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Abstract

The pumping of blood through the heart is due to a wave of muscle contractions that are in

turn due to a wave of electrical activity initiated at the sinoatrial node. At the cellular level,

this wave of electrical activity corresponds to the sequential excitation of electrically coupled

cardiac cells. Under some conditions, the normally-long action potentials of cardiac cells are

extended even further by small oscillations called early afterdepolarizations (EADs) that can

occur either during the plateau phase or repolarizing phase of the action potential. Hence,

cellular EADs have been implicated as a driver of potentially lethal cardiac arrhythmias. One

of the major determinants of cellular EAD production and repolarization failure is the size of

the overlap region between Ca2+ channel activation and inactivation, called the window

region. In this article, we interpret the role of the window region in terms of the fast-slow

structure of a low-dimensional model for ventricular action potential generation. We demon-

strate that the effects of manipulation of the size of the window region can be understood

from the point of view of canard theory. We use canard theory to explain why enlarging the

size of the window region elicits EADs and why shrinking the window region can eliminate

them. We also use the canard mechanism to explain why some manipulations in the size of

the window region have a stronger influence on cellular electrical behavior than others. This

dynamical viewpoint gives predictive power that is beyond that of the biophysical explana-

tion alone while also uncovering a common mechanism for phenomena observed in experi-

ments on both atrial and ventricular cardiac cells.

Author summary

EADs are pathological voltage fluctuations that can occur during the plateau or repolariz-

ing phase of cardiac action potentials. The EADs of single cells, when embedded in a net-

work of cardiac tissue, can lead to deadly cardiac arrhythmia. Because of this, many

experimental and theoretical investigations have been conducted to uncover the biophysi-

cal and dynamical origins of EAD genesis. A recurring finding is that suitable changes in
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the properties of the inward L-type calcium current are sufficient for EAD production. A

particularly important property of the L-type calcium current, with respect to EAD pro-

duction, is the size of its window region. In this work, we use a novel geometric approach

to analyze the role of the window region in cellular electrical dynamics using a low-

dimensional ventricular action potential model. We illustrate the mechanism underlying

window region-induced EADs, and demonstrate how the number of EADs produced can

be predicted, using dynamical systems techniques together with canard theory. These

techniques allow us to explain precisely why the model reproduces myriad experimental

observations while also allowing us to make the testable predictions that either advancing

the activation rate or slowing the inactivation rate of the L-type calcium current—changes

that would reasonably be expected to increase its active duration and the likelihood of

EADs—should, instead, reduce its active duration and the likelihood of EADs.

Introduction

Early afterdepolarizations (EADs) are pathological small oscillations in the membrane poten-

tial that can occur in the plateau or repolarization phase of cardiac action potentials (Fig 1b).

These EADs prolong the action potential (AP) and can lead to arrhythmias such as tachycardia

or fibrillation [1–5]. The origins of EADs and EAD-induced arrhythmia have been the focus of

many experimental and theoretical studies which have been performed in isolated myocytes

[4, 6–8] and in cardiac tissue [9–11], and much has been learned from these studies regarding

the potential mechanisms underlying the abnormal electrical behavior. It is now clear that one

mechanism for EADs is an abnormally broad “window region” in the L-type Ca2+ channels [9,

12, 13]. This window region is the range of voltages where the channel activation and inactiva-

tion curves overlap (Fig 2a). If this region is abnormally large, then the Ca2+ current remains

active at plateau voltages and thereby contributes to the formation of EADs.

The importance of the ICa-L window current in EAD production was studied in a hybrid

manner through the use of the dynamic clamp technique [14, 15]. This allows for the injection

of an ionic current into a cell where the properties of the current are set using a mathematical

model (see [16] for review). In the dynamic clamp studies of EADs, the L-type Ca2+ channels

were blocked with nifedipine and then a model L-type Ca2+ current introduced using dynamic

Fig 1. EADs in cardiac AP simulations. Cardiac APs can exhibit EADs in response to changes in the gating properties of L-type Ca2+ channels. (a) A simulated

cardiac AP without EADs. (b) An AP exhibiting two EADs (red arrow markers) has a significantly prolonged duration.

https://doi.org/10.1371/journal.pcbi.1008341.g001
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clamp. Using this approach, EADs evoked by H2O2 were recapitulated by simultaneously shift-

ing both the activation and inactivation curve of model ICa-L to enlarge the window region

[14]. In [15] it was shown that opening the window region by translating the model Ca2+ chan-

nel activation curve leftward and inactivation curve rightward by the same amount (termed a

“symmetric opening” in [15]), reliably produced EADs in otherwise unaltered atrial rabbit and

human cardiomyocytes. As was noted in both studies, these results are significant not only

because they demonstrate the importance of the window region in EAD production, but

also because with this approach the EADs are purely electrical. That is, they do not involve

Ca2+-activated Ca2+ release (CICR) from the sarcoplasmic reticulum since there is no Ca2+

entry (the L-type channels have been blocked and the current introduced by dynamic clamp is

carried by ions other than Ca2+). This is an important clarifying result, since it has been shown

that EADs can be produced through CICR [17, 18], and using dynamic clamp as was done in

[14, 15] allows one to focus in on the purely electrical EADs.

In addition to showing that symmetric opening of the window region facilitates EADs (and

symmetric closing eliminates them), [15] showed that EADs could be produced by only trans-

lating the channel activation curve leftward or only translating the channel inactivation curve

rightward (an “asymmetric opening” of the window). In fact, it was shown that translating the

activation curve is more effective than translating the inactivation curve. The intuition behind

this result is that it is more important for EAD production to activate the Ca2+ channels at low

voltages than to keep them from inactivating at higher voltages.

It was also shown in [14] and [15] that narrowing the ICa-L window region can abolish path-

ological rhythms produced by experimental manipulations that leave the window region

unchanged. In [14] it was shown that the EADs produced through hypokalemia, the reduction

of the extracellular K+ concentration, [K+]o, could be abolished by narrowing the computer-

generated ICa-L window region through either right shifts in the activation curve or left shifts

in the inactivation curve. In [15], it was shown that EADs and non-repolarizing APs were pro-

duced by increasing the maximal conductance of computer-generated ICa-L, and these rhythms

could be countered by symmetric narrowing of the window region. These results make the

point that the absolute size of the window region is not what matters; what matters is the size

of the window in the context of other cellular parameters.

While the dynamic clamp studies together provide a systematic examination of how the

size of the window region and the shifts of Ca2+ channel activation/inactivation curves affect

Fig 2. Schematic of symmetric broadening and narrowing of the ICa-L window region. (a) A left shift in d1(V) and a right shift in f1(V) (red curves) increases

the area (filled with vertical red lines) under both curves as compared to the default setting (black curves with area colored with vertical gray lines). (b) A right shift

in d1(V) and a left shift in f1(V) (green dashed curves) narrows the window region. The default area is colored gray and the reduced area is colored green.

https://doi.org/10.1371/journal.pcbi.1008341.g002
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purely electrical EADs, they provide no insight into the effects that these manipulations have

on the dynamics underlying EADs. The electrical activity of cardiomyocytes is determined by

nonlinear interactions of several ionic currents, described mathematically by nonlinear ordi-

nary differential equations. Manipulating the window region changes parameters in these

equations that cause EADs to occur, but how? Surely this is a generic property of the electrical

system, since it has been demonstrated in both ventricular and atrial myocytes of both rabbits

and humans. Because it is generic, it should be obtainable with low-dimensional models that

include key ionic currents such as ICa-L and K+ current for repolarization of the AP. Such a

model need not contain all the ionic currents found in myocytes, since these differ across spe-

cies and between ventricular and atrial myocytes, yet the EAD behavior is produced by similar

manipulations in each.

In this study, we determine why opening the window region facilitates EADs using a low

dimensional model for a cardiac AP, consisting of four variables. After recapitulating the

experimental results described above, we uncover the dynamic mechanism underlying these

results. That is, we show why both symmetric and asymmetric opening of the window pro-

duces EADs, and we show why shifting the Ca2+ activation curve is more effective than shifting

the inactivation curve. Finally, we show how and why changes in other parameters of the Ca2+

current, such as its maximal conductance and activation/inactivation time constants, affect

EAD production. Our mathematical analyses (i) reproduce the results of dynamic clamp

experiments and (ii) produce novel predictions that can be tested in future dynamic clamp

experiments.

The mathematical analysis required to understand the EADs produced by the low-dimen-

sional model is geometric singular perturbation analysis, also called fast-slow analysis (see [19]

for review and [20] for a more extensive discussion). This takes advantage of a separation of

timescales between those variables that change on a fast timescale (two variables in our case),

and those that change on a much slower timescale (the other two variables). We used this

model previously to demonstrate the dynamical mechanism of EADs [21], and we and others

have used fast-slow analysis to analyze the dynamical basis of EADs with other low-dimen-

sional models [22–26]. The particular model used affects the details of the phenomenon, some

of which can be quite significant (e.g., whether APs are produced only through stimulation or

produced intrinsically in a periodic fashion). However, the use of low-dimensional models

rather than more biophysically accurate models [27–29] is motivated by the generic nature of

the EAD behavior, and the fact that low-dimensional models can be analyzed much more

effectively than high-dimensional models, as we demonstrate here.

Methods

The modified Luo-Rudy I model

The full Luo-Rudy I model [30] includes 6 voltage-dependent transmembrane ionic currents

and a single variable accounting for the intracellular Ca2+ level. The inward currents include a

spike-producing Na+ current (INa), an L-type Ca2+ current (ICa-L), and a constant conductance

background current (Ib). The outward currents include a delayed rectifier K+ current (IK), an

extracellular [K+]-dependent K+ current (IK1), and a high-threshold K+ current (IKp).

Together, the Luo-Rudy I model contains 8 coupled nonlinear ordinary differential equations.

Our analysis, however, utilizes a reduced Luo-Rudy I model that only contains elements for

the electrical component. This facilitates the mathematical analysis, and allows us to demon-

strate that even a simple model can account for the findings of the dynamic clamp experiments

[14, 15] that are the focus of this study. The modified model does not include equations for the

intracellular Ca2+ concentration, because in the dynamic clamp experiments Ca2+ influx was
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pharmacologically blocked. Also, since the model Na+ current rapidly inactivates for V> −40

mV, i.e., INa� 0 when EADs occur, this current is also excluded.

The modified model contains the following differential equations for the membrane electri-

cal dynamics:

Cm
dV
dt

¼ � ðICa� L þ IK þ IK1 þ IKp þ IbÞ þ Istim

dd
dt
¼

d1ðVÞ � d
tdðVÞ

df
dt
¼

f1ðVÞ � f
tf ðVÞ

dx
dt
¼

x1ðVÞ � x
txðVÞ

ð1Þ

with ionic currents given by

ICa� L ¼ gCa d f ðV � VCaÞ

IK ¼ gK xXi;1ðVÞ ðV � VKÞ

IK1 ¼ gK1 K1;1ðVÞ ðV � VK1Þ

IKp ¼ gKp Kp;1ðVÞ ðV � VK1Þ

Ib ¼ gb ðV � VbÞ

ð2Þ

Here, Cm is membrane capacitance and Istim is a time-dependent mollified square-wave stimu-

lus current with amplitude 70 μA/cm2 and 2 ms duration. Each transmembrane ionic current

is formulated using the standard Hodgkin-Huxley formalism for excitable membranes [31,

32]. For example, in the expression for the Ca2+ current (ICa-L), gCa is the maximal conduc-

tance, a parameter; the dynamic variables d and f are the open fraction of activation and inacti-

vation gates, respectively, of all voltage-gated Ca2+ channels; and (V − VCa) is the driving force

for ion flux, where VCa is the reversal potential for Ca2+.

The x variable, which appears in the expression for IK, denotes the (slow) activation of this

current. Each of the steady-state activation and inactivation functions, j1(V) for j = d, f, x, X1,

K1 and Kp, are increasing and decreasing sigmoids, respectively. We use upper-case letters to

denote quantities that adjust instantaneously to variation in V and thus remain at quasi-equi-

librium. The time constants, τd(V) and τx(V), are bell-shaped, while τf(V) is strictly increasing.

The magnitudes of the time constants govern how quickly the companion gating variable

adapts to changes in V. Small (large) values of τj(V), j = d, f, x represent rapid (slow) adapta-

tion. We refer the reader to [30] for the full model formulation.

All parameter values are identical to those used in [30], with the exception of the default

maximal ICa-L conductance, gCa, which is set at 0.112 mS/cm2 to facilitate EAD production.

Some parameter values are varied to examine robustness of behaviors, and this is stated explic-

itly in the text of figures. Under all relevant parameter variations, the model (1) (absent Istim)

possesses a stable equilibrium, E1, which functions as the cell rest state. Under parameter sets

that are capable of producing EADs, (1) possesses two additional equilibria, E2 and E3, which

are located at elevated membrane potentials. The equilibrium E2 can be either an unstable or

stable spiral in parameter regions that produce APs with EADs, while E3 is always an unstable
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saddle point. The computer programs used to generate the results herein are available at:

www.math.fsu.edu/�bertram/software/cardiac.

Model ICa-L and modifications of its “window region”

The manuscript focuses primarily on model responses to translations in the steady-state ICa-L

activation and inactivation functions, d1(V) and f1(V), respectively. The region where these

two curves overlap has been termed the “window region” [9] (see Fig 2a) and it has been impli-

cated in the generation of EADs. Fig 2 shows plots of d1(V) and f1(V) under the default

parameter set (black curves). In Fig 2a, the window region is increased by either (or both)

translating d1(V) leftward or translating f1(V) rightward. In Fig 2b, the window region is

reduced by translating d1(V) rightward or translating f1(V) leftward.

Both d1(V) and f1(V) are sigmoidal in V, and are parameterized by their steepness and by

the value, V, of half-activation and half-inactivation, respectively. Translation of each curve is

accomplished by varying its half-activation/inactivation value. For clarity and consistency with

experimental works, we discuss variation in the half-activation/inactivation values of the

curves with reference to the default parameter set and denote the direction and magnitude of

variation in the half-activation value of d1(V), for instance, by ΔV1/2(d1). We similarly denote

translations in f1(V) by ΔV1/2(f1). We also note that the enlargement of the window region in

Fig 2a and the narrowing of the window region in Fig 2b are symmetric with respect to the

direction and magnitude of the translation in each curve. That is, the translations of both

curves in each panel are equal in magnitude, but opposite in sign (i.e., for Fig 2a, ΔV1/2(f1) =

-ΔV1/2(d1)).

Results

Symmetric enlargement of the model window region can produce EADs

Previous experimental and mathematical studies of EADs have concluded that most EADs

occur while voltage is within the interval where the activation and inactivation curves (d1(V)

and f1(V), respectively, in our model) of ICa-L overlap, termed the “window region”. The

experimental work [15] showed that symmetric enlargement of the window region can lead to

EADs as well as the inability of the cell to repolarize (see Fig 5 of [15]) in response to low-fre-

quency periodic pacing.

Representative responses of the model cell to symmetric broadening of the ICa-L window

region are shown in Fig 3. Fig 3a shows a sequence of symmetric translations of both the

steady-state activation and inactivation curves, which enlarge the window region. The green

curves denote the default state of the model window region (ΔV1/2(d1) = ΔV1/2(f1) = 0 mV),

while the black curves denote the largest translation depicted (ΔV1/2(d1) = -3.12 mV and

ΔV1/2(f1) = +3.12 mV). Fig 3b shows color-coded voltage traces of the corresponding model

responses to a single stimulus pulse under each translation condition from Fig 3a. The green

voltage trace shows the standard cardiac action potential without alteration. The orange trace

shows a slightly prolonged action potential in response to a small symmetric enlargement of

the window (ΔV1/2 = 1.04 mV), but no EADs. The red trace shows that a larger translation

(ΔV1/2 = 2.08 mV) elicits two EADs, which prolong the duration of the action potential dra-

matically. Finally, the black trace shows that a sufficiently large increase in the size of the

window region (ΔV1/2 = 3.12 mV) leads to repolarization failure, where the cell remains at a

depolarized voltage.
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Left shifts in the activation curve are more effective at facilitating EADs

than right shifts in the inactivation curve

Using the dynamic clamp technique to inject a model Ca2+ current into a cardiomyocyte, it

was shown that simultaneous broadening of the window region by shifting both the Ca2+ cur-

rent activation and inactivation curves facilitates EAD production and repolarization failure

[14, 15]. Translations in either the activation or inactivation curves, but not both, were also

examined. It was determined that left-translations in the activation curve alone were a more

potent driver of EADs and repolarization failure than right-translations in the inactivation

curve alone [15]. That is, using equal-in-magnitude translations of each curve in separate trials,

left-translations in d1(V) more often led to EADs and repolarization failure than did right-

translations of f1(V).

To test this experimental finding with the modified Luo-Rudy model, we first applied left-

shifts of the Ca2+ activation curve, d1(V), of magnitudes such that the first shift (ΔV1/2(d1) =

−1.8 mV) resulted in a longer action potential, the second (ΔV1/2(d1) = −3.6 mV) resulted in

an action potential with two EADs, and the third shift (ΔV1/2(d1) = −5.4 mV) resulted in repo-

larization failure. That is, the magnitude of the shifts were chosen so that the responses mim-

icked those of Fig 3. These are shown in Fig 4a and 4b. We then applied right shifts of the same

magnitude to the Ca2+ inactivation curve, f1(V). These translations and the responses are

shown in Fig 4c and 4d. In this case, EADs are only produced with the largest translation

(ΔV1/2(f1) = 5.4 mV), and none of the translations result in repolarization failure. Thus, the

left shifts in d1(V) are more potent than equal right shifts in f1(V) at evoking EADs and repo-

larizaiton failure, as was shown experimentally in [15].

Enlarging the model window region generically leads to EADs and

repolarization failure

In this section, we quantify the effectiveness of activation/inactivation curve shifts in inducing

pathological behavior by examining combinations of the shifts, ΔV1/2(d1) and ΔV1/2(f1), that

produce EADs or repolarization failure. This is organized using a two-dimensional grid in

ΔV1/2(d1) and ΔV1/2(f1), noting that left-shifts in d1(V) induce EADs, while right-shifts in

f1(V) induce EADs. Moving leftward along the ΔV1/2(d1)-axis (to negative values) in Fig 5

Fig 3. A sufficiently large symmetric broadening of the window region can lead to EADs and repolarization failure in response to a stimulus pulse. (a) An

equally-spaced sequence of three color-coded symmetric window broadening translations in d1(V) and f1(V) (orange, red, and black curves) are shown alongside

the default curves d1(V) and f1(V) (green). The magnitudes of each of the simultaneous changes to both ΔV1/2(d1) and ΔV1/2(f1) are shown in the legend. (b)

The color-matched model responses correspond to the manipulations in panel (a).

https://doi.org/10.1371/journal.pcbi.1008341.g003

PLOS COMPUTATIONAL BIOLOGY Canard analysis of early afterdepolarizations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008341 November 4, 2020 7 / 25

https://doi.org/10.1371/journal.pcbi.1008341.g003
https://doi.org/10.1371/journal.pcbi.1008341


corresponds to left shifts in d1(V), while moving upward along the ΔV1/2(f1)-axis (to positive

values) corresponds to right shifts in f1(V). To determine model behavior at each point in the

300 × 300 grid of parameter values, the model was integrated for 10,000 ms at each point using

the stable rest state as initial condition. In each case, a supra-threshold pulse of current of

amplitude 70 μA/cm2 was applied for 2 ms to initiate an AP.

The light green region in Fig 5, labeled “No EADs”, shows parameter values that produce

action potentials without EADs. These solutions may, however, exhibit prolonged action

potentials (e.g., orange trace, Fig 4b). The white region, labeled “Repolarization Failure”,

denotes the region of parameter combinations that produce solutions that remain in the depo-

larized state in response to the stimulus pulse (e.g., black trace, Fig 4b). The red region denotes

those parameter combinations that produce solutions that contain EADs, but return to rest fol-

lowing the pulse (e.g., red trace, Fig 4b). A dashed curve is superimposed on the figure denot-

ing the path in the (ΔV1/2(d1), ΔV1/2(f1))-plane used to produce Fig 3. The sequence of

parameter sets shown in Fig 3 are marked with color-matched disks: the green disk signifies

the default parameter set, the red disk (within the blue “�” marker labeled “(b)”) lies within the

“EADs” region, and the black disk lies in the “Repolarization Failure” region.

Fig 4. Left shifts in the Ca2+ current activation curve are more effective at inducing EADs and repolarization block than right shifts in the inactivation curve.

(a) Three equally-spaced left shifts in d1(V) (ordered orange, red, then black) are shown, while leaving f1(V) (dashed, black) unchanged. As in Fig 3, green

denotes the default. The shifts are given in the legend. (b) The model responses to the left-translations shown in (a) mirror those of Fig 3b: sufficiently large

translation induces two EADs (red trace) and the largest translations lead to repolarization failure (black trace). (c) Right shifts in f1(V) of equal size to those of (a).

(d) The model responses to increasing ΔV1/2(f1) are less severe than those of equally-sized changes in ΔV1/2(d1): the largest change in ΔV1/2(f1) produces EADs

(black trace) instead of repolarization failure.

https://doi.org/10.1371/journal.pcbi.1008341.g004
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The red “EADs” region possesses finer structure than the light green or white regions.

Increasingly darker shades of red are used to indicate incremental increases in the number of

EADs produced: 6 or more EADs are produced within the darkest shade of red, and some

parameter combinations in this region produce solutions with as many as 40 EADs. The dia-

gram shows that variation in the number of EADs elicited in this red region is organized into

bands that gradate the transition from “No EADs” to “Repolarization Failure” and that the size

of the bands declines corresponding to more EADs. That is, the red “EADs” region is domi-

nated by solutions exhibiting few, rather than many, EADs. This finding predicts that action

potentials with relatively few EADs should be more readily observed in experimental settings,

as does indeed seem to be the case in published voltage traces from isolated myocytes [7,

14, 15].

The finding (both in the model and experimentally) that EADs are produced more effec-

tively by left shifts in d1(V) than right shifts in f1(V) is evident in Fig 5. The curve that sepa-

rates the “No EADs” region from the “EADs” region (green line) is approximately linear with

slope s� 1.34. Because the slope is greater than 1, it takes a larger change in ΔV1/2(f1) than in

ΔV1/2(d1) to move from a parameter combination producing a pure action potential to one

producing an action potential with EADs.

Fig 5. Model responses to a single depolarizing pulse over a uniform grid in the (ΔV1/2(d1), ΔV1/2(f1)) parameter

plane (units in mV). The green region, labelled “No EADs”, denotes solutions that do not exhibit EADs before

returning to rest. The white region, labelled “Repolarization Failure”, denotes solutions that can exhibit EADs around

an elevated membrane potential, but remain depolarized. The red region, labelled “EADs”, contains solutions that

exhibit EADs and return to rest at the end of the action potential. Darker shades of red in this region denote increasing

numbers of EADs in response to the pulse. The dashed blue line segment gives the path in parameter space that

corresponds to symmetric window-broadening. Green, red, orange, and black disks along this path correspond to the

specific parameter values that produce the color-matched window regions and model responses shown in Fig 3. Blue �

markers labeled 7a, 7b, 7c and 9a, 9b, 9c are parameter sets whose solutions are viewed in (f, x, V) phase space in Figs 7

and 9, respectively. The slope (>1) of the green curve, which marks the boundary between the “No EADs” and “EADs”

regions, explains why left shifts in d1(V) are a more reliable source of EAD production than right shifts in f1(V).

https://doi.org/10.1371/journal.pcbi.1008341.g005
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We can also use the slope of the green EAD boundary curve to make predictions about

the potential therapeutic effects of window-shrinking shifts in either d1(V) or f1(V). Because

the slope is greater than 1, the horizontal (rightward) distance from any point in either the

“EADs” (red) or “Repolarization Failure” (white) regions to the green boundary between the

“EADs” and “No EADs” regions is always smaller than the vertical (downward) distance.

Thus, small window-shrinking translations in d1(V) should be a more reliable therapeutic

target than small window-shrinking translations of f1(V) for the elimination of pathological

rhythms (EADs or repolarization failure) induced by an enlarged window region.

An additional feature of the diagram that would not be readily discernible from either

experiments or simulations is that the “EADs” region (bounded between the green and black

curves) grows in width for increasing values of ΔV1/2(f1) but, shrinks in width for decreasing

values of ΔV1/2(d1), even though both of these manipulations enlarge the window region. This

feature of the diagram arises from the fact that the slope of the (almost linear) black curve,

marking the boundary between the “EADs” and “Repolarization Failure” regions, has an even

larger average slope than that of the green boundary curve. This feature of the grid makes the

experimentally testable prediction that the transition of a cell from EADs to repolarization fail-

ure should also occur for smaller window-enlarging shifts in d1(V) than f1(V). That is, given

a cell exhibiting EADs due to an enlarged window region, small increases in the magnitude of

ΔV1/2(d1) should be more likely to lead to repolarization failure than small increases in

ΔV1/2(f1). In addition, this predicted disparity between the effects of ΔV1/2(d1) and ΔV1/2(f1)

in producing repolarization failure should be more pronounced than the disparity observed

for the production of EADs shown in Fig 4.

Fast-slow analysis reveals a mechanism for EAD generation

We have seen that broadening the ICa-L window region can lead to EADs and repolarization

failure. Here we explore why, using a fast-slow analysis. Fast-slow analysis splits a model into

(simpler) lower-dimensional subsystems in order to analyze these subsystems semi-indepen-

dently and stitch together the results. In [21], we showed that (1) possesses a multi-timescale

structure. This structure is reflected by the rapid upstrokes and downstrokes of the AP, with

long depolarized plateau (Fig 1b). Specifically, we showed that the 4-dimensional model con-

tains fast variables V and d (voltage and ICa-L activation), and slow variables f and x (ICa-L

inactivation and IK activation). The parameter Cm approximately characterizes the timescale

separation, with Cm! 0 (termed the singular limit) yielding the decomposition of (1) into sep-

arate fast and slow subsystems (see [21] for details).

With our (2,2)–fast-slow splitting, the 2-dimensional fast subsystem

Cm
dV
dt

¼ � ðICa� L þ IK þ IK1 þ IKp þ IbÞ

dd
dt
¼

d1ðVÞ � d
tdðVÞ

df
dt
¼ 0

dx
dt
¼ 0

ð3Þ

is an approximation of the fast motions of (1) (see Fig 6, double arrows) in which the slow vari-

ables, f, and x, are treated as parameters. The time-dependent forcing, Istim, is dropped from

the V-equation because Istim� 0 after the stimulus has been applied. The equilibria of (3)
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(traced out by independent variation in f and x) form a 2-dimensional surface, called the criti-
cal manifold. Fig 6 shows two views of the EAD-containing voltage trace from Fig 3b in (f, x,

V) phase space and superimposed on the critical manifold. The critical manifold is comprised

of attracting (Sa;þ0 and Sa;�0 , blue) and saddle-type (Ss
0
, red) sheets that are connected by curves

of fold points. Only the upper fold, L (green), falls within the physiologically relevant domain

(the lower curve is out of the frame of the figure, so not visible). The stability properties of the

critical manifold are determined by linear stability analysis of the fast subsystem. The true

equilibria, E1, E2, and E3 of the full system (1) persist as equilibria of the fast subsystem (3).

While E2, under this parameter set, is a stable spiral of the full flow (1) (i.e., for Cm = 1 μF/

cm2), it becomes a saddle point (located on Ss
0
) of the fast subsystem (3) (i.e., for Cm = 0 μF/

cm2). We note that there are no Hopf bifurcations in the fast subsystem, so EADs do not arise

as oscillations in the fast subsystem as they do in previous works (e.g., [22]).

The 2-dimensional slow subsystem

0 ¼ � ðICa� L þ IK þ IK1 þ IKp þ IbÞ

0 ¼
d1ðVÞ � d
tdðVÞ

df
dt
¼

f1ðVÞ � f
tf ðVÞ

dx
dt
¼

x1ðVÞ � x
txðVÞ

ð4Þ

Fig 6. Two views of the EAD-containing voltage trace from Fig 3b superimposed on the critical manifold in (f, x, V) phase space. (a) (x, V)-dominant view.

(b) (f, V)-dominant view. The superimposed solution (black) is comprised of: 1) a fast upstroke (cyan double arrows) caused by a stimulus pulse applied at rest

(stable equilibrium E1), 2) slow evolution (single arrow) along the upper attracting sheet of the critical manifold, Sa;þ0 (upper blue surface), during the plateau phase,

3) oscillatory EADs (unfilled arrows) near the fold curve, L (green), 4) fast transition (double arrows) toward the lower attracting sheet, Sa;�0 , and 5) slow return

(single arrow) to E1 along Sa;�0 . The folded node singularity (FN, purple marker), a pseudo-equilibrium of the slow subsystem, lies within L; its associated singular

strong canard, g0
0

(magenta), a special solution of the slow subsystem, together with L, bounds the region of solutions of the slow subsystem, that are funneled

through the folded node. Parameter values: ΔV1/2(d1) = -ΔV1/2(f1) = -2.08 mV.

https://doi.org/10.1371/journal.pcbi.1008341.g006
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is an approximation of the slow motions of (1) (see Fig 6, solid single arrows) in which V and d
are assumed to be at quasi-equilibrium. Hence, solutions of the slow subsystem (4) are slaved

to the critical manifold.

To understand the trajectory of the full model (1), one can concatenate orbit segments

from the fast and slow subsystems. This is only an approximation, however, and as we see

below neither the fast nor the slow dynamics independently explain the EADs. The fast and

slow motions are denoted using single and double arrows, respectively. A sufficiently strong

stimulus pulse applied to the rest state, E1(on Sa;�0 ), triggers a rapid excursion toward Sa;þ0 (cyan

double arrows denote that this motion is the result of a depolarizing pulse). Once near Sa;þ0 , the

solution moves slowly as it follows Sa;þ0 closely during the plateau phase, toward the fold, L.

The oscillations that occur near L are the EADs. Once several of these have occurred, the tra-

jectory moves rapidly toward Sa;�0 . It then follows Sa;�0 closely as it moves slowly back towards

the rest state, E1.

The unfilled arrows along the oscillatory EAD portion of the solution indicate that this

motion is neither strictly fast nor slow. Indeed, it is precisely at the fold curve L where the fast-

slow approximation breaks down. That is, the fold marks the transition boundary between the

non-overlapping regions of validity for the fast and slow subsystem approximations.

Without a fast subsystem mechanism for the generation of EADs, we turn to further

inspection of the slow subsystem. The general procedure for this analysis can be found in the

review article [33] and the details for the particular case of the slow subsystem (4) can be

found in [21]. Here, we summarize the key elements. Solutions of the slow subsystem, when

initiated on Sa;þ0 , flow toward the fold curve. Upon reaching the fold, these solutions typically

transition to the fast subsystem dynamics, so the trajectory quickly moves from the top sheet

Sa;þ0 to the bottom sheet Sa;�0 . However, there may exist distinguished points on the fold curve

called folded node singularities [34] (Fig 6; purple marker, “FN”) at which solutions can cross

from Sa;þ0 to Ss
0
, remain governed by the slow subsystem dynamics, and follow Ss

0
for long

times. Such solutions are known as singular canards. Given the presence of a folded node sin-

gularity, there is a special singular canard that acts as a boundary along Sa;þ0 between solu-

tions that, upon reaching the fold, either funnel through to the folded node or transition to

the fast dynamics. This special singular canard is called the singular strong canard (Fig 6; g0
0
,

magenta).

For Cm> 0, singular canards become solutions of the full model (1) with similar properties,

i.e., they remain near Ss
0

for long times on the slow time scale [33, 35]. These solutions are

called canards and they are the basis for EADs, as demonstrated in [21].

Canards explain the emergence and number of EADs

Many features of the slow flow persist in the flow of the full system of equations provided there

is sufficient timescale separation between fast and slow variables. Theoretical justification for

this persistence is provided by Fenichel theory [36, 37]. Specifically, Fenichel theory guarantees

that the attracting and saddle-type sheets of the critical manifold, outside the vicinity of the

fold curve, perturb smoothly to nearby slow manifolds under the flow of the full system, with

their local attraction properties perturbing smoothly as well. In turn, the (slow) flow on these

sheets is a smooth perturbation of the slow subsystem flow.

Near the folded node, the relationship between the slow subsystem flow and that of the

full system is more intricate, and is described by canard theory [33–35, 38]. In particular,

canard theory holds that in the neighborhood of the folded node, under the full system flow,

the attracting and saddle-type sheets perturb to slow manifolds that (approximately) twist

around the weak eigendirection of the folded node [33, 39]. This twisting allows the slow
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manifolds to be partitioned into rotational sectors, each of which oscillates around the weak

eigendirection of the folded node a fixed number of times. The boundaries between differ-

ent rotational sectors are curves called maximal canards. The first maximal canard, the

boundary between the rotational sector that does not oscillate near the folded node (the left

half of the upper attracting sheet) and the sector that oscillates once, is called the primary
maximal canard.

Maximal canards have been shown to be objects of key importance in determining whether,

and what kinds of potentially erratic, EAD rhythms are evoked in low-dimensional variants of

the Luo-Rudy model in response to changes in ion channel expression and chemical composi-

tion of the cellular environment [21, 24, 25]. The primary maximal canard (γ0) is the perturbed

analog of the slow subsystem singular strong canard (g0
0
) and is, therefore, the boundary

between standard action potentials—to its left—and those that exhibit EADs or repolarization

failure—to its right. A solution that enters the rotational sector between the primary maximal

canard, γ0, and the maximal canard, γ1, exhibits one canard-induced EAD; a solution that

enters the rotational sector between maximal canards γ1 and γ2 exhibits two canard-induced

EADs; so, in general, a solution that enters the rotational sector between γn and γn+1 exhibits n
canard-induced EADs.

Fig 7 shows key structures in phase space for responses that exhibit no EADS (Fig 7a),

EADs (Fig 7b), and repolarization failure (Fig 7c). Parameter values for these behaviors are

marked with � in Fig 5 labeled 7a, 7b, and 7c. Each panel shows the critical manifold and its

stability properties along with the first three maximal canards (γ0, magenta; γ1, cyan; γ2,

orange), computed using numerical continuation and bifurcation software AUTO [40] and

methods developed in [41] which are described for this system in [21]. Also superimposed are

portions of the solution segment of the full system (Γ, black) following an impulse-producing

stimulus.

In Fig 7a, the solution segment (Γ, black) evolves closely along the critical manifold, and

since it lies to the left of the primary maximal canard it does not exhibit EADs. Instead, it

returns to the repolarized rest state to complete the action potential. However, the close prox-

imity of Γ to γ0 extends the duration of the plateau phase of the action potential evident in the

orange traces of Figs 3b and 4b. We note that the equilibrium, E2, is unstable for this choice of

parameters (ΔV1/2(d1) = -ΔV1/2(f1) = -1.83 mV).

A solution segment with two EADs is shown in Fig 7b (red). The solution segment (Γ,

black) lies to the right of γ0 (magenta) and between γ1 (cyan) and γ2 (orange), so that two small

oscillations are produced, as predicted by canard theory. The equilibrium, E2, is stable for this

parameter set (ΔV1/2(d1) = -ΔV1/2(f1) = -2.08 mV), but Γ simply does not enter its basin of

attraction. However, E2 possesses a pair of complex conjugate eigenvalues (λ ± ωi) which, in

the vicinity of E2, predict an oscillatory period (2π/ω) of� 340 ms. The duration of the first

and second EADs are� 386 ms and� 340 ms, respectively.

Fig 7c shows a case in which there is repolarization failure since the trajectory enters the

basin of attraction of E2 and remains depolarized. The spiraling reflects the fact that E2 is a sta-

ble spiral equilibrium of the full system.

This analysis suggests that the responses of the model cell to window-enlarging manipula-

tions are determined by how the manipulations affect the maximal canards in phase space.

Pathological oscillatory dynamics are brought about by manipulations that translate the maxi-

mal canards leftward (in the increasing x-coordinate direction) relative to the solution trajec-

tory, so that the solution trajectory enters the funnel region to the right of the primary

maximal canard. Enlargement of the ICa-L window region can make this happen, leading to

EADs or repolarization failure.
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Why left shifts of the ICa-L activation curve are more effective than right

shifts of the inactivation curve at evoking EADs

We have shown that maximal canards mediate the transition from standard action potentials,

through EADs, to repolarization failure in phase and parameter space under symmetric win-

dow enlargement. We now examine why left-shifts in the ICa-L activation curve are more effec-

tive than right shifts in the inactivation curve at producing EADs and repolarization failure.

This should be explainable in terms of the primary maximal canard, which is the border (in

Fig 7. Maximal canard locations in (f, x, V) phase space mediate the transition from standard action potentials to repolarization failure and determine EAD

number under symmetric ICa-L window region enlargement. (a) Local phase space for marker 7a in the “No EADs” region of Fig 5 (ΔV1/2(d1) = -ΔV1/2(f1) =

-1.83 mV). The pulse-induced solution segment, Γ (black), lies to the left of the primary maximal canard, γ0 (magenta), and does not exhibit EADs. (b) Local phase

space of marker 7b in the 2 EAD band of the “EADs” region of Fig 5 (ΔV1/2(d1) = -ΔV1/2(f1) = -2.08 mV). The solution segment lies within the rotational sector

between maximal canards γ1 (cyan) and γ2 (orange) and exhibits two EADs. (c) Local phase space for marker 7c in the “Repolarization Failure” region of Fig 5

(ΔV1/2(d1) = -ΔV1/2(f1) = -2.33 mV). The solution segment spirals toward stable equilibrium E2, failing to return to rest. Attracting (Sa;þ0 , blue) and saddle-type

(Ss
0
, red) sheets of the critical manifold meet at the fold curve, L (green). Parameter values used are listed in each panel.

https://doi.org/10.1371/journal.pcbi.1008341.g007
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phase space) of the funnel region for EADs. What effects do equally sized shifts of the activa-

tion curve d1(V) and inactivation curve f1(V) have on the primary maximal canard?

Fig 8a shows a phase-space view with the critical manifold and the primary maximal canard

γ0 (magenta) prior to a shift in the activation/inactivation curves. When the Ca2+ channel acti-

vation curve is left shifted by 3.6 mV (ΔV1/2(d1) = −3.6 mV) the primary maximal canard

moves leftward in phase space, as indicated in the figure. An equal right shift in the inactiva-

tion curve (ΔV1/2(f1) = 3.6 mV) also moves γ0 leftward, but not as far. The figure also includes

a portion of the trajectory during the action potential plateau (Γ, black) with and without a

shift in either the activation or inactivation curve. It is apparent that the shift in these curves

has very little effect on this portion of the trajectory (the three black segments are very close

together), however with the shift in the activation curve the trajectory enters the funnel and

will exhibit EADs, while with the equal shift of the inactivation curve it will not. Thus, the rea-

son that EADs are facilitated more by left shifts in the activation curve than right shifts in the

inactivation curve is that the primary maximal canard is affected more by the former maneu-

ver than the latter.

To make these arguments more precise, in Fig 8b we introduce a quantity, δ, that measures

the signed distance between a point on the pulsed solution Γ (that also lies on the slow mani-

fold corresponding to Sa;þ0 ) and the primary maximal canard, γ0, as a function of the shift mag-

nitude, |ΔV1/2|, in either d1(V) (purple curve) or f1(V) (orange curve). Positive values of δ
indicate that Γ lies to the left of γ0 (no EADs), while negative values of δ indicate that Γ lies to

the right of γ0 (EADs or repolarization failure). Zeros of δ indicate that Γ coincides with γ0 and

is the boundary between action potentials with and without EADs; zeros correspond to points

on the green boundary curve in Fig 5. The locations of the zeros of δ are unaffected by the

point on Γ (that coincides with the slow manifold) from which the measurements are made.

In agreement with Fig 8a (and Fig 5), we find that δ decreases more rapidly for left shifts in

d1(V) (purple curve) than for right shifts in f1(V) (orange curve), corresponding to more

rapid leftward movement of γ0 toward Γ under left-shifts in d1(V). As a result, δ crosses zero

Fig 8. Left shifts in the Ca2+ channel activation curve move the primary maximal canard further than equal right shifts in the inactivation curve. (a) Three

primary maximal canards corresponding to default (γ0, right, magenta), right-shifted f1(V) (middle, magenta), and left-shifted d1(V) (left, magenta) conditions

are superimposed on the critical manifold of the default parameter set. Also shown is a portion of the trajectory during the plateau phase of an action potential (Γ,

black) for each condition. These three trajectory segments are almost identical, but the one corresponding to left-shifted d1(V) enters the funnel and will

subsequently exhibit EADs. (b) The distance, δ, between Γ and γ0 declines faster with left shifts in d1(V) than with right shifts in f1(V).

https://doi.org/10.1371/journal.pcbi.1008341.g008
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(near |ΔV1/2|� 3.45 mV) as |ΔV1/2| increases toward 3.6 mV for d1(V), while δ remains

greater than 0 over the same range of |ΔV1/2| for f1(V).

A left shift in the ICa-L activation curve narrows the parameter range for

EADs by constricting the maximal canards

One peculiar observation from Fig 5 is that the EAD sector (in red) is narrow at the bottom

and wider at the top. This means that with a large left-shift in d1(V) the range of right-shifts

in f1(V) that can produce EADs becomes smaller. Why is this? To address this question, we

examine the maximal canards in phase space for three values of ΔV1/2(d1) (�markers in Fig

5). The first panel of Fig 9 shows the situation when the left-shift in d1(V) is not large enough

to evoke EADs. In this case, the trajectory segment lies to the left of γ0 and thus outside the

funnel. In the second panel, with a larger left shift, the trajectory lies between γ1 (cyan) and γ2

(orange), so two EADs are produced. In the third panel, the trajectory spirals into the equilib-

rium E2 and there is repolarization failure.

What is important to observe in Fig 9 is that the spacing between the maximal canards gets

smaller for large left shifts in d1(V). Thus, there is a constriction of the region in phase space

where EADs, rather than repolarization failure, are evoked. Constriction of the phase space

region where EADs are evoked also occurs with right shifts in f1(V), but the rate and severity

are less pronounced. This too corroborates a prediction from canard theory. In the singular

limit, the ratio of the eigenvalues of the folded node, μ≔ λw/λs< 1, can be used to estimate

how densely the secondary maximal canards (γ1, γ2, etc.) accumulate near the primary maxi-

mal canard (γ0) in the full system flow (see Propositions 3.5 and 3.6 of [38]). We find that μ
decreases more rapidly for left shifts in d1(V) than for right shifts in f1(V), which predicts

that the maximal canards will accumulate more densely on the primary maximal canard under

left shifts d1(V), as we observe. It is for this reason that the EAD region in Fig 5 is narrow at

the bottom and wider at the top.

Decreasing the size of the window region can compensate for pathological

conditions that promote EADs

While broadening the ICa-L window can lead to pathological electrical rhythms, it is also plausi-

ble that pathological conditions can be compensated for by narrowing the window. In vitro

experiments with isolated cardiomyocytes and cardiac tissue have shown that simulating hypo-

kalemia by reducing the extracellular K+ concentration in the bath reliably elicits EADs [8, 11,

42, 43]. In [21], we showed that simulating hypokalemia (by reducing the parameter [K+]o) in

the model (1) also elicits EADs, due to a canard mechanism similar to that described above. In

[14] it was shown that narrowing the ICa-L window in dynamic clamp experiments can over-

come the effects of low extracellular K+ and eliminate the EADs. Can this also be explained by

the model?

To investigate, we reduced the extracellular K+ concentration parameter [K+]o over a

range of values, which has the effect of increasing the K+ Nernst potentials, VK and VK1, while

decreasing the maximal conductances, gK and gK1. We also translated the Ca2+ activation curve

d1(V) over a range of values so as to evaluate the combined effects of these maneuvers. The

top panels of Fig 10 show the result. The green marker labelled b1 (Fig 10a) shows that with

the default [K+]o(= 5.4 mM) and no shift in d1(V) a standard action potential is produced (Fig

10b). In fact, for any shift in d1(V) a standard action potential is produced. For lower values

of [K+]o (simulating hypokalemia), EADs become possible if d1(V) is left shifted. For a suffi-

ciently low value of [K+]o, EADs occur even with no left-shift in d1(V). This is the case with

[K+]o = 2.0 mM shown with the red marker labelled b2 in Fig 10a. With this parameter
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combination two EADs are produced, greatly extending the duration of the action potential

(Fig 10b). However, if d1(V) is then right shifted (ΔV1/2(d1) = 0.75 mV), to the orange point

labelled b3 (Fig 10a) the EADs are eliminated, yielding an action potential of almost-normal

duration (Fig 10b). Thus, right shifts in d1(V) can eliminate the EADs brought about by hypo-

kalemia in model simulations.

Fig 10c and 10d show a similar scenario, but in this case left-shifts in f1(V) are used to nar-

row the Ca2+ current window. Starting from the default value of [K+]o and with no shift (green

Fig 9. Maximal canards shift leftward and constrict with increasing left shifts in d1(V). (a) At a value of ΔV1/2(d1) (= -3.35 mV) where no EADs are produced

(corresponding to �marker 9a in Fig 5) the trajectory lies outside the funnel region for EADs. (b) With a somewhat greater shift in d1(V) (ΔV1/2(d1) = -3.6 mV),

corresponding to the �marker 9b in Fig 5, the trajectory enters the region between γ1 (cyan) and γ2 (orange) and two EADs are produced. The maximal canards

have shifted leftward and are closer together than in the first panel. (c) With an even greater left-shift in d1(V) (ΔV1/2(d1) = -3.85 mV) the trajectory is attracted to

equilibrium E2 and there is repolarization failure. With this greater shift the maximal canards are even more constricted.

https://doi.org/10.1371/journal.pcbi.1008341.g009
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point d1), simulated hypokalemia brings the system into the EAD region (red point d2).

Applying a left-shift to f1(V) of ΔV1/2(f1) = −0.75 mV eliminates the EADs (orange point d3).

Thus, both window-narrowing maneuvers produce the desired result of eliminating hypokale-

mia-induced EADs. Because the EAD region is smaller in Fig 10a than in Fig 10c, it would

Fig 10. Narrowing the Ca2+ current window by shifting d1(V) or f1(V) eliminates hypokalemia-induced EADs in the model. (a) Model responses in the

(ΔV1/2(d1), [K+]o) parameter plane. The green marker (b1) denotes the default condition, the red marker (b2) denotes the hypokalemia condition, and the orange

marker (b3) denotes the d1(V)-shifted hypokalemia condition. (b) Voltage time courses for the color-matched markers (b1), (b2), and (b3) of panel (a). (c) Model

responses in the (ΔV1/2(f1), [K+]o) parameter plane. The green marker (d1) denotes the default condition, the red marker (d2) denotes the hypokalemia condition, and

the orange marker (d3) denotes the f1(V)-shifted hypokalemia condition. (d) Voltage time courses for the color-matched markers (d1), (d2), and (d3) of panel (c).

https://doi.org/10.1371/journal.pcbi.1008341.g010
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generally be more successful in the model to eliminate EADs in conditions of hypokalemia

with shifts in d1(V) than with shifts in f1(V), as observed experimentally in [14].

Given the importance of excess ICa-L in the production of EADs, it is not surprising that

when the Ca2+ current conductance was increased during dynamic clamp experiments there

was an increase in EAD production and repolarization failure. These effects were eliminated

when the ICa-L window was symmetrically narrowed [15]. We demonstrate that the model (1)

recapitulates both the increase in propensity of repolarization failure with an increase in gCa

and the rescue of a standard action potential with appropriate symmetric narrowing of the

ICa-L window.

In Fig 11, the conversion of an action potential (green) to repolarization failure (red) in

response to an increase in gCa (to 0.18 mS/cm2) is illustrated. By symmetrically narrowing the

ICa-L window with ΔV1/2(d1) = 1 mV and ΔV1/2(f1) = −1 mV, there is recovery of an action

potential response to the stimulus. In a physiological setting, this and the previous result sug-

gest that dynamic regulation of the ICa-L window can be very effective at overcoming patholog-

ical conditions leading to EADs and repolarization failure.

Changes in Ca2+ channel time constants are predicted to eliminate

hypokalemia-induced EADs

We have shown that the model reproduces many of the experimental results obtained with

dynamic clamp in [14] and [15]. We have also shown that the EADs induced under these

manipulations can be explained mathematically as canard-induced oscillations. We now

extend our analysis by using the model to make predictions about the anti-arrhythmic effects

of altering kinetic properties of the Ca2+ current. Specifically, we examine model responses to

changes in the time constants of ICa-L activation, τd(V), and inactivation, τf(V), under simu-

lated hypokalemia.

To examine the effects of changing Ca2+ current time constants we multiply the voltage-

dependent timescale functions by scaling parameters, α and β. Then the activation and inacti-

vation variables change in time according to:

dd
dt
¼

d1ðVÞ � d
atdðVÞ

df
dt
¼

f1ðVÞ � f
btf ðVÞ

ð5Þ

Values of a scaling parameter larger than 1 make the corresponding time constant larger and

thus slow the rate of adjustment of the corresponding gating variable to the variations in V;

values of a scaling parameter less than 1 hasten this adjustment.

The model responses to independent variation in α and β are shown in Fig 12. For refer-

ence, the blue �marker in the two EADs band of the red “EADs” region of Fig 12 denotes the

baseline hypokalemia condition ([K+]o = 2.0 mM) in the absence of time constant manipula-

tions. Two dashed blue arrows, one pointing leftward toward decreases in α alone and the

other pointing upward toward increases in β alone, show separate manipulations that predict

the elimination of hypokalemia-induced EADs. The EAD-eliminating decreases in α corre-

spond to more rapid activation of ICa-L in response to a depolarizing stimulus while the EAD-

eliminating increases in β correspond to delayed inactivation of ICa-L during an actio potential.

These results seem counterintuitive, since the first manipulation makes ICa-L turn on faster

and the second makes it turn off slower in response to a stimulus. Why would manipulations
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that are expected to prolong the influence of a depolarizing current shorten action potentials

and reduce the likelihood of EADs?

The answer again lies in the fast-slow analysis and, in particular, the location of the primary

maximal canard γ0 with respect to the location of the pulsed solution Γ in phase space. As we

discussed earlier, and showed in detail in [21], the primary maximal canard moves far to the

left of the singular strong canard as parameters are changed that move the system away from

Fig 11. Symmetric narrowing of the model window region abolishes ICa-L amplitude-induced repolarization

failure. Repolarization failure is promoted by increasing the conductance of the ICa-L current (red). Narrowing the

window recovers the action potential response (orange). Green: (gCa, ΔV1/2(d1), ΔV1/2(f1)) = (0.112, 0, 0); orange:

(gCa, ΔV1/2(d1), ΔV1/2(f1)) = (0.18, 0, 0); red: (gCa, ΔV1/2(d1), ΔV1/2(f1)) = (0.18, 1, -1).

https://doi.org/10.1371/journal.pcbi.1008341.g011

Fig 12. Model responses to variation in scaling parameters of Ca2+ channel activation (α) and inactivation (β)

timescales under simulated hypokalemia. The blue �marker denotes the hypokalemia condition of Fig 10 and the

blue dashed arrows highlight two separate dynamic clamp manipulations predicted to eliminate hypokalemia-induced

EADs.

https://doi.org/10.1371/journal.pcbi.1008341.g012
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the singular limit. When the time constant for d is decreased or that for f is increased, this has

the effect of further separating the timescales of fast and slow variables. That is, it moves the

system closer to the singular limit. As a result, γ0 moves rightward towards g0
0
, and in the pro-

cess crosses Γ, so that Γ now falls outside of the funnel region so no EADs are produced.

Discussion

Recent studies using the dynamic clamp experimental technique have demonstrated that the

ICa-L window region, the voltage range over which the activation and inactivation curves over-

lap, plays an important role in regulating myocyte electrical rhythms [14, 15]. They showed

that EADs and repolarization failure are facilitated by window broadening, and that conditions

promoting these pathological electrical behaviors could be overcome by narrowing the win-

dow. In this manuscript we demonstrated that a 4-dimensional variant of the Luo-Rudy I

model [30] can reproduce and explain these findings. The low dimensionality of the model

allowed us to perform a fast-slow analysis, enabling our ability to view the EADs as canard-

induced phenomena. In particular, we showed that the EADs produced under changes in the

size of the window region are canard-induced oscillations and that the canards can be used to

explain many of the effects of different manipulations reported in [14] and [15]. With this

technique, we demonstrated that it is even possible to explain why a particular number of

EADs is elicited under a given parameter regime.

The size of the ICa-L window region is determined by the configuration of both the activa-

tion and inactivation curves. Hence, enlarging the window region can be accomplished by

shifts in either or both curves. Dynamic clamp experiments in [15] showed that both simulta-

neous and independent window-enlarging shifts in the activation and inactivation curves are

capable of producing EADs. Figs 3 and 4 replicate these findings. But why does enlarging the

window region lead to EADs and repolarization failure? The biophysical explanation is that

the enlarged window allows for sustained activation of the current, and indeed this is true. But

why does the voltage oscillate to give EADs rather than just give an extended plateau? This is

best explained mathematically. In the model, there is a twisted funnel region in phase space

whose position changes with the configuration of the ICa-L window region. Smaller window

regions keep this funnel away from where solutions are injected following a depolarizing pulse

so that solutions do not experience twist-induced oscillations, while larger window regions

move the funnel toward or across where solutions are injected which leads to EAD oscillations.

Hence, the pro-arrhythmic potency of one manipulation over another, as is shown in Fig 4 for

left shifts in the activation curve versus right shifts in the inactivation curve, can be explained

by tracking the respective movements of the curve (primary maximal canard) that bounds the

funnel region for oscillations (Fig 7).

Why is it useful to cast the window region in terms of canards and twisted slow manifolds?

The reason is predictability. Knowledge of the size of the Ca2+ current window is only useful

within the context of other biophysical parameters. We demonstrated this by showing that the

window size for EADs is highly dependent on the external K+ concentration (Fig 10a and 10c).

Also, changing the number of Ca2+ channels in the cell’s membrane affects whether the win-

dow region is appropriate for EADs or repolarization block, as we demonstrated in Fig 11. So

knowing the size of the window region is insufficient for knowing whether EADs or repolari-

zation block will occur. Knowing the geometric structure of the model, in particular the phase

space locations of the maximal canards, provides much more precise information and allows

us to interpret in a straight-forward way what happens when d1(V) or f1(V) are shifted and

the window region modified. It also allows us to predict which changes in biophysical parame-

ters (and their magnitudes) elicit EADs or repolarization block.
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The predictive capacity of the fast-slow analysis was also demonstrated by our finding that

increasing the rate of Ca2+ channel activation or decreasing the rate of inactivation under

hypokalemia conditions can eliminate EADs (Fig 12). This prediction emerges naturally from

the analysis, but is not at all obvious from biophysical arguments alone. While the effects of

time constant manipulations were not considered in the two dynamic clamp studies that are

the focus of this work [14, 15], another study [44] did test the effects of such manipulations,

but only in the case of H2O2-induced EADs. The latter study found that manipulating the time

constants of Ca2+ channel activation and inactivation had small effects on existent EADs,

although the direction of the effects are in agreement with the predictions made here for

small-magnitude manipulations. The computer-generated Ca2+ current used in [44] contains

a voltage-dependent inactivation curve with incomplete inactivation, which produces a persis-

tent “pedestal” current. The major finding of [44] was that a larger pedestal current (reduced

inactivation) promoted both H2O2- and hypokalemia-induced EADs. We found that the addi-

tion of such a pedestal current in the present model led to an increase in the number of EADs

induced under hypokalemia conditions.

There have been many computational models of cardiac APs developed since the original

Luo-Rudy model [30]. Most of these models contain more detailed descriptions of transmem-

brane ionic currents and intracellular ion handling as experiments have continued to uncover

important features of the intracellular and membrane biophysics of cardiac cells. For this rea-

son, these models are often high dimensional. For example, one well-regarded model contains

more than 40 dynamic variables [29]. Many of these models have been shown to produce

EADs under parameter regimes that represent the same kinds of manipulations tested in the

current work. In addition, some of these models can also produce EADs through biophysical

mechanisms that are not present in the Luo-Rudy model, such as maladaptive calcium-

induced calcium release [17, 18, 45] or reactivation of the late Na+ current [46, 47]. The central

role played by canards in the present minimal model, and others, highlights the plausibility for

such a central role for canards in these more complex models. It is quite possible that EADs in

a high-dimensional model are due to a twisted slow manifold, even though demonstrating that

would be very difficult due to the high dimensionality. It is also possible that canards are

responsible for the EADs generated by maladaptive CICR. Indeed, we speculate that a single

dynamical mechanism—canards—may be responsible for many instances of EADs generated

through either a purely electrical mechanism or through CICR.

Cellular EADs have been linked to tissue-level arrhythmias, but the precise relationship

between the prolongation of cellular action potential duration (APD) and the lethality of tissue

level arrhythmia is not well understood. For instance, Torsades de pointes, a tissue-level tachy-

cardic arrhythmia caused by cellular APD prolongation (observed as long QT syndromes) can

either occur as a transient tissue behavior that spontaneously self-extinguishes or a sustained

dysrhythmia that devolves into full ventricular fibrillation and heart failure. The canard mech-

anism, shown in this work to underlie cellular EADs, provides a new potential line of inquiry

for investigating the propagation and synchronization of cellular rhythms at the tissue-level.
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