parameter regimes reported here. In con-
unction with this bistability, we have also analysed how the form



T. Vo, R. Bertram and T.J. Kaper / Physica D 411 (2020) 132544 19

f

w

s
d
t
S
d

I

of the initial data influences which attractor is attained. We also
found (data not shown) instances in which the reaction–diffusion
system (1.1) can exhibit more than two attractors.

Finally, we carried out computational studies of two other
important aspects of the geometric structures of the n-mode
MMAs. These studies included how the geometric structures of
the n-mode MMAs of the PDE (1.1) compare to the geometry
of the slow invariant manifolds (and their intersections) which
are known from the study of the single pituitary lactotroph cell
model (1.3) for each x in the domain, see [12]. For each region
in which the MMA exhibits a different mode, we showed that
the time traces of the voltage at points x in the domain are
very close to the steady states of the corresponding x-dependent
ODE over a wide range of x locations in the centre of each
region. The differences between the two curves from the PDE
and the ODE appear near the boundaries of the regions and in
the transition intervals between the regions and are caused by
the diffusive coupling. Moreover, the intersections of the slow
manifolds in the x-dependent ODEs provide a good guide as to
the type of the mode that one sees in an MMA at that same
location. Furthermore, these computational studies also included
an investigation of how the structures of the base case 3-mode
MMA change as the diffusivity, D, becomes smaller. We find that
the dynamics observed in the base case with D = 1 persist over a
broad range of diffusivities (0.01, 2.0), at least. Also, we find that
the D → 0 limit appears not to be a regular perturbation of the
D = 0 case (recall Fig. 15), in which the cells at each location x
are decoupled, and in which the PDE model reduces to the family
(1.3) of uncoupled x-dependent ODEs.

9.2. Open questions about MMAs in (1.1)

This study raises many questions, which we are currently
investigating. First, can one predict more quantitatively how the
number of modes and the locations of their different regions
depend on the spatial variation of the applied current? For ex-
ample, for MMAs such as that shown in Fig. 8, can the number
of modes that are observed in the MMA and their locations
be determined more quantitatively from the parameters of the
applied current? Also, for the base case MMA shown in Fig. 2,
can one predict the width of the 1110 alternator region, which
is much wider than what is expected based on the family of
x-dependent ODEs. More generally, which of the (1s+1)k(1s)ℓ al-
ternators from the ODE (1.3) persist under diffusive coupling in
the PDE (1.1), and how are the widths of the spatial regions
in which they appear determined? Second, can one develop a
rigorous existence theory for these n-mode MMAs? Third, can one
devise a method to determine their stability? and to determine
why the system exhibits bistability between the n-mode MMAs
and the single-mode 11 attractor? Fourth, what can one say about
the dynamics of the n-mode MMAs in the limit as D → 0?
Fifth, are there infinite-dimensional analogs in the PDE (1.1)
of the slow invariant manifolds Sa(x) and Sr (x) that are known
to exist in the finite-dimensional phase spaces of each of the
x-dependent ODEs with applied current Iapp(x)? If so, what do
these manifolds look like? how do they determine the existence
and structure of the n-mode MMAs? and do they intersect in
maximal spatio-temporal canards? Sixth, beyond the diffusive
pituitary cell model (1.1) studied here (and the three models
discussed briefly in Section 9.3, which also possesses n-mode
MMAs), how general is the class of reaction–diffusion models that
exhibit n-mode MMAs?

Additional questions arise from the comparison of the MMA
results here with some of the many results known for chimera
states in coupled oscillators and reaction–diffusion models. First,
the results for (1.1) suggest to examine bursting-, spiking-, and
alternating modes in the coherent domains of chimera states in
coupled oscillators, as well as to examine the boundaries between
such coherent domains and incoherent domains, among other
things to see if canards can also occur there. Second, as pointed
out by an anonymous reviewer, the fact that the MMAs and
spatio-temporal canards arise in locally-coupled systems such as
(1.1) may provide further impetus to search for chimera states in
systems with only local coupling or diffusive coupling.

9.3. MMAs in a forced van der Pol PDE & in Cardiac electrical activity

We have also numerically observed MMAs and the attendant
maximal spatio-temporal canards in the spatially-heterogeneous,
forced van der Pol PDE system,

ut = v − f (u) + εDuxx,

vt = ε(a(x) − u + b cos θ ),
θt = εω.

(9.1)

Here, (u, v, θ ) = (u(x, t), v(x, t), θ (t)) with x ∈ R and t ≥ 0,
(u) =

1
3u

3
− u, b > 0 is the amplitude of the time-periodic

forcing, ω > 0 is the forcing frequency, and the threshold a(x) is
spatially heterogeneous. For the case of D = 0, in which the PDE
reduces to a family of x-dependent ODEs, this model is known to
possess folded nodes, folded saddles, and folded saddle–nodes of
type I. The various canards generated by these folded singulari-
ties in this forced ODE, including the primary strong and weak
canards and the secondary canards, have been studied in [41].
Formulas were derived in the (a, b) parameter plane for the
curves of primary maximal canards. We used this knowledge of
the canards and their bifurcations in the x-dependent ODEs to
construct (Gaussian and sigmoidal) functions a(x) that produced
different types of n-mode MMAs in the PDE (9.1) for a range of
values of the diffusivity D. A representative example is shown in
Fig. 18.

Another context in which the MMAs and their associated max-
imal spatio-temporal canards naturally arise is in cardiac tissue
models. In this context, the s small oscillations in the 1s bursting
modes are labelled as early afterdepolarizations, and they are
correlated with cardiac arrhythmias. For instance, Liu et al. [42]
studied a biophysically detailed 1D cable model (of length L) for
the electrical activity in rabbit heart tissue. The model, which
consists of 26 (ordinary and partial) differential equations, takes
the form

Cm
∂V
∂t

= −Iion + Iapp(x, t) + D∇
2V , (9.2)

here the ionic currents, Iion, are described using a Hodgkin–
Huxley formalism (with associated gating variables), and Iapp(x, t)
is the stimulus current. Spatial heterogeneity arises from two
sources. First, the conductance, gKs, of the slow component of the
delayed rectifier potassium current is a spatial step function,

gKs(x) =

{
gKs1, 0 ≤ x ≤

1
2 L,

gKs2, 1
2 L < x ≤ L,

o that half of the cells in the cable have a maximum IKs con-
uctance of gKs1 and the other half have a maximum IKs conduc-
ance of gKs2; this models repolarization and APD heterogeneities.
econd, a stimulus pulse of magnitude 50 µA cm−2 and τ ms
uration was applied every PCL ms to only 2.5% of the domain

app(x, t) =

⎧⎪⎨⎪⎩
0, 0 ≤ x < 39

40 L,

50
∞∑
k=1

[H(t − k · PCL) − H (t − (k · PCL + τ ))] , 39
40 L ≤ x ≤ L,

where H(·) denotes the Heaviside function and τ was typically
1 ms. For appropriate choices of the stimulus period (PCL), Liu
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0

Fig. 18. An 8-mode MMA of period-3 of the diffusive forced van der Pol PDE (9.1) for ε = 0.01, b = 0.01,D = 1, and Gaussian threshold a(x) = 0.9924 +

.004 exp
(
−

x2
250

)
. Each mode is a combination of relaxation oscillations and mixed-mode oscillations of 1s type for s = 1, 2, 3, and 4. (a) Heat map of the u-

component of the MMA. (b)–(i) Time series of the different modes, zoomed in on a neighbourhood of u = 1 (where folded node canards of the x-dependent family
of ODEs are localized). In (b) x = 3, (c) x = 5, (d) x = 8, (e) x = 10.5, (f) x = 15, (g) x = 20.5, (h) x = 24, and (i) x = 35.
et al. found what appear to be MMAs in the PDE (9.2). In particu-
lar, they reported a 2-mode MMA consisting of a 1110 alternator
region and a 10 region of regular action potentials (see Fig. 2B
of [42]). Similarly, they reported two types of 3-mode MMAs; one
with a 1112 alternator region, a 11 region, and a 10 region (see
Fig. 2C of [42]) and another with 12 region, a 11 region, and a
(11)210 alternator region (see Fig. 2D of [42]), as well as other
MMAs.

We have also observed MMAs in preliminary simulations of a
simplified reaction–diffusion model for early afterdepolarizations
in cardiomyocytes. The EADs that arise in the kinetics of this
simplified model (which consists of only 3 ODEs and is based
on [43]) have been demonstrated to be canard-induced [44,45].
By using our knowledge of these canards in the ODEs, we are able
to construct heterogeneities (with the same functional forms as
in [42]) such that MMAs exist on large open regions of parameter
space in this simplified PDE model for EADs. The MMAs in this
system are time periodic as they are entrained to the periodic
forcing.
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Appendix. Pituitary cell model

A.1. The initial-boundary value problem

We consider a line of diffusively-coupled pituitary lactotrophs,
based on the model of [3], in which there is nearest neighbour
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Table A.1
Standard parameters for (1.1); see [12] for their biological interpretation.
Param Value Param Value Param Value Param Value

Cm 2 pF gK 6.1 nS gA 5 nS gCa 2 nS
gL 0.3 nS VCa 50 mV VK −75 mV Vm −20 mV
Vn −5 mV Va −20 mV Ve −60 mV sm 12 mV
sn 10 mV sa 10 mV se 5 mV τn 40 ms
τe 20 ms L 50 D 1 nS

coupling along the line of length L. The model equations are

Cm
∂V
∂t

= Iapp(x) − (ICa + IK + IA + IL) + D
∂2V
∂x2

,

∂n
∂t

=
n∞(V ) − n

τn
,

∂e
∂t

=
e∞(V ) − e

τe
,

(A.1)

here V (x, t) denotes the membrane potential of the cell at
osition x along the cell line at time t; n(x, t) denotes the gating

variable for the activation of the delayed rectifier potassium
current, IK , and e(x, t) the gating variable for the inactivation
of the A-type potassium current, IA. The kinetics of (1.1) are
based on a minimal model for the electrical activity in a pituitary
lactotroph [3]. The intrinsic ionic current, Iion, consists of calcium,
delayed-rectifier potassium, A-type potassium and leak currents,
which are defined via Ohm’s law by

ICa = gCam∞(V )(V − VCa),
IK = gKn(V − VK ),
IA = gAa∞(V )e(V − VK ),
IL = gL(V − VK ).

The steady state activation and inactivation functions are sig-
moids of the form

u∞(V ) =
1

1 + exp
(

Vu−V
su

) , u ∈ {m, n, a} and

e∞(V ) =
1

1 + exp
(

V−Ve
se

) .

The applied current, Iapp(x), is spatially dependent. Our choice
of standard parameter set is taken from [12] and is listed in
Table A.1. With this choice of parameters, and in the absence of
diffusion and with Iapp(x) ≡ 0, each cell is a 10 spiking cell.

For the initial–boundary value problem, we impose zero-flux
boundary conditions,

Vx(0, t) = 0 and Vx(L, t) = 0, (A.2)

and employ initial profiles of the form

u(x, 0) = u0(x), u ∈ {V , n, e}. (A.3)

he specific choices are detailed in the main text.

emark. The base case 3-mode MMA shown in Fig. 2 was
btained as the time asymptotic solution of (1.1) subject to the
ero-flux boundary conditions (A.2) with the initial condition

0(x) = Γx ∩ {V = −20 mV} ,

here Γx denotes the set of attractors of the family of
-dependent ODEs (1.3), with the Gaussian applied current having
he same control parameters Ibase, Imax, and σ . More specifically,
n 0 ≤ x ≤ 50 the initial data was chosen so that the cells
ith 30 ≤ x ≤ 50 are set initially to exhibit spiking oscillations,
nd the cells for 0 ≤ x < 30 are set initially to exhibit either
lternating or bursting rhythms, according to the steady states
f the x-dependent ODEs. With this initial data, the transient
ynamics reflect these initial rhythms locally. The first band of
ctive phases shows that approximately 40% of the domain is
n the spiking mode and the remaining 60% exhibits a small
scillation before termination of the active phase. As the solution
f the PDE evolves in time, the spiking part of the domain
ppears to invade the bursting part and the two modes occupy
pproximately equal portions of the spatial domain. Eventually,
he solution exhibits the MMA shown in Fig. 2.

All numerical simulations of the PDE (1.1) subject to the
oundary conditions (A.2) with initial conditions (A.3) were per-
ormed using balanced symmetric Strang operator splitting [46].
entred finite differences were used for the Laplacian and
oundary conditions, and the time stepping was performed using
he fourth-order Runge–Kutta method. The results obtained from
entred finite differences were compared with those obtained
rom spectral methods (with Chebyshev basis functions), and
ere found to be in excellent agreement in all cases. We also ver-

fied our numerical results independently using Crank–Nicolson.
oreover, each simulation was run for at least 8000/

√
D ms to

guarantee convergence to the attractor.

A.2. Construction of the spatially inhomogeneous applied current

To construct n-mode MMAs in the PDE (1.1), it has been
specially useful to have detailed knowledge of the bifurcation
tructure of the family of x-dependent ODEs (1.3), as well as the
maximal canards which mediate the bifurcations. Here, for the
sake of completeness, we provide a more complete description
of the bifurcation structure of the kinetics ODEs.

For the parameter set listed in Table A.1 and in the absence
of any applied current, the cells in the x-dependent ODE (1.3)
are 10 spiking cells. The spatial variation in the applied current,
Iapp(x), can then induce bifurcations. The Gaussian Iapp(x) used in
ection 2 is constructed so that it crosses two distinct bifurcations
f system (1.3) (see Fig. 10). Let I0 and I1 denote the applied
urrent values at which the 10 spiking orbits and 11 bursting
orbits change stability, respectively, in the single cell ODE model.
Then, in system (1.3), the cells with Iapp(x) > I1 exhibit 11 pseudo-
lateau bursting attractors. Similarly, the cells with Iapp(x) < I0
xhibit spiking attractors, and cells with I0 < Iapp(x) < I1

exhibit attractors with alternating signatures that can be simple
(e.g., 1011 rhythm) or can be complex. More specifically, cells in
the alternator region with Iapp(x) ≈ I0 exhibit (10)k11 attractors
for k ∈ N, whilst cells in the alternator region with Iapp(x) ≈ I1
exhibit 10(11)k attractors for k ∈ N. The stability plateaus of the
complex signatures, (10)k11 and 10(11)k, are substantially smaller
than that of the simple 1011 alternator; see Fig. 2(b) of [12]. That
is, in the ODE, the alternator region is dominated by a stable 1011

alternator. Similar statements apply for the 1s bursting modes and
the associated (1s+1)k(1s)ℓ alternator modes, for s = 1, 2, . . ..

In terms of the slow invariant manifolds and maximal canards,
bifurcations of the pseudo-plateau bursting occur in two distinct
ways [12]. That bifurcation theory may be applied directly to the
family of x-dependent ODEs (1.3). In the first case, parameter
variations (such as changes in the maximal conductance of the
delayed rectifier potassium channels or the applied current) cause
twisting of the attracting and repelling slow manifolds, Sa(x)
and Sr (x), of system (1.3). This twisting can lead to a tangency
between Sa(x) and Sr (x) that then perturbs to a pair of transverse
intersections. In this way, new maximal canards and hence ad-
ditional small oscillations are generated. In the second case, the
structure of the slow manifolds essentially remains fixed with
respect to parameter variations (such as changes in the maximal
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conductance of A-type potassium channels), whereas the position
of the pseudo-plateau bursting attractor moves relative to the
maximal canards. In this scenario, bifurcations occur when the
bursting orbit crosses a maximal canard resulting in the loss or
gain of a small oscillation.
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