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a b s t r a c t

Bursting oscillations are common in neurons and endocrine cells. One type of bursting model with two

slow variables has been called ‘phantom bursting’ since the burst period is a blend of the time constants

of the slow variables. A phantom bursting model can produce bursting with a wide range of periods:

fast (short period), medium, and slow (long period). We describe a measure, which we call the

‘dominance factor’, of the relative contributions of the two slow variables to the bursting produced by a

simple phantom bursting model. Using this tool, we demonstrate how the control of different phases of

the burst can be shifted from one slow variable to another by changing a model parameter. We then

show that the dominance curves obtained as a parameter is varied can be useful in making predictions

about the resetting properties of the model cells. Finally, we demonstrate two mechanisms by which

phase-independent resetting of a burst can be achieved, as has been shown to occur in the electrical

activity of pancreatic islets.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Bursting oscillations, episodes of electrical activity followed by
quiescence, are common in neurons and endocrine cells. Many
mathematical models for bursting cells have been developed
(Coombes and Bressloff, 2005), and singular geometric perturba-
tion analysis (also called fast/slow analysis) has proven to be very
useful in the analysis of such models (Rinzel, 1987; Rinzel and
Ermentrout, 1989). This makes use of the separation of time
scales between those variables that change rapidly (the fast

variables) and those that change slowly (the slow variables). Many
models contain a single slow variable, for example, Butera et al.
(1999) and Chay and Keizer (1983), while others contain two or
more slow variables, for example, Bertram and Sherman (2004)
and Rinzel and Lee (1987). One type of bursting model with two
slow variables produces phantom bursting, so named because the
burst period can be a blend of the slow variables (Bertram et al.,
2000); therefore, the search for a single slow process with time
constant similar to the burst period in experimental studies
would be fruitless.

In the phantom bursting model described in Bertram et al.
(2000) there are two slow variables, s1 and s2, with very different
time constants, ts2

bts1
. As a result, s2 changes appreciably slower
ll rights reserved.

).
than s1. Depending on the values of other parameters, the
bursting that is produced may be fast (short period), driven by
s1; slow, driven by s2; or medium, driven by a combination of both
slow variables. In pancreatic b-cells, the cells for which the model
was developed, s1 could correspond to the fraction of K+ channels
activated by cytosolic Ca2 + and s2 to the fraction of ATP-sensitive
K+ channels activated by the ratio of ADP to ATP or to the Ca2 +

concentration in the endoplasmic reticulum (Bertram and
Sherman, 2004).

Phantom bursting has been analyzed using fast/slow analysis
to understand the mechanism of bursting and the wide range of
burst periods that can be produced (Bertram et al., 2000; Bertram
and Sherman, 2004, 2005). While this analysis clarified why the
different slow variables control the fast or slow bursting and how
the two work together to produce medium bursting, the relative
contributions of the two slow variables to the generation of the
medium bursting was not determined. That is, for a given
medium bursting pattern, it was never determined quantitatively
how much s1 contributed to the burst period and how much s2

contributed. In this article, we describe a measure, which we call
the dominance factor, of the relative contributions of the two slow
variables to the bursting produced by the phantom bursting
model described in Bertram et al. (2000). Since the contributions
of the variables may be different during the active and silent
phases of bursting, we compute dominance factors for both
phases. Using this tool, we demonstrate how the control of
different phases of the burst can be shifted from one slow variable

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2011.01.042
mailto:bertram@math.fsu.edu
dx.doi.org/10.1016/j.jtbi.2011.01.042


M. Watts et al. / Journal of Theoretical Biology 276 (2011) 218–228 219
to another by changing a model parameter. We then show that
the dominance factor curves obtained as a parameter is varied can
be useful for making predictions about the resetting properties of
the model cells.

One feature of bursting driven by a single slow variable is that
it is possible to reset the oscillation from the silent to active phase,
or vice versa, with a sufficiently large perturbation. The phase that
follows the reset should be shorter than normal, since the slow
variable has not had time to reach its typical starting point for that
phase. Resetting experiments were performed on intact pancreatic
islets by Cook et al. (1981) to test these predictions. They found
that resetting was indeed possible, but that the phase following
the reset was often of full length. That is, for most silent–active
resets the following active phase was no shorter than normal, and
for most active–silent resets the following silent phase was of full
duration. We refer to these as full-length resets. Full-length resets
in both directions (bidirectional full-length resets) were shown in
the same islet in one case (Cook et al., 1981, Figs. 3 and 4). A later
study showed full-length silent–active resets, but short active–
silent resets (Zimliki et al., 2003). The existence of a full-length
reset in either direction indicates that the bursting is driven by
more than one slow variable. But how? We demonstrate that a
full-length reset can be produced if one slow variable determines
the silent phase duration while the other slow variable determines
the active phase duration. This explanation was postulated earlier
(Smolen and Sherman, 1994) and demonstrated with a b-cell
model in which the time constants were adjusted so that one slow
variable changes rapidly during the silent phase (so that the other
slow variable controls the silent phase duration), and vice versa for
the active phase. We use a similar approach to account for cases
where full-length resets occur in both directions. However, uni-
directional full-length resets can be accounted for with the
phantom bursting model by simply adjusting a system parameter
so that the dominance curves for the active and silent phases are
well separated. We illustrate this, and the case of bidirectional
full-length resets, later. Thus, the dominance factor is both a tool
for understanding the dynamics of fast/slow systems with two
slow processes and a practical tool for making testable predictions.
2. Generic phantom bursting model

The generic phantom bursting model for pancreatic b-cells is
composed of fast and slow subsystems (Bertram et al., 2000). The
fast subsystem consists of the cell’s plasma membrane potential
(V) and the activation variable (n) for the delayed rectifier K+

current. The slow subsystem consists of two distinct slow nega-
tive feedback variables, s1 and s2. These are activation variables
for slowly activating K+ currents Is1 and Is2, respectively. Both s1

and s2 are slow in relation to V and n, which operate on a time
scale of tens of milliseconds. However, the s1 variable, with time
constant ts1 ¼ 1 s, is considerably faster than s2 with ts2 ¼ 2 min.

The model equations are

dV

dt
¼�ðICaþ IKþ Is1þ Is2þ ILÞ=Cm ð1Þ

dn

dt
¼ ðn1ðVÞ�nÞ=tnðVÞ ð2Þ

ds1

dt
¼ ðs11ðVÞ�s1Þ=ts1 ð3Þ

ds2

dt
¼ ðs21ðVÞ�s2Þ=ts2 ð4Þ

with ionic currents:

ICa ¼ gCam1ðVÞðV�VCaÞ, IK ¼ gK nðV�VK Þ ð5Þ
Is1 ¼ gs1s1ðV�VK Þ, Is2 ¼ gs2s2ðV�VK Þ ð6Þ

IL ¼ gLðV�VLÞ: ð7Þ

ICa is an inward Ca2 + current that activates very rapidly (assumed
instantaneous), IK is a rapidly activating outward K+ current, and
IL is a leak current. Cm is the membrane capacitance of the cell.
The g parameters are the maximum current conductances, and
VCa, VK, and VL are the reversal potentials. The activation curves for
m, n, s1, and s2 are sigmoidal Boltzman functions, which increase
with membrane potential:

m1ðVÞ ¼
1

1þexp½ð�22�VÞ=7:5�
, n1ðVÞ ¼

1

1þexp½ð�9�VÞ=10�
,

ð8Þ

s11ðVÞ ¼
1

1þexp½ð�40�VÞ=0:5�
, s21ðVÞ ¼

1

1þexp½ð�42�VÞ=0:4�
:

ð9Þ

The only voltage-dependent time constant is tn:

tnðVÞ ¼
9:09

1þexp½ðVþ9Þ=10�
: ð10Þ

As V is varied over the interval [�55,�20] mV, tn ranges from
6.2 to 9.0 ms. The fast subsystem governs spiking during the
active phase of a burst, while the slow subsystem controls when
the spiking is turned on and off. The spiking activity causes s1 and
s2 to slowly increase. When these variables are sufficiently large,
Is1 and Is2 suppress the action potentials, and the cell returns to a
hyperpolarized silent state. Model equations were solved numeri-
cally using the CVODE algorithm implemented in the XPPAUT
software package (Ermentrout, 2002). Bifurcation diagrams were
also computed with XPPAUT. Computer codes are available as
freeware from www.math.fsu.edu/~bertram/software/islet.

When the Is1 conductance (gs1) is large, bursting is driven by s1.
Since ts1 ¼ 1 s, the burst period is only a few seconds (Fig. 1A). For
this fast bursting, s2 is almost constant, while s1 varies with a
sawtooth pattern (Fig. 1B). In fact, if s2 is clamped at its average
value, the bursting continues almost unaltered. To analyze the
bursting, we performed a fast/slow analysis. The s1 variable is
treated as the bifurcation parameter for the fast subsystem with
s2 held constant at its average value. The fast subsystem bifurca-
tion diagram, or z-curve, is shown in Fig. 2A. The stationary
solutions form the z-curve. The solid part of the curve represents
the stable solutions, and the dashed part represents unstable
solutions. There are two saddle node bifurcations (triangle) where
the curve folds. A branch of periodic solutions emerges from a
Hopf bifurcation (circle) and represents action potentials (both
minimum and maximum voltages are indicated). The periodic
branch terminates at an infinite-period homoclinic bifurcation
(square). The burst trajectory is superimposed over the z-curve
showing the system dynamics, with s1 no longer treated as
a parameter. The z-curve now plays the role of a generalized
V-nullcline, and the s1-nullcline is added to the figure. During the
silent phase, the burst trajectory follows the bottom of the
z-curve, moving leftward, since it is to the right of the s1-nullcline.
Once the lower knee is reached, the phase point moves to the only
attractor, the periodic branch that represents the spiking phase of
the burst. Since it is now to the left of the s1-nullcline, it moves
rightward until the homoclinic bifurcation is reached, at which
time the phase point returns to the bottom branch to restart the
silent phase.

When gs1 is lowered, variations in Is1 are insufficient to move
the system between active and silent phases. This requires a
contribution from Is2. During the active phase, s2 slowly increases
and slowly decreases during the silent phase (Fig. 1D), increasing
and decreasing the current, respectively. Medium bursting is

www.math.fsu.edu/~bertram/software/islet
www.math.fsu.edu/~bertram/software/islet
www.math.fsu.edu/~bertram/software/islet
www.math.fsu.edu/~bertram/software/islet
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Fig. 2. (A) Fast subsystem bifurcation diagram of fast bursting (gs1 ¼20 pS) with s1 as the bifurcation parameter and s2 ¼ 0.436. The s1-nullcline and burst trajectory are
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fixed at its maximum value (0.633) achieved during the bursting, while the curve on the right has s2 fixed at is minimum value (0.600). The burst trajectory is

superimposed on the diagram. Arrows indicate direction of movement of the z-curve driven by variations in s2.
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produced (Fig. 1C) with period influenced by both s1 and s2. If s2 is
clamped, the bursting is replaced by a steady-state solution or
continuous spiking. If s1 is clamped, the burst period greatly
increases. Fig. 2B shows two z-curves for medium bursting. The
curve on the left has s2 fixed at its maximum value achieved
during a burst, while the curve on the right has s2 fixed at its
minimum value. During the active phase of a burst, the phase
point gets caught at the intersection of the periodic branch with
the s1-nullcline. As s2 increases, the z-curve shifts to the left so the
homoclinic bifurcation terminating the periodic branch moves
past the nullcline. The trajectory then enters the silent phase.
While in the silent phase, the phase point gets caught at the
intersection of the bottom branch of the z-curve with the
s1-nullcline. The burst period is determined both by the time
required for the phase point to move along the z-curve (controlled
by the s1 dynamics) and the time required to translate the z-curve
and periodic branch back and forth (controlled by the s2

dynamics). Our analysis aims to quantify these contributions.
Further reduction in gs1 leads to a further increase in the burst
period. Bursting is now solely driven by s2 (Fig. 1E). Since
ts2 ¼ 2 min, the burst period is nearly 2 min. The s1 time course
is a square wave, characteristic of the fast variable in a relaxation
oscillation. In fact, s1 is a part of the fast subsystem. While s1

plateaus at its highest value during the active phase, s2 varies
with a sawtooth pattern (Fig. 1F). In the extreme cases where gs1

is very big or very small, we can say that bursting is fast or slow
based on the period of oscillations. However, it is difficult to
define precisely where the transition occurs from fast to medium
and from medium to slow bursting. Using the method of quanti-
fication described later, we will be able to define these transitions.

The generic phantom bursting model can be reduced to a
phantom relaxation oscillator by making the activation kinetics of
the delayed rectifier current instantaneous. That is, n¼ n1ðVÞ in
Eq. (5). This replaces the spikes of an active phase of bursting with
a depolarized voltage plateau. When gs1 is large, a fast relaxation
oscillation is produced, which is driven by s1. This can be analyzed
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in the s1–V plane, with s2 held constant at its average value.
In Fig. 3A, the solid z-shaped curve is the V-nullcline, given by

s1 ¼�
ICaðVÞþ IK ðVÞþ ILðVÞ

gs1ðV�VK Þ
�

gs2

gs1
s2: ð11Þ

The s1-nullcline is the dotted curve in Fig. 3A and is given by

s1 ¼ s11ðVÞ: ð12Þ

As in Fig. 2A the s1-nullcline intersects the z-shaped curve, now
the V-nullcline, on the middle branch, and the full-system
equilibrium is unstable. The phase point travels along the bottom
branch during the silent phase and the top branch during the
depolarized phase. This is a standard relaxation oscillation
(Fig. 3C). When gs1 is reduced the relaxation oscillation is driven
by both s1 and s2 (Fig. 3D). As in Fig. 2B, in the s1–V plane, the
V-nullcline moves with changes in s2 to end the active and silent
phases (Fig. 3B). In fact, Eq. (11) makes it evident that increasing
s2 translates the V-nullcline leftward.
3. Method of quantification

We now develop a method for quantifying the contribution
that each slow variable makes to the active and silent phases of
the oscillation. We begin with the phantom relaxation oscillation
and rely on the fact that activity is terminated and restarted as
the slow variables increase during the active phase and decrease
during the silent phase. The method is illustrated in Fig. 4. At the
beginning of the active phase (AP) of a relaxation oscillation the
time constant, t, for one of the slow variables is increased by dt.
This slows down the slow variable, so if slow variation of this
variable contributes to the termination of the active phase, the
active phase should increase by dAP. The larger the slow variable’s
contribution to the active phase duration, the larger the dAP. If the
variable has no influence on the active phase duration, then
slowing it down will give dAP ¼ 0. The procedure is repeated
for the second slow variable and the silent phase (SP). Note that
we perturb only one variable’s time constant at a time, at the very
beginning of a phase, and only look at how this perturbation
affects that phase. We do not let the system equilibrate after a
time constant is changed, because then both variables will vary
over a slightly different range than before the perturbation. This
change in the range of variations of the slow variables may also
lead to a change in the AP and SP durations, compounding the
effect of the original perturbation in time constant.

We consider the system to be in the active phase when
V 4�40 mV and to be in the silent phase when V o�40 mV.
Now, a measure of the contribution of s1 to the duration of the
active phase is given by dAPs1=dts1, an approximation to the
derivative of the AP duration with respect to ts1. Then, the
normalized contribution of s1 to the AP duration (Cs1

AP) is given by

Cs1
AP ¼ ðdAPs1=dts1Þðts1=APÞ: ð13Þ

With Cs1
AP defined in this way, if s1 is the only slow variable

contributing to the duration of the AP, an increase in ts1 of 5% so
that dts1=ts1 ¼ 0:05 would result in an increase in AP of 5% so that
dAPs1=AP¼ 0:05, and therefore Cs1

AP ¼ 1. If s1 has no effect on the
active phase duration, then Cs1

AP ¼ 0. In most cases both s1 and s2

will contribute, so 0oCs1
AP o1. Similarly, we can quantify the

effect that s1 has on the silent phase duration by increasing the
time constant at the beginning of the SP and measuring the effect
that it has on the SP. Thus, we have

Cs1
SP ¼ ðdSPs1=dts1Þðts1=SPÞ: ð14Þ
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Likewise, we use the same technique on the s2 variable to obtain

Cs2
AP ¼ ðdAPs2=dts2Þðts2=APÞ, ð15Þ

Cs2
SP ¼ ðdSPs2=dts2Þðts2=SPÞ: ð16Þ

By comparing Cs1
AP to Cs2

AP and Cs1
SP to Cs2

SP , we can evaluate the
respective contributions of s1 and s2 to AP and SP durations. This
is facilitated by using a measure which we call the dominance
factor (DF) for each phase:

DFAP ¼
Cs1

AP�Cs2
APffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCs1
APÞ

2
þðCs2

APÞ
2

q , DFSP ¼
Cs1

SP�Cs2
SPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCs1
SPÞ

2
þðCs2

SPÞ
2

q : ð17Þ
Cs2

C

Cs1

θ

slow (DF = −1)

medium

fast (DF = 1)

Fig. 5. Interpretation of the dominance factor, DF ¼ cosy�siny. When y¼ 0, DF ¼ 1

and the oscillation is fast. When y¼ p=2, DF ¼ �1 and the oscillation is slow. Medium

frequency oscillations occur when yAð0,p=2Þ and DFAð�1,1Þ.
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Defined in this way, the dominance factor has a trigonometric
interpretation in the Cs1–Cs2 plane (Fig. 5). The length of the

vector C
-

¼ ðCs1,Cs2Þ is jC
-

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCs1Þ

2
þðCs2Þ

2
q

. Then, Cs1 ¼ jC
-

jcosy,

Cs2 ¼ jC
-

jsiny, and from Eq. (17), DF ¼ cosy�siny. When s1

dominates y¼ 0 and DF ¼ 1, and when s2 dominates y¼ p=2

and DF ¼�1. For all y between 0 and p=2, DF is between these
two extremes. The DF can go outside of this range if either Cs1 or
Cs2 is negative (as discussed later).

Fig. 6 shows the results of applying this method of quantification
to the phantom relaxation oscillator for various values of gs1. Here
and in other figures, we use dt=t¼ 1. The rationale for using this
somewhat large value is discussed later for the case of phantom
bursting. Fast oscillations occur with high values of gs1, while slow
oscillations occur with low values of gs1 (Fig. 6A). The C values for
various values of gs1 are shown in Fig. 6B. Cs1

AP (open circle) and Cs1
SP

(closed circle) start near 0 for small values of gs1, then increase to
1 as gs1 increases, while Cs2

AP (open triangle) and Cs2
SP (closed triangle)

start at 1 and decrease to 0. Fig. 6C shows DFAP (open circles) and
DFSP (closed circles). For low values of gs1, DF is close to �1
indicating that s2 is the variable driving the oscillations, which
therefore have a large period (Fig. 6A). For high values of gs1, DF is
close to 1 indicating that s1 is the variable driving the oscillations,
which have a short period since ts1 is small. It also shows that the
switch between s1-driven oscillations and s2-driven oscillations
occurs near gs1¼20 pS. However, the switch of control does not
occur simultaneously for the AP and the SP. When gs1¼20 pS the AP
is driven primarily by s2, while the SP is primarily driven by s1. This
difference in contribution to the AP and SP between s1 and s2 is not
simply due to the difference in their time constants. The difference
in their time constants leads to s1’s dominance of fast bursting and
s2’s dominance of slow bursting. Rather, it is due to the difference in
their activation. Fig. 3B illustrates that the phase point gets stuck in
AP
SP

S1(AP)
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t here and in other figures that follow. The results obtained using dt¼ 0:05t are

active and silent phases and for s1 and s2. (C) For low values of gs1 the DF is close to

gs1 DF is close to 1 indicating that s1 is the variable driving slow oscillations.



Time

s 1

Is1 Increasing

Is1 Decreasing

Fig. 8. As s1 rises during an active phase, Is1 increases, which promotes the

termination of the AP. However, Is1 starts to decline toward the end of the burst,

leading to burst prolongation. Therefore, an increase in the time constant for s2 (ts2),

leads to a longer decline in s1 (bold part of curve), which acts to increase AP duration.

M. Watts et al. / Journal of Theoretical Biology 276 (2011) 218–228 223
the AP shown by the vertical trajectory as s2 moves the V-nullcline
leftward, ending the AP. The slow increase in s2 moves the
V-nullcline leftward, while the phase point is at the upper inter-
section of this nullcline with the s1-nullcline. Once this intersection
disappears, the phase point moves vertically downward, and then
to the left. While it is not as clear for the SP, s2moves the lower knee
before the phase point reaches it. Therefore, the phase point does
not get stuck. So, the contribution of s2 to the termination of the SP
is minimal, while s2 controls the termination of the AP.

Fig. 7 shows the results of applying the method of quantification
to the phantom bursting model for various values of gs1. These
results are similar to those obtained for the relaxation oscillator
(Fig. 6). Thus, we see a similar transition between s1-dominated and
s2-dominated dynamics, except that now the switch of control
between s1 and s2 occurs at a lower value of gs1. At gs1¼ 8 pS, the
control is mixed; s1 controls the length of the SP, while s2 controls
the length of the AP. While a small dt works well with the relaxation
oscillator, it can produce very jagged contribution (C) curves when
used with bursting. This is because a small dt can lead to the
addition of an extra spike in some cases, but not others. The curves
are smoother with a larger dt (dt¼ t). We verified that, in the case
of the phantom relaxation oscillator, the dominance factor curves
are similar for dt¼ 0:05t and dt¼ t (used in Figs. 6, 7 and 9).

During the active phase of a fast burst s1 increases mono-
tonically (Fig. 1B). During the active phase of a medium burst s1

first increases, but then decreases (Fig. 1D and Fig. 8). This
decrease occurs when the trajectory is ‘‘stuck’’ near the end of
the periodic branch. The value of s1 averaged over a spike declines
as s2 rises and shifts the z-curve leftward, since now the spike
spends a longer period of time at its nadir, underneath (and to the
right of) the s1-nullcline. In other words, s1 declines due to the
decrease in spike frequency near the end of the active phase. If ts2

is now increased, the duration of the decreasing phase of s1 will
be extended. This extra decrease in s1 provides an extra increase
in the AP duration. Fig. 8 is an exaggerated picture of the decrease
in s1 leading to burst prolongation. As s1 declines, the hyperpo-
larizing current Is1 also declines, tending to increase the AP
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duration. As a result, Cs2
AP 41, as seen in Fig. 7B for gs1 near 8 pS.

This does not occur in the relaxation oscillator since there are no
spikes to bring the trajectory to the right of the s1-nullcline.

There are also cases during medium bursting where Cs1
AP o0, so

that increasing ts1 decreases the active phase duration. This is
again due to the decline in s1 during the latter part of the active
phase in medium bursting. If ts1 is increased, s1 rises more slowly
during the active phase and enters its declining phase much later
in the burst. Once it enters the declining phase it declines more
slowly. Together, the active phase prolongation, due to the s1

decline during the active phase, is reduced. The end result is that
slowing down s1 makes the active phase shorter, so Cs1

AP o0.
We can use the dominance curves to provide, for the first time,

a quantitative distinction between the types of phantom bursting.
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For some small e40 (we choose e¼ 0:15), bursting can be defined
as ‘‘fast’’ if DFSP , DFAP 41�e. Bursting is ‘‘slow’’ if DFSP, DFAP o�
ð1�eÞ. Bursting is ‘‘medium’’ if �ð1�eÞoDFSP , DFAP o1�e.
From Fig. 7, slow bursting occurs for gs1o6:75 pS; medium
bursting occurs for 6.75 pS ogs1o11 pS; and fast bursting occurs
for gs1411 pS.

In computing the dominance curves in Fig. 7, gs1 was varied to
produce the different types of bursting. For fast bursting, both DFAP

and DFSP were close to 1, while for slow bursting both DFAP and
DFSP were close to �1. This indicated that either s1 or s2 controlled
both phases of the burst. On the other hand, for medium bursting
(gs1 � 8 pS), we can have DFAP o0 and DFSP 40, showing that each
slow variable controls one phase (Fig. 7C). If the dominance curves
are computed by varying gs2 and keeping gs1 constant at 8.5 pS, one
slow variable controls the active phase while the other controls the
silent phase over most of the range (Fig. 9). As gs2 is increased, the
burst period decreases (Fig. 9A). Fig. 9B shows the DF values for a
range of values of gs2. For low values of gs2, DFAP is close to �1 and
DFSP is close to 1 indicating that s2 drives the active phase, while s1

drives the silent phase. In other words, as gs2 is varied, the z-curve
shifts from left to right, changing which phase the trajectory gets
stuck in. Therefore, the DF curves intersect. Fig. 10C shows the fast
subsystem bifurcation diagram for gs2¼20 pS. Here the phase point
gets stuck in the AP and has to wait for s2 to move the z-curve to
the left, terminating the AP. The phase point does not get stuck in
the SP. However, for high values of gs2 the DFAP is close to 1 and
DFSP is close to �1 indicating that s1 is the variable driving the AP,
while s2 is driving the SP. Fig. 10A shows the fast subsystem
bifurcation diagram for gs2¼100 pS. Now, the phase point gets
stuck in the SP, and has to wait for s2 to terminate the SP. Fig. 10B
shows the fast subsystem bifurcation diagram for gs2¼40 pS. Now,
the phase point never gets stuck; s1 is in control of both the AP and
SP. Thus, at extreme values of gs2 each slow variable contributes to
a phase of the burst, while with gs2 held constant and gs1varied, a
single variable controls both phases at the extreme gs1 values. By
applying our definition of medium bursting, as gs2 varies, the
bursting goes from medium to fast then back to medium.
4. Resetting

When a relaxation oscillator is perturbed from the silent (active)
to the active (silent) phase half-way through the silent phase, the
immediately following active phase is reduced. This is also true for
a bursting oscillation driven by a single slow variable. When there is
more than one slow variable, the resetting properties can be
different. In fact, if the dominance curves are appropriate, full-
length resets may be achieved for both the phantom relaxation
oscillator (not shown) and the phantom burster (shown below).

The condition required for a full-length reset is that one slow
variable, s1, controls one phase of the oscillation while the second
slow variable, s2, controls the other phase. This can be achieved by
adjusting gs2 so that the dominance curves become separated as
in Fig. 9C. In Fig. 9C, for low values of gs2, DFAP ��1, while
DFSP � 1. This means that s1 is in control of the SP, while s2

controls the AP. For high values of gs2, DFAP � 1 and DFSP��1, so
s1 is in control of the AP and s2 controls the SP.

When s2 is in control of the active phase, s1 reaches its maximum
value very early in the AP, while s2 increases monotonically. If the
model cell is reset before the end of the active phase, and if s1

controls the silent phase duration (as in Fig. 9C, for gs2 ¼ 27 pS),
then the silent phase will have a full duration. That is, s1 will be
starting at the same value almost regardless of when the reset
occurs in the active phase. This is shown in Fig. 11A. However, when
resetting half-way through the silent phase, the induced active
phase is reduced (Fig. 11B). This occurs because s2 is in control of the
active phase; s2 is between its minimum and maximum values
when the reset occurs, so during the subsequent AP it need only
travel a portion of the distance required to terminate the AP. In this
case, silent–active resetting is phase dependent (Fig. 11C); the
duration of the induced AP is closer to the unperturbed AP duration
the longer the system is in the SP before the reset. On the other
hand, active–silent resetting is approximately phase independent, if
resetting occurs after s1 reaches its maximum value (Fig. 11D). That
is, a reset very early in the active phase does not result in a full-
length silent phase, but resets applied at most points during the AP
do produce nearly full-length silent phases as in Fig. 11C.

When s2 is in control of the silent phase, and s1 controls the
active phase (e.g., for gs2¼97 pS, Fig. 9C), s1 reaches its minimum
value early in the silent phase, while s2 decreases monotonically.
If the model cell is reset before the end of the silent phase, then
the active phase will have a full duration. That is, s1 will be
starting at the same value almost regardless of when the reset
occurs in the silent phase. This is shown in Fig. 12B. However,
when resetting half-way through the active phase, the induced
silent phase is reduced (Fig. 12A). This occurs because s2 is in
control of the silent phase; s2 is between its minimum and
maximum values when the reset occurs, so during the subsequent
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SP it need only travel part of the distance required to terminate
the SP. In this case, silent–active resetting is nearly phase
independent (Fig. 12C) and the active–silent resetting is phase
dependent (Fig. 12D).
5. Bidirectional full-length resets

So far we have described full-length resets in one direction. By
changing model parameters, we can get either active–silent or
silent–active full-length resets. Such full-length resets are con-
sistent with experimental data from pancreatic islets (Cook et al.,
1981). However, in Cook et al. (1981) there was an example in
which full-length resets occurred in both directions (bidirectional

full-length resetting) in an islet, which cannot be accounted for
with the model in its current form. However, with a few
modifications the model can reproduce this data. The idea is to
design the system so that s1 controls the active phase and s2

controls the silent phase. Then, make the s1 and s2 time scales
voltage dependent, so that s1 is slow during the active phase and
fast during the silent phase, and vice versa for s2. Time scales that
achieve this are

ts1ðVÞ ¼ ts1,minþts1,maxf1ðVÞ, ts2ðVÞ ¼ ts2,minþts2,maxf2ðVÞ ð18Þ

with

f1ðVÞ ¼
1

1þexp½�ð40þVÞ=3�
, f2ðVÞ ¼

1

1þexp½ð42þVÞ=3�
ð19Þ
and ts1,min ¼ 100 ms, ts2,min ¼ 100 ms, ts1,max ¼ 10 s, and ts2,max ¼

10 s.
With these changes to the model, we get bursting as shown

in Fig. 13A. During the active phase ts1 � 10 s, while during the
silent phase ts1 � 100 ms (Fig. 13B). The s2 time scale, ts2, is the
opposite (Fig. 13B). Thus, s1 quickly resets to its minimum value
during the silent phase, while s2 quickly achieves its maximum
value during the active phase (Fig. 13C). During the active phase,
s2 almost instantaneously achieves its maximum value, while s1

rises monotonically. Likewise, during the silent phase, s1 almost
achieves its minimum value instantaneously, while s2 decreases
monotonically (Fig. 13C).

Bidirectional full-length resetting is now possible. Since s1

quickly reaches its minimum value during the silent phase, when
reset to the active phase s1 has to rise the normal amount to reach
its maximum value, yielding a full-length silent–active reset
(Fig. 14A). Since s2 quickly reaches its maximum value during
the active phase, when reset to the silent phase s2 must decrease
the normal amount to end the silent phase, producing a full-
length active–silent reset (Fig. 14B).
6. Discussion

We developed a measure, the dominance factor, to quantify
the contributions of two slow variables to a phantom relaxation
oscillation and phantom bursting. This is useful for determining
which slow variable controls each phase of the oscillation or
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whether the two work together. The dominance factor also allows
us to quantitatively categorize bursting into fast, medium, and
slow (Fig. 7). In the past, it has been difficult to distinguish
between medium and slow bursting in a quantitative way. With
the dominance factor, it is also easy to see when the control of the
active and silent phases is shifted from one slow variable to the
other as a parameter is varied (Figs. 6, 7 and 9).

The method used here was previously developed in the
context of a neural relaxation oscillator with two types of
negative feedback variables, one divisive and one subtractive



3020100
Time (sec)

0

0.5

1

s 1
 a

nd
 s

2

302010

302010

0
0

10

5

τ s
1 

an
d 

τ s
2 

(s
ec

)
0

−70

−50

−30

−10

V
 (m

V
)

τs2

τs1

s2

s1

Fig. 13. Bursting produced by the model with V-dependent s1 and s2 time scales (Eqs. (18) and (19)), gs1¼16 pS and gs2¼30 pS. (A) Voltage time course. (B) ts1 � 10 s

during the active phase and � 100 ms during the silent phase. s1 is in control of the active phase. (C) ts2 � 100 ms during the active phase and � 10 s during the silent

phase. s2 is in control of the silent phase.

0
Phase

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e 
A

P
 D

ur
at

io
n

Phase

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e 
S

P
 D

ur
at

io
n

Unperturbed AP
Unperturbed SP

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 14. Bidirectional resetting produced by the bursting model with V-dependent s1 and s2 time scales, gs1¼16 pS, and gs2¼30 pS. (A) Silent–active phase-independent

resetting. (B) Active–silent phase-independent resetting.

M. Watts et al. / Journal of Theoretical Biology 276 (2011) 218–228 227
(Tabak et al., submitted). Here, s1 and s2 are both subtractive, so
the analysis developed in the earlier paper predicts that the
contribution of each variable should be the same for the active
and silent phase. Also, the contributions of s1 and s2 to both the
active and silent phase should depend on the inverse ratio of their
time constants. Given the difference in time scales between s1 and
s2, s1 should control both the active and silent phases. We show
here that this is true only for fast bursting. As gs1 is lowered, the
contributions vary quantitatively, but at some point a qualitative
change occurs due to the phantom effect. That is, the system
becomes stuck in the active or silent phase and has to wait for s2.
In that case, the slower s2 starts to control the phase. The longer
the system is stuck, the more the s2 controls the duration of that
phase. Also, unless parameters are tuned precisely, as gs1 or gs2 is
varied, the system will first be stuck in one phase, but not the
other. Thus, the contribution of each variable to the active and
silent phases will be different. For sufficiently small gs1, the
system will be stuck in both phases so s2 will control the duration
of both phases.

The method assumes that both slow negative feedback vari-
ables are the only variables responsible for burst termination and
that they vary monotonically during each phase of the burst. In
that case, all the C values should be positive and below 1. Also, Cs1

+ Cs2
¼ 1. We have good agreement to this rule in the relaxation

case (Fig. 6), but not in the bursting case (Fig. 7). This is because
during medium bursting s1 does not vary monotonically. Instead,
it quickly reaches a high value during the active phase, then
slowly decreases since the spikes can push the V–s1 trajectory
below the s1-nullcline. This decrease of s1 slows down the
termination of the active phase, instead of s1 steadily contributing
to its termination. This is why for some gs1 values we get Cs1

AP o0
or Cs2

AP 41. Nevertheless, the results are qualitatively similar to
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those obtained in the relaxation case. Finally, the method should
in principle be used with small dt. Unfortunately, the spikes make
the active phase duration discontinuous, so the CAP values become
very variable when dt is small. To avoid this problem, we have
used dt¼ t after having checked that in the relaxation case we
obtain quantitatively similar results with dt¼ 0:05t and dt¼ t.
Thus, the method that was originally developed for a relaxation
oscillation can be extended to bursting where a fast oscillation
(the spikes) is superimposed on a slow relaxation rhythm.

It is unlikely that the approach used here to calculate dom-
inance factors can be applied experimentally. This fact argues for
the utility of mathematical models for biological systems. It may
be known from experiments that two or more slow processes are
involved in the burst generation, but without a model it is
difficult or impossible to know how much each variable con-
tributes to bursting. This is the case with pancreatic b-cells,
where slow variables such as the cytosolic Ca2 + concentration,
the Ca2 + in the endoplasmic reticulum, the ATP/ADP ratio, and
slow inactivation of Ca2 + currents have all been postulated to
contribute to bursting (Bertram and Sherman, 2000). With the
development of models containing some or all of the slow
processes, and the technique that we describe here to quantify
slow variable dominance, it becomes possible to identify the key
processes driving the bursting. In fact, we are currently applying
this technique to a b-cell model that contains many of the slow
variables listed above, with the challenge that there are more
than two slow variables.

Another extension of the simple b-cell model would be the
inclusion of channel noise. This would add a stochastic element to
the voltage differential equation (1). It has been shown previously
that phantom bursting is sensitive to noise, particularly for the
case of slow bursting (Pedersen, 2007). In this case, active and
silent phases can be significantly shorter than predicted by the
deterministic model, since now the noise, rather than the slower
of the two slow variables, is what terminates the active/silent
phase. Therefore, the contribution to bursting of the s2 variable
predicted by the dominance factor analysis of the deterministic
model would be overstated for the stochastic model. In other
words, we expect that dominance factors for the stochastic model
would be closer to 1 than those for the deterministic model in the
case of single b-cells, which can be very noisy. However, this
effect would depend on noise amplitude, which is small in islets.

One application of the dominance factor is in the determina-
tion of parameter values that allow phase-independent resetting.
Such resetting was documented in islets nearly 30 years ago
(Cook et al., 1981). An earlier model, similar to our model for
bidirectional full-length resets, was able to account for this
(Smolen and Sherman, 1994). However, that model was not a
phantom bursting model and thus the burst period was con-
strained to a relatively narrow range of values. The present model
possesses both the desired (but unidirectional) full-length reset
properties (Figs. 11 and 12), and can produce the wide range of
oscillation periods that is characteristic of pancreatic b-cells
(Bertram et al., 2000).

Bidirectional full-length resets cannot be produced with the
phantom bursting model in its current form. We showed how the
model can be changed to produce this type of resetting (Fig. 14),
but with the changes the model is no longer a phantom bursting
model. Since bidirectional full-length resets have been documen-
ted in at least one pancreatic islet (Cook et al., 1981), this calls
into question the validity of the phantom bursting model as a
description of islet electrical activity. One possibility is that the
slow processes (such as Ca2 + dynamics in the cytosol and the
endoplasmic reticulum, and the ATP/ADP ratio) work together to
produce phantom bursting in some islets, but not others. It is also
possible that with a more sophisticated phantom bursting model
(Bertram and Sherman, 2004) bidirectional full-length resets can
be achieved, although we have not yet found this to be true.

Our analysis predicts unidirectional full-length resets for
medium bursting islets, but not for slow or fast bursting islets.
Active–silent full-length resets should be found in islets with a
long active phase and short silent phase (Fig. 11), while silent–
active full-length resets should be found in islets with a short
active phase, but a long silent phase (Fig. 12). For fast and slow
bursting only one variable controls the duration of both phases, so
full-length resets should not occur. At the time that Cook et al.
performed their islet resetting experiments (Cook et al., 1981)
slow islet oscillations had not appeared in the literature, and
resetting of only medium-period (15–30 s) oscillations were
attempted. Since the long period of the now commonly reported
slow islet oscillations would make resetting data easier to inter-
pret than in the case of fast bursting, we encourage investigators
to continue the work of Cook and colleagues by examining islet
resetting of slow bursters.
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