
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPLIED DYNAMICAL SYSTEMS © 2020 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 1701--1735

Big Ducks in the Heart: Canard Analysis Can Explain Large Early
Afterdepolarizations in Cardiomyocytes\ast 

Joshua Kimrey\dagger , Theodore Vo\ddagger , and Richard Bertram\S 

Abstract. Early afterdepolarizations (EADs) are pathological voltage fluctuations that can occur in cardiac cells
and are a potent source of potentially fatal arrhythmias. Recent works examining the mechanisms
underlying EADs in minimal computational cardiac models have revealed that voltage-driven EADs
are canard-induced mixed-mode oscillations whose properties are mediated by the rate at which
these cells are paced. In this work, we analyze the mechanisms for the pacing-induced generation of
different EAD behaviors in a reduced four-dimensional Luo--Rudy I model using slow-fast analysis.
While previous explanations for EADs in this model have required manipulation of the underlying
multitimescale structure, our approach does not and we find that the canard mechanism persists in
generating EADs in this context. We also find that the canard mechanism gives a more complete
explanation for the onset and properties of the EADs induced (e.g., EAD amplitude and number). In
addition, we also find that the canards play an essential role in producing a richer set of behaviors than
were seen in other minimal models, some of which have also been observed in experiments. These
behaviors include pacing-induced termination of EADs, the periodic alternation of cardiac action
potentials with and without EADs, as well as bistability between standard and EAD-containing
action potentials at a fixed pacing rate. Finally, we show that this bistability can lead to hysteretic
transitions between standard and arrhythmogenic action potentials under sufficiently slow oscillations
in the pacing rate.
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1. Introduction. Early afterdepolarizations (EADs) are pathological voltage fluctuations
that can occur in cardiac action potentials (APs). As a result of these fluctuations, the APs
are prolonged (compare Figures 1(a) and 1(b)), which can lead to arrhythmias in cardiac tissue
[11, 26, 44, 48]. The EADs can be induced in isolated cardiac muscle cells (cardiomyocytes) by
putting the cells into a hypokalemic (low K+) solution [25, 30, 31, 49], and can also be observed
following the application of drugs that act on K+, Na+, or Ca2+ on channels [2, 4, 17, 37, 38].

Several mathematical studies have been performed aimed at understanding the dynami-
cal basis of EADs [22, 23, 24, 34, 35, 36, 43, 45, 52]. Recent studies have employed slow-fast
analysis, also known as geometric singular perturbation analysis, to facilitate this understand-
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(a) AP without EADs
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(b) AP with EADs

Figure 1. EADs in simulated cardiac APs. Cardiac APs can exhibit EADs in response to changes in
chemical environment and ion channel expression. (a) A simulated cardiac AP without EADs. (b) An AP
exhibiting two EADs (red arrow markers) has a significantly prolonged duration.

ing [22, 23, 43, 45]. Two studies in particular analyzed a three-variable model by decomposing
it into a two-dimensional slow subsystem and a one-dimensional fast subsystem [23, 45]. These
analyses have been very informative regarding the genesis of the EADs [23], and the effects of
stimulus or pacing frequency on the production of the EADs [45]. This three-variable model
was, however, intentionally minimal to facilitate analysis, and is limited in its ability to match
properties of actual cardiomyocytes. In particular, the minimal model produces APs sponta-
neously, unlike isolated myocytes, and the EADs have very small amplitude (e.g., 1--2 mV),
unlike many actual EADs that can be as large as 20 mV in amplitude [28, 51]. These limita-
tions of a minimal model motivate the use of higher-dimensional models that exhibit more of
the biophysical properties of the cardiomyocytes. However, as the dimensionality is increased
and the topological structure of phase space is altered, the mathematical tools used for the
lower-dimensional model become increasingly difficult to apply and need to be amended.

In this article we employ slow-fast analysis to understand EAD generation in a four-
dimensional variant of the Luo--Rudy 1 model [27] introduced in [43], treating two of the
variables as slow and two variables as fast. We find that the EADs generated by this model
are much larger than in the three-dimensional minimal model used in [45], and we also find that
the singular limit analysis is inadequate for describing the dynamics underlying the EADs.
Similarly to previous works, we find a folded node in the singular limit [5]. The canard
solutions associated with that folded node provide for the genesis of EADs in our system.
However, the location in phase space of the maximal canards is very different from that of
the singular canards, and the corresponding twisting of the stable sheet of the slow manifold
occurs far from the folded node singularity that gives rise to this twisting. The trajectory
moves along this manifold, where the twists result in EADs.

In the intact heart, cardiomyocyte electrical activity is driven by input originating at
the sinoatrial node, and in vitro studies with isolated cells have demonstrated that periodic
stimulations with low frequency are more likely to induce EADs than stimuli with a higher
frequency [3, 35]. The rationale for this was explained in a previous article [45], but some
voltage patterns reported in the literature were not captured by the minimal model that
was employed, such as alternans with pairings of APs with and without EADs (see Figure
2 of [29], Figure 2 of [3], Figure 3 of [35], and Figures 3 and 4 of [1]) and premature EADD
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BIG DUCKS IN THE HEART 1703

termination caused by a depolarizing stimulus (see Figure 7 of [10], Figure 2 of [29], and
Figure 4 of [1]). These patterns are captured with the higher-dimensional model used here,
and we use slow-fast and canard analysis to understand the dynamics that underlie them.

The analysis performed herein demonstrates that slow-fast analysis can be highly useful
in explaining complex multiscale phenomena even far from the singular limit.

2. The Luo--Rudy I model. The Luo--Rudy I model [27] was one of the earliest proposed
mathematical models for the electrical dynamics of ventricular cardiomyocytes. The model
includes 6 voltage-dependent transmembrane ionic currents, as well as a simplified single-
compartment description of intracellular Ca2+ handling. The inward currents include a spike-
producing Na+ current (I\mathrm{N}\mathrm{a}), a combined slow high-threshold L-type/T-type Ca2+ current
(I\mathrm{C}\mathrm{a}), and a constant conductance background current (I\mathrm{b}). The outward currents include a
delayed rectifier K+ current (I\mathrm{K}), an extracellular [K+]-dependent K+ current (I\mathrm{K}1), and a
high-threshold K+ current (I\mathrm{K}\mathrm{p}). Taken together, the Luo--Rudy I model consists of 8 coupled
nonlinear ordinary differential equations.

The analysis in this paper is strictly concerned with examining the mechanisms underlying
the EADs that the Luo--Rudy I model produces. While there is some debate in the literature
as to whether EADs in cardiac cells are predominantly voltage driven (dependent on voltage-
gated transmembrane currents) [15, 33, 39] or Ca2+ driven (relying on the synchronization
of intracellular Ca2+-induced Ca2+ release) [19, 20, 50], we restrict our attention to voltage-
driven EADs. To this end, we reduce the order of the Luo--Rudy I model by removing
the intracellular Ca2+ component. Moreover, since the Na+ current rapidly inactivates for
V >  - 40 mV, i.e., I\mathrm{N}\mathrm{a} \approx 0 whenever EADs occur, we also remove this current from the model.

Hence, we use the following reduced model of membrane electrical dynamics:

Cm
dV

dt
=  - (I\mathrm{C}\mathrm{a} + I\mathrm{K} + I\mathrm{K}1 + I\mathrm{K}\mathrm{p} + I\mathrm{b}) + I\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m},

dd

dt
=

d\infty (V ) - d

\tau d(V )
,

df

dt
=

f\infty (V ) - f

\tau f (V )
,

dx

dt
=

x\infty (V ) - x

\tau x(V )

(2.1)

with ionic currents given by

I\mathrm{C}\mathrm{a} = g\mathrm{C}\mathrm{a} d f (V  - V\mathrm{C}\mathrm{a}),

I\mathrm{K} = g\mathrm{K} xX\mathrm{i},\infty (V ) (V  - V\mathrm{K}),

I\mathrm{K}1 = g\mathrm{K}1K1,\infty (V ) (V  - V\mathrm{K}1),

I\mathrm{K}\mathrm{p} = g\mathrm{K}\mathrm{p}K\mathrm{p},\infty (V ) (V  - V\mathrm{K}\mathrm{p}),

I\mathrm{b} = g\mathrm{b} (V  - V\mathrm{b}).

(2.2)

Here, Cm is membrane capacitance and I\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m} is an applied (stimulus) current. Each transmem-
brane ionic current is formulated using the standard Hodgkin--Huxley formalism for excitableD
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1704 JOSHUA KIMREY, THEODORE VO, AND RICHARD BERTRAM

membranes [13, 18]. For example, in the Ca2+ current (I\mathrm{C}\mathrm{a}), the maximal conductance, g\mathrm{C}\mathrm{a},
is a parameter; the dynamic variables d and f represent the fraction of open activation and
inactivation gates of all voltage-gated Ca2+ channels, respectively, and (V  - V\mathrm{C}\mathrm{a}) is the driving
force for ion flux, where V\mathrm{C}\mathrm{a} is the Nernst potential for Ca

2+. The x variable denotes the (slow)
activation of the delayed rectifier potassium current, I\mathrm{K}. Each of the steady-state activation
and inactivation functions, j\infty (V ) for j = d, f, x,X\mathrm{i},K1, and K\mathrm{p}, is an increasing and decreas-
ing sigmoid, respectively. Here, we have amended the notation from the original Luo--Rudy
I model [27] using uppercase letters for quantities at quasi-equilibrium. The time constants,
\tau d(V ) and \tau x(V ), are bell shaped, and \tau f (V ) is strictly increasing. Their magnitudes govern
how quickly the associated gating variable adapts to changes in V . Small and large values
of \tau j(V ), j = d, f, x correspond to rapid and slow variation, respectively. We refer the reader
to Appendix A for the explicit expressions used to formulate each of the steady-state gating
expressions and time constants.

All parameter values are identical to those used in [27], except where explicitly stated
otherwise (see Appendix A). The computer programs can be downloaded from the following
website: www.math.fsu.edu/\sim bertram/software/cardiac.

2.1. The Luo--Rudy I model can produce EADs. Examples of APs and APs with EADs
produced by the Luo--Rudy I model are shown in Figure 2. As is common in much of the
experimental and computational literature, we reduce the magnitudes of outward K+ currents
and increase that of the inward Ca2+ current in order to invoke EADs. In the Luo--Rudy I
model, each of the maximal conductances and reversal potentials of the K+ currents are
increasing functions of the extracellular K+ concentration, [K+]\mathrm{o}. Hence, reducing [K+]\mathrm{o}
reduces the magnitudes of hyperpolarizing currents and increases the relative strengths of
their outward driving forces. This simulates hypokalemia, a condition marked by unusually low
[K+]\mathrm{o}, which compromises cardiac cell function. For the simulations produced in Figure 2, we
have reduced [K+]\mathrm{o} to 3.0 \mu M (from the default value 5.4 \mu M) and have incrementally increased
the maximal conductance of the Ca2+ current, g\mathrm{C}\mathrm{a}, from 0.09 mS/cm2 to 0.123 mS/cm2 in
order to demonstrate the emergence of EADs.

In all cases, there is a globally attracting hyperpolarized (stable node) equilibrium of the
unforced Luo--Rudy I model, which we denote E1, corresponding to the rest state of the cell
and a single depolarizing pulse of 70 \mu A/cm2 is applied for 2 ms to initiate an AP. Figure 2(a)
shows a cardiac AP without EADs. Figure 2(b) shows how increases in g\mathrm{C}\mathrm{a} cause an observable
delay in repolarization, which increases the AP duration (APD) (compare Figures 2(a) and
2(b)). Further increases in g\mathrm{C}\mathrm{a} cause the cell to begin to produce large-amplitude EADs
(Figures 2(c) and 2(d)), where the presence of two EADs causes a nearly 3-fold increase in
the APD. These pathological voltage deflections are the focus of this study.

There are physiologically relevant parameter sets (specifically, those sets from which EADs
can be generated) for which two additional equilibria of the unforced problem arise (we refer
forward to Figure 4 for an illustration). One of these equilibria, denoted E2, can either
be a saddle or a node focus, depending on system parameters (see section 3.3). The other
equilibrium, denoted E3, is a saddle for all parameter values of interest.

2.2. EADs are generic. Cellular manipulations similar to those presented in the simula-
tions of Figure 2 have been shown to be a robust method for eliciting EADs in isolated cardiacD
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(a) gCa = 0.09 mS/cm2
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(b) gCa = 0.115 mS/cm2
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(c) gCa = 0.12 mS/cm2
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(d) gCa = 0.123 mS/cm2
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Figure 2. Representative simulations from the Luo--Rudy I model subject to a single depolarizing pulse (at
t = 100 ms) under hypokalemia ([K+]\bfito = 3.0 mM). (a) A standard AP without EADs is generated. (b)--(d)
Increases in the maximal Ca2+ conductance, gCa, prolong the APD (b) and lead to the occurrence of EADs (c)
and (d).

cells [31, 49]. To show that the emergence of EADs demonstrated in Figure 2 is a generic
phenomenon of the Luo--Rudy I model (2.1), we now examine the (g\mathrm{C}\mathrm{a}, [K

+]\mathrm{o}) space over
which EADs occur, shown in Figure 3. To construct this diagram, the numerical solutions of
the model are determined on a 300 \times 300 grid of parameter values. At each grid point, the
behavior of the model in response to a single stimulus is categorized and color coded.

The large light green region of the (g\mathrm{C}\mathrm{a}, [K
+]\mathrm{o})-plane (``No EADs"") corresponds to pa-

rameter combinations of (2.1) in which APs do not exhibit EADs before returning to rest,
although solutions here may have extended plateau phases (see Figure 2(b)). The large white
region of the plane (``Repolarization Failure"") reflects solutions that fail to repolarize after
initial stimulation and instead remain at an elevated voltage. Between the ``No EAD"" region
and the ``Repolarization Failure"" region is the region where EADs are produced (orange). As
[K+]\mathrm{o} is decreased, i.e., under more severe hypokalemic conditions, the size of the g\mathrm{C}\mathrm{a} interval
where EADs are produced grows and shifts leftward. This reduces the threshold for EAD
production and increases the range of g\mathrm{C}\mathrm{a} values over which EADs occur.

The EAD region possesses additional structure. Increments in the number of EADs pro-
duced are indicated by increasingly darker shades of orange. At the darkest shade of orange 6
or more EADs are produced (we have detected more than 20 EADs for some parameter values
in this region). In the diagram, we see that the region in which n EADs are produced is larger
than that for n+1 EADs. Thus, from Figure 3, we have the prediction that APs with a largeD
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⋄ ⋄ ⋄
(b) (c) (d)

No EADs
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Repolarization

Failure

0.105 0.115 0.125 0.135 0.145
2.

2.5

3.

3.5

4.

4.5

1

2

3

4

5

6+

Figure 3. Two parameter (\bfitg Ca, [K
+]o) diagram of EAD occurrence. Simulated responses to a single pulse

reveal three distinct regions of solution behavior: No EADs (light green), EADs (orange), and Repolarization
Failure (white). Within the EAD region, the number of EADs elicited is distinguished by different shades of
orange (see legend). The bright green curve marking the boundary between the No EADs and EADs regions
was computed using the numerical continuation and bifurcation software AUTO [7]. The dashed blue curve and
the open blue diamonds (\Diamond ) represent the path taken in parameter space and the particular parameter values,
respectively, that were used to produce panels (b)--(d) of Figure 2.

number of EADs should be observed less frequently than those with a small number (or no)
EADs, even in cases of hypokalemia.

The green curve (indicated by green arrow) that demarcates the transition from the No
EADs region to the EADs region was computed by numerical continuation of a suitably
chosen solution segment using AUTO [7]. In the case of an endogenous oscillator, as was
studied in [23] and [45], this transition curve can be computed as the two-parameter locus
of the first period-doubling bifurcation of the no-EAD limit cycle. With a biophysical model
that requires a stimulus to evoke APs, locating this boundary is less straightforward.

Transient responses to stimuli were computed in AUTO by solving a 2-point boundary
value problem with the initial endpoint fixed at the equilibrium E1 and the other endpoint
subject to remain at a fixed value of V (V = -70 mV) between the plateau and resting voltage
(corresponding to the repolarization phase of the AP). Starting from a particular solution in
the No EADs region, sufficient increases in the parameter g\mathrm{C}\mathrm{a} induce a heteroclinic bifurcation
connecting the stable equilibrium E1 to the saddle equilibrium E3. This heteroclinic bifur-
cation marks the boundary (in parameter space) between APs with no EADs and APs withD
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BIG DUCKS IN THE HEART 1707

at least one EAD. A two-parameter continuation of this heteroclinic bifurcation produces the
green boundary in Figure 3 (for details, see Appendix B). This curve is in excellent agreement
with that of the simulation results, while providing a reprieve from the computational cost of
numerous exploratory simulations.

The Luo--Rudy I model reproduces relevant experimental properties of EAD induction,
but the information obtained through numerical simulation alone does not yield a dynamical
mechanism for why or how EADs are induced. To uncover the mechanism, we now review and
implement a collection of powerful analytical and numerical techniques for analyzing excitable
cell models with multiscale structure. These recently developed techniques can often give a
comprehensive geometric explanation for exotic oscillatory behaviors.

3. Geometric singular perturbation analysis. The dynamics of the transmembrane cur-
rents that regulate cardiac cell electrical activity often evolve over disparate timescales. Geo-
metric singular perturbation, or slow-fast analysis, takes advantage of this separation in time
scales to formally decompose a system of differential equations that describes these dynamics
into constituent slow and fast subsystems. The insight gleaned from analyzing each subsystem
can then be pieced together to explain the behavior of the full system.

Slow-fast analysis has been used previously to analyze the dynamics of simplified versions
of the Luo--Rudy 1 model, in which the timescales of some variables were modified to facilitate
analysis and generate EADs [22, 43]. We demonstrate that this analysis can also be used
effectively on a higher-dimensional, more biophysically accurate, version of the Luo--Rudy 1
model, without making changes to the timescales of the variables.

3.1. The multitimescale structure of the Luo--Rudy I model. Dimensional analysis of
(2.1) was performed by averaging over the EAD-containing AP of Figure 2(d) to obtain mean
timescales of the variables (see Appendix C). This leads to the following dimensionless version
of the Luo--Rudy I model:

\epsilon 
dv

dts
=  - (I\mathrm{C}\mathrm{a} + I\mathrm{K} + I\mathrm{K}1 + I\mathrm{K}\mathrm{p} + I\mathrm{b}),

\epsilon 

r

dd

dts
=

d\infty (v) - d

\~\tau d(v)
,

df

dts
=

f\infty (v) - f

\~\tau f (v)
,

dx

dts
=

\=\tau f
\=\tau x

x\infty (v) - x

\~\tau x(v)
,

(3.1)

where \epsilon := Cm/G\mathrm{t}\mathrm{o}\mathrm{t}

\=\tau f
\approx 0.007(\ll 1) is the small perturbation parameter, r := Cm/G\mathrm{t}\mathrm{o}\mathrm{t}

\=\tau d
\approx 0.05,

G\mathrm{t}\mathrm{o}\mathrm{t} is the sum of maximal conductances, gx, for x \in \{ Ca,K,K1,Kp, b\} , from (2.2), and
the right-hand sides of (3.1) are \scrO (1) with respect to \epsilon . The voltage, V , is superfast with
mean timescale \tau V \approx 1 ms. The activation variable, d, for I\mathrm{C}\mathrm{a} is fast with mean timescale
\=\tau d \approx 30 ms. The inactivation variable, f , for I\mathrm{C}\mathrm{a} is slow with mean timescale \=\tau f \approx 173 ms.
The activation variable, x, for I\mathrm{K} is superslow with mean timescale \=\tau x \approx 561 ms.

The dimensionless system (3.1) is used here as a tool for formal comparison of the different
timescales present in the model. Both \epsilon and r are proportional to Cm, so a change in the valueD
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of Cm results in a proportionate change in \epsilon and r. All further analysis, including figures, will
be presented in terms of the original model variables and parameters.

With four timescales one has some discretion on how the variables are grouped as ei-
ther fast or slow. Previous analyses of Luo--Rudy I-derived models have taken one of two
approaches: (1) reduce the model complexity by assuming that d adjusts instantaneously to
variations in V before examining EADs as canard-induced mixed-mode oscillations (MMOs)
of a system with 1 fast and 2 slow variables [23, 45], or (2) treat x as the sole slow variable
and use the traditional slow-fast decomposition to explain EADs as initiated and terminated
by Hopf and homoclinic bifurcations, respectively, of the planar fast subsystem [22]. To fa-
cilitate the slow-fast decomposition in the latter approach, the authors of [43] decreased the
timescale of the d variable 10-fold and increased the timescale of the x variable 10-fold. In the
present work, we choose a novel splitting of variables that treats (V, d) as the fast subsystem
and (f, x) as the slow subsystem, without changing the values of the timescales. We show
that this (2,2)--fast-slow splitting is sufficient for understanding the phenomena of interest; a
3-timescale splitting is not necessary.

With this splitting, the fast subsystem is

Cm
dV

dt
=  - (I\mathrm{C}\mathrm{a} + I\mathrm{K} + I\mathrm{K}1 + I\mathrm{K}\mathrm{p} + I\mathrm{b}),

dd

dt
=

d\infty (V ) - d

\tau d(V )
,

df

dt
= 0,

dx

dt
= 0,

(3.2)

which is a two-dimensional (2D) approximation of (2.1) in which the slow variables are as-
sumed to be constant. The slow subsystem is

0 =  - (I\mathrm{C}\mathrm{a} + I\mathrm{K} + I\mathrm{K}1 + I\mathrm{K}\mathrm{p} + I\mathrm{b}),

0 =
d\infty (V ) - d

\tau d(V )
,

df

dt
=

f\infty (V ) - f

\tau f (V )
,

dx

dt
=

x\infty (V ) - x

\tau x(V )
,

(3.3)

which is a 2D approximation of (2.1) in which the fast variables are assumed to be at their
steady states.

The fast and slow subsystems, (3.2) and (3.3), are two different singular (\epsilon \rightarrow 0) ap-
proximations of (2.1), which provide nonoverlapping information about the dynamics of the
model. The aim of our slow-fast analysis then is to analyze these simpler 2D subsystems and
concatenate their information to explain the genesis and properties of EADs.

3.2. The fast subsystem lacks an EAD-generating mechanism. The 2D surface of equi-
libria of the fast subsystem is called the critical manifold. The V and d equations for the fastD
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(a)

V

x

f

0

(b)

0

Figure 4. Critical manifold and trajectories with a (2,2)--slow-fast splitting of variables. (a) The critical
manifold is folded along L (green) with upper and lower attracting sheets, Sa,\pm 

0 (blue surfaces), and a middle
unstable sheet of saddle-type equilibria, Ss

0 (red surface). Note that the sheets Ss
0 and Sa, - 

0 are also joined,
outside of the relevant domain, by a fold curve (not shown). The full four-dimensional (4D) system (2.1)
has a stable node, E1, which serves as the cellular rest state, a stable node focus, E2, and unstable saddle,
E3. The slow subsystem has a folded node (FN ; purple). The singular strong canard, \gamma 0

0 (magenta), and
the fold curve L (green) delimit the singular funnel. (b) Singular (black) and full system (orange) solutions
are superimposed on the critical manifold. Fast and slow segments of the singular solution are distinguished
by double and single arrows, respectively. The singular orbit (black) does not enter the funnel, nor does the
trajectory of the full system (orange), yet the full trajectory contains small oscillations that delay fast repulsion
toward Sa,+

0 . Parameter values are gCa = 0.123 mS/cm2 and [K+]o = 3 mM .

subsystem are linear in f and d, respectively, so we can express the critical manifold globally
as a graph over V and x:

f =
 - (I\mathrm{K} + I\mathrm{K}1 + I\mathrm{K}\mathrm{p} + I\mathrm{b})

GCa d\infty (V )(V  - VCa)
,

d = d\infty (V ).

(3.4)

The critical manifold is a cubic-shaped surface with upper and lower attracting sheets, Sa,+
0

and Sa, - 
0 (Figure 4(a), blue surfaces), and a middle sheet, Ss

0 (Figure 4(a), red surface), of
saddle-type equilibria. The stable sheet, Sa,+

0 , and unstable sheet, Ss
0, are separated by a one-

dimensional (1D) curve (Figure 4, green), L, of fold bifurcations. One potential mechanism for
EADs is through a Hopf bifurcation of the fast subsystem, as suggested in [43] and [22]. How-
ever, in our model, there are no fast-subsystem Hopf bifurcations, ruling out this possibility.

Hence, solutions of the fast subsystem (3.2) with initial conditions in the physiologically
meaningful region of phase space will converge to one of the attracting sheets in ``fast"" time.
Once solutions of the fast subsystem are within the vicinity of an attracting sheet of the
critical manifold, the dynamics are determined by the slow subsystem, which we discuss next.

3.3. The slow subsystem reveals a folded node singularity. In the slow subsystem, the
fast variables V and d are slaved to the critical manifold (described by the algebraic constraints
in (3.3)) by adjusting instantaneously to the motions of the slow variables f and x (describedD
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1710 JOSHUA KIMREY, THEODORE VO, AND RICHARD BERTRAM

by the differential equations in (3.3)). This makes the critical manifold the interface between
the fast and slow subsystems: fast segments initialized away from the critical manifold rapidly
converge to attracting sheets, where the slow dynamics take over and guide solutions along
these sheets.

The slow subsystem can have two types of singularities: ordinary or folded. The ordinary
singularities correspond exactly to the equilibria, E1, E2, and E3 of the unforced problem.
The ordinary equilibrium, E1, is a stable node for all parameter values of interest. However,
the equilibria, E2 and E3, are both saddle points. The saddle E2 has 2 positive and 2 negative
eigenvalues, while the saddle E3 has 3 negative and 1 positive eigenvalue over the relevant
parameter sets.

It can be shown (see Appendix E) that the slow subsystem possesses a folded node singu-
larity [42] on the fold curve (Figure 4, purple marker). Associated with the folded node are a
pair of special solutions of the slow subsystem, called the singular strong canard (Figure 4(a);
\gamma 00) and the singular weak canard, corresponding to the strong and weak eigendirections of
the folded node (see Appendix E for details). The region of Sa,+

0 bounded below by the fold
curve, L, and above by the singular strong canard, \gamma 00 , is a subset of the basin of attraction
of the folded node called the singular funnel. Solutions of the slow subsystem with a phase
point inside the singular funnel pass through the folded node with finite speed, cross from
Sa,+
0 to Ss

0, and follow Ss
0 for \scrO (1) time on the slow timescale. Such solutions are known as

singular canards and their persistence under small perturbations (0 < \epsilon \ll 1) gives rise to
small oscillations that are characteristic of EADs.

Canard-induced small oscillations emerge in the vicinity of the folded node, and in prior
studies it has been shown that these are responsible for EADs [22, 45]. Thus, in phase space,
EADs are typically generated near a folded node of the desingularized slow subsystem.

3.4. The singular solution predicts No EADs. We can now use the information gained
from the two subsystems to construct a singular approximation of the EAD-containing solution
from Figure 2(d) and examine its behavior in light of the singular geometry and the folded
node. Since the rest state of the full system is a stable equilibrium (E1), APs are generated
only in response to a sufficiently large stimulus. (This is in contrast to some prior studies in
which the system was oscillatory [22, 23, 35, 45].)

Figure 4(b) shows the transient response of the model cell to a sufficiently strong stimulus
in the full 4D system (orange) as well as the corresponding singular solution trajectory (black),
with both solutions projected into (f, x, V )-space and superimposed on the critical manifold.
Under the flow of the full system (2.1), the initial impulse (cyan segment, double arrows)
ejects the solution from the stable rest state, E1, toward, and even beyond, Sa,+

0 . Following
the stimulus, the solution returns to and slowly moves along Sa,+

0 toward the fold curve, L.
The solution then crosses L and exhibits two oscillations about L before being rapidly repelled
toward Sa, - 

0 . These oscillations are the EADs seen in Figure 2(d). After this, the trajectory
returns to Sa, - 

0 and slowly approaches the stable rest state, E1.
Under the singular limit, we construct an analogous singular solution trajectory as a

concatenation of solution segments from the separate fast and slow subsystems. As in the
nonsingular case, a sufficiently strong stimulus segment (cyan, double arrow) injects the so-
lution into the basin of attraction of Sa,+

0 , outside of the singular funnel. Once on Sa,+
0 , theD
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slow subsystem describes the slow drift (black curve, single arrow) along the critical man-
ifold toward the fold curve, L. When L is reached, the orbit exhibits classical relaxation
oscillation-like behavior---switching to the fast dynamics (described by the fast subsystem)---
and transitions rapidly (black, double downwards arrows) to the lower attracting sheet of the
critical manifold, Sa, - 

0 . Once on Sa, - 
0 , the trajectory (single arrow) is again described by the

slow subsystem as it returns to rest, E1, completing the construction.
Surprisingly, the equilibrium E2 changes stability, from a saddle point for Cm = 0\mu F/cm2

to a stable focus with two complex eigenvalues having negative real parts for Cm = 1\mu F/cm2,
in contrast to the typical preservation of asymptotic stability away from the singular limit.
More specifically, the equilibrium E2 undergoes a subcritical Hopf bifurcation with respect
to changes in Cm (see Appendix F). The unstable limit cycles that emerge from the Hopf
bifurcation do not appear to influence the local canard dynamics. Moreover, even though E2

is stable for Cm = 1\mu F/cm2, the full solution (orange) shown in Figure 4(b) never enters
its basin of attraction. However, the repolarization failure shown in Figure 3 results from
trajectories entering the basin of attraction of E2.

When comparing the singular orbit to that of the full system, it is evident that the singular
solution retains many of the important properties of the full solution, such as the plateau phase
characteristic of cardiac APs, the rapid repolarization of the cell following the plateau, and
the slow return to the rest state following repolarization. In the singular orbit, however, the
two small EAD oscillations about E2 are lost. It is most notable that neither the singular
orbit nor the full system orbit approach the folded node or enter the singular funnel.

The large \scrO (1) distance in the x-coordinate in Figure 4(b) between the folded node and
the two large EAD oscillations (about E2) is a significant departure from prior analyses of
canard-induced EADs [23, 45]. Hence, the singular solution alone gives us no information as
to how these EAD oscillations are generated under the full 4D flow. To understand this, we
must examine how the critical manifold unfolds into locally invariant slow manifolds away
from the singular limit.

4. EADs are produced by twisted slow manifolds. The previous section demonstrated
that the singular limit is ill-suited for explaining the dynamics underlying EADs in the 4D Luo--
Rudy I model. However, the configuration of the critical manifold, its folded structure, and
the presence of a folded node singularity allow for the possibility of canard-induced oscillatory
dynamics in the fully perturbed problem. We now investigate how the full system geometry
unfolds from the structures of the singular approximation to generate EADs.

4.1. The twisted region of the slow manifolds unfolds toward larger values of \bfitx .
Fenichel theory [8, 16] guarantees that, under sufficiently small perturbations (0 < \epsilon \ll 1),
subsets of the critical manifold that are outside the vicinity of the fold curve, L, perturb
smoothly to nearby locally invariant slow manifolds of the perturbed flow. In fact, the nor-
mal attraction/repulsion properties of these sets is key in guaranteeing that they persist under
perturbation. As we have seen, however, the EADs occur in the vicinity of L---precisely where
Fenichel theory breaks down. Canard theory provides a theoretical basis for extending the
Fenichel results into the neighborhood of the fold and, specifically, the folded node, in order
to explain the complex oscillatory behavior that emerges as we move away from the singular
limit [21].D
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(a) Cm = 0 \mu F/cm2; xCm = 0.042 (b) Cm = 0.1 \mu F/cm2; xCm = 0.14

(c) Cm = 0.25 \mu F/cm2; xCm = 0.245 (d) Cm = 0.5 \mu F/cm2; xCm = 0.375

Figure 5. Unfolding of the critical manifold and singular strong canard. The critical manifold (a) perturbs
to locally twisted (and locally invariant) slow manifolds, Sa,+

\epsilon (blue surface) and Ss
\epsilon (red surface) whose funnel

region, delineated by the primary strong canard \gamma 0 (magenta curve), unfolds toward larger values of x as
capacitance, Cm, is increased (b)--(d). The insets show projections of the intersections of the slow manifolds
and the strong canard with the hyperplane,

\sum 
Cm

, into (f, V )-space. The capacitance, Cm, and the value of the
fixed hyperplane coordinate, xCm , are given under each panel.

Canard theory holds that in the neighborhood of the folded node, away from the singular
limit, Ss

0 and the singular funnel of Sa,+
0 perturb to locally twisted slow manifolds, Ss

\epsilon and
Sa,+
\epsilon , respectively (see Figure 5), with the weak canard acting as axis of rotation [6, 42, 47].

In the system analyzed in prior studies of EADs, with two slow and one fast variable, local
twisting of the slow manifolds in the vicinity of the folded node induced a finite number of
transverse intersections of the attracting and repelling slow manifolds [45]. The curves along
which the 2D slow manifolds intersect in this case are called maximal canards. However, in
our system, with two slow and two fast variables, the transverse intersections of Ss

\epsilon and Sa,+
\epsilon 

are no longer 1D curves (i.e., solution trajectories) generically. Generic intersections of 2DD
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slow manifolds in \BbbR 4 are isolated points. In light of this, we follow [12] and, instead, define
maximal canards as solutions of (2.1) that follow Ss

\epsilon for the largest \scrO (1) times on the slow
timescale.

The structure of the slow manifolds, Sa,+
\epsilon (blue) and Ss

\epsilon (red), over a sequence of increasing
values of the membrane capacitance, Cm (recall that \epsilon \propto Cm), is shown in Figure 5. In each
case, the corresponding strong canard (\gamma 0) is superimposed atop the slow manifold and the
region of the phase space in view is fixed. The methods for computing slow manifolds and
canards in \BbbR 4 are detailed in [12].

For ease of visualization, the slow manifolds in each panel have only been computed up
to the hyperplane

\sum 
Cm

:= \{ (V, d, f, x) \in \BbbR 4 : x = xCm\} , where the choice of x = xCm varies
with Cm. The slow manifolds and the strong canard are then projected into (f, x, V )-space.
Insets show the intersections of the slow manifolds and the strong canard with the chosen
hyperplane,

\sum 
Cm

, in the (f, V )-plane. Although the curves of intersection of Sa,+
\epsilon (blue) and

Ss
\epsilon (red) with the hyperplane appear to intersect one another, this is an artifact of projecting

the 4D dynamics into lower-dimensional spaces. For each value of Cm we have discretion over
the value of the hyperplane coordinate, xCm , up to which we compute the slow manifolds. We
choose to standardize the reference frame across different values of Cm by selecting the xCm

value that (approximately) aligns the intersection point of the strong maximal canard with
the first turning point of Sa,+

\epsilon .
Two important observations can be made from the unfolding of the slow manifolds. First,

as Cm is increased, the local twisting of the slow manifolds moves to larger x-values in phase
space. Specifically, there is a 10-fold increase in the x-coordinate of where twists are centered
for an increase from Cm = 0\mu F/cm2 to Cm = 0.5\mu F/cm2 (compare xCm from Figures 5(a)
and 5(d)). Second, the amplitudes of the twists grow significantly as Cm is increased (\sim 20 mV
in amplitude). Such a large-amplitude twisted structure would be capable of producing the
large EADs seen in Figures 2(c) and 2(d). Both of these observations are in contrast with the
previously studied EAD models, where the unfolding of the slow manifolds occurs near the
folded node and produces local twisting of relatively small amplitude.

4.2. There are large shifts in the strong canard and funnel away from the singular limit.
To show that the unfolding of the singular limit---and the canards this unfolding produces---
are responsible for the generation of EADs, we begin by examining the unfolding of the strong
canard up to Cm = 1 \mu F/cm2. This is important since it forms the upper boundary for the
funnel that determines whether canard solutions, with twisting trajectories, are produced.

Figure 6 depicts how the strong canard, superimposed on the critical manifold, moves
significantly for increasing values of Cm. We remind the reader that the sheets of the critical
manifold perturb to slow manifolds, which change their location in phase space with increases
in Cm. However, the positions of the equilibria, E1--E3, remain fixed under variation in Cm.
For Cm = 0\mu F/cm2, the singular strong canard passes from Sa,+

0 , through the folded node
(FN , purple marker), and onto Ss

0. Away from the singular limit, for Cm = 0.5\mu F/cm2 and
Cm = 1\mu F/cm2, the strong canard shifts leftward toward larger values of x, in the direction
of E2. Since this is a boundary of the funnel, the funnel exhibits a similar leftward shift. The
orbit of the system with Cm = 1\mu F/cm2 enters along the attracting upper sheet to the right
of the strong canard, and thus, for this capacitance value, enters the funnel. This suggestsD
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V

x

f

Figure 6. A trajectory exhibiting EADs enters the funnel region delimited by the strong canard. The strong
canard (magenta curve) moves leftward toward E2 as Cm is increased from 0 to 1 \mu F/cm2, implying concurrent
leftward movement of the twisted slow submanifold of Sa,+

\epsilon . The critical manifold and the folded node (FN,
purple) are included for reference. With Cm = 1 \mu F/cm2, the default capacitance value, the EAD-containing
trajectory (thin black curve) falls within the funnel (to the right of the strong canard).

that the EADs present in the trajectory may be due to canards formed by the twisted slow
submanifold of Sa,+

\epsilon .

4.3. EADs are induced by canards. To have further confidence that the two EADs ex-
hibited by the system are due to canards, we look at predictions made by canard theory
regarding the number of expected small oscillations. According to this theory, the funnel can
be partitioned into rotational sectors that dictate the number of small oscillations produced
in an orbit by entering a particular sector, reflecting the effects of the local twisting of the
slow manifolds [12, 42]. In particular, solutions entering the rotational sector between the
strong canard, \gamma 0, and the next maximal canard, \gamma 1---termed the first secondary maximal
canard---exhibit one small oscillation before being repelled toward the lower attracting sheet,
Sa, - 
\epsilon . Solutions entering the rotational sector between the first and second secondary maximal

canards, \gamma 1 and \gamma 2, respectively, exhibit two small oscillations. For each subsequent rotational
sector, an additional small oscillation is added to entrant solution trajectories before they are
repelled toward Sa, - 

\epsilon .
If the EADs are produced through the canard mechanism, then we predict that the tra-

jectory with two EADs should enter the funnel between \gamma 1 and \gamma 2. To test this prediction,
Figure 7 focuses in on two regions of the (f, x, V )-phase space: (a) the region near where the
solution settles to a particular rotational sector along Sa,+

\epsilon following the stimulus, and (b) the
region where the EADs occur. Both regions show the first three maximal canards along with
the superimposed trajectory (\Gamma , in black). As predicted, Figure 7(a) shows that the solution
is injected onto the upper attracting sheet along the rotational sector (shaded blue) betweenD
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(a) (b)

Figure 7. EADs are canard-induced oscillations. Two distinct regions of the (f, x, V )-phase space show
that EAD number is determined by the rotational sector into which a solution enters. (a) Magnified view of the
region where the solution (\Gamma , black curve) begins to follow the upper slow manifold. In this region, the solution
trajectory is shown to lie within the rotational sector (blue shaded section) between the maximal canards \gamma 1
(cyan curve) and \gamma 2 (orange curve). (b) As predicted by canard theory, the trajectory undergoes two EADs
before being repelled toward Sa, - 

\epsilon .

\gamma 1 (cyan curve) and \gamma 2 (orange curve). Panel (b) shows how the maximal canards extend
into, and beyond, the region where EADs occur and that the solution, \Gamma , indeed follows the
maximal canards very closely, exhibiting two oscillations before being repelled toward Sa, - 

\epsilon .
With this, it becomes evident that the EADs produced by the Luo--Rudy I model are induced
by canards.

Thus far, our analysis has focused on the response of the Luo--Rudy I model to a single
depolarizing pulse. We found that the transient EADs produced in response to this stimulus
are due to the presence of canards. We next turn to the more physiological situation in which
the cell is pulsed periodically.

5. Canards explain the effects of pacing cycle length on the existence and regularity
of EADs. Ventricular cardiac cells, under healthy conditions, require repetitive depolarizing
stimuli in order to fulfill their proper function. Experimental studies of cardiac cells have
found that ventricular electrical rhythms---measured using diagnostics such as the APD and
diastolic interval (DI)---are highly dependent on the length of time between these depolarizing
pulses, termed the pacing cycle length (PCL). The APD, DI, and PCL are (generally) related
by the formula: APD + DI = PCL. In particular, it has been shown experimentally that
EADs are more likely to occur and are often more numerous under long PCLs than under
short PCLs [3, 35]. In addition, intermediate ranges in PCL are often shown to elicit more ir-
regular EAD behavior, such as alternation of APs exhibiting different numbers of EADs. This
alternation manifests as periodic/aperiodic fluctuations in APD from beat-to-beat. These
beat-to-beat fluctuations in APD are called APD alternans [9, 27, 32, 39]. In this section, we
reproduce these behaviors in the model and explain them using slow-fast analysis.D

ow
nl

oa
de

d 
08

/1
1/

20
 to

 6
9.

25
4.

16
3.

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1716 JOSHUA KIMREY, THEODORE VO, AND RICHARD BERTRAM

5.1. Luo--Rudy I reproduces the dependence of EADs on the PCL. Previous mathe-
matical analysis of a minimal model from [35] revealed that canards underlie the relationship
between EAD production and the PCL [45]. That is, canards were shown to both determine
the number of EADs elicited under a given PCL and to be the source of the irregular alternan
behavior seen at intermediate PCLs. However, the model that was used in this analysis was
an endogenous oscillator, whereas standard ventricular cardiac cells---even those that exhibit
repeated EADs under periodic stimuli---remain at rest in the absence of stimuli. We therefore
examine how the more biophysically realistic Luo--Rudy I model responds to a range of PCLs,
and examine the role that canards play in determining these responses.

We begin by examining the asymptotic responses of the model to periodic pacing using a
range of PCLs. Figure 8 shows a bifurcation diagram of APD versus PCL (Figure 8(a)) along
with representative voltage traces for each response type (Figures 8(b)--8(g)). The APD is
calculated as the total time that a solution segment spends above 90\% of the resting voltage
level, V\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}. Farey sequence notation, Ls, is used to denote the type of MMO behavior obtained
on each branch of solutions, where 12, for instance, indicates that one large amplitude (L = 1)
oscillation is followed by two small amplitude (s = 2) oscillations (EADs) before the model cell
repolarizes. Period-n behavior is denoted by Ls1

1 Ls2
2 , . . . , Lsn

n with n coexisting branches of the
same color for a given range of PCL. For example, the 1210 family in Figure 8(a) indicates a
period-2 orbit with two APs: one with two EADs and one with no EADs. This is represented
in the diagram as two curve segments of the same color (brown, in this case). The lower curve
gives the APD of the AP with no EADs, while the upper curve gives the APD of the AP with
two EADs.

The bifurcation diagram shows that the model reproduces essential features of the ex-
perimentally observed relationship between EADs and the PCL. APs without EADs (see
Figure 8(b)) are the global attractor of the forced system under short PCLs (cf. Figure 8(a),
red branch: PCL \in [650, 924] ms), while APs with two EADs (see Figure 8(g)) are the global
attractor under sufficiently long PCLs (cf. Figure 8(a), purple branch: PCL \in [2139, 2200] ms).
However, between these two extreme ranges of PCL, the model produces behaviors not pro-
duced by the minimal model [35], and these behaviors are the focus of the analysis be-
low.

One behavior produced by the Luo--Rudy I model at intermediate PCls, but not the
minimal model, is the premature termination of EADs by intra-AP pulses. This behavior,
shown in Figure 8(c), occurs along the blue 11+ branch in Figure 8(a) (PCL \in [718, 1591] ms),
and has been observed experimentally [1, 10, 29]. Along this branch, an initial stimulus triggers
an AP that would contain either one or two EADs, but a second stimulus occurs during an
EAD and leads to the subsequent repolarization of the model cell. We label this branch of
solutions as ``11+"" MMOs because it contains more than one type of pulse-induced MMO-like
signature. For shorter PCL values, this solution branch reflects APs with interrupting pulses
that occur early enough during a single EAD to bear resemblance to a 11 MMO signature. For
longer PCL values, this branch of solutions reflects APs with interrupting pulses that occur
during the repolarization phase following two EADs, which bear resemblance to a 13 MMO
signature. Transitions between these signatures are smooth and lack obvious boundaries. The
latter 13-like MMO signature is what leads to the very large APDs observed for the largest
PCLs in this solution family.D
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(g) PCL=2200 ms, MMO: 12

Figure 8. APD versus PCL bifurcation diagram with representative solutions from each behavioral regime.
(a) Luo--Rudy I admits a range of PCL-dependent EAD behaviors, some of which have been reported in other
cardiac models. Short PCLs (red) eliminate EADs, very long PCLs (purple) lead to periodic APs with two
EADs, and intermediate PCLs can lead to rhythms with complex signatures (green). Intermediate PCLs gen-
erate myriad novel behaviors as yet unexplained in previous analyses, including pulse-induced termination of
EADs (blue), EAD alternans that pair APs with and without EADs (brown), and bistability between different
regimes of solution behavior (e.g., stimuli with PCL = 820 ms can either eliminate EADs or cause EADs that
are terminated by an interrupting pulse). (b)--(g) Voltage time-courses from each behavioral regime are shown
and subcaptioned by the PCL used to elicit such behavior.
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A second behavior produced by the Luo--Rudy I model, but not the minimal model, is
EAD alternans that pair APs with and without EADs (Figure 8(e)). This behavior has also
been reported in experiments [1, 3, 29, 35]. In the bifurcation diagram (Figure 8(a)), it occurs
along the brown 1210 branch (PCL = [1591, 1878] ms). For larger PCL values, this branch
of solutions also contains alternans that pair APs with one and two EADs (1211 branch;
PCL \in [1878, 2055] ms). Thus, for the PCLs corresponding to the brown APD branches in
Figure 8(a), an initial stimulus triggers an AP with two EADs that repolarizes before a second
stimulus produces either a standard AP (1210; see Figure 8(e)) or an AP with a single EAD
(1211; not shown).

Figure 8(a) also shows that there is a range of pacing frequencies that can lead to ``dynami-
cal chaos"" (Figure 8(a), green (12)p11 branch; see Figure 8(f) for a representative time series).
This phenomenon was first described and examined in detail in [35]. We refer the reader
to [45] for an explanation of the mechanisms underlying this behavior. However, its existence
in the present context gives evidence for the genericity of this phenomenon in model cardiac
cells and also shows that the Luo--Rudy I model does well at subsuming previous findings.

Finally, there are two intervals of the bifurcation diagram exhibiting bistability, indicated
by the coexistence of solution families with different MMO signatures and represented by
different colors. In the first bistable interval, PCL \in [718, 924] ms, solutions without EADs
(Figure 8(a), red 10 branch; see Figure 8(b)) and those that experience pulse-induced EAD
termination (Figure 8(a), blue 11+ branch; see Figure 8(c)) are both stable attractors. In the
second bistable interval, PCL \in [1480, 1614] ms, solutions with one EAD (Figure 8(a), black
11 branch; see Figure 8(d)) are bistable with either those that exhibit pulse-induced EAD
termination (blue: ``11+"") or those that contain period-2 EAD alternans (brown: ``1210"";
see Figure 8(e)). This bistability was not observed in the minimal model [35] and, to our
knowledge, it has not been investigated experimentally.

5.2. PCL determines where solutions are ejected along \bfitS \bfita , - 
\bfitepsilon . To understand the range

of behaviors produced at different PCLs, we begin by relating the solution behavior depicted
in the APD versus PCL bifurcation diagram to the underlying flow in phase space. The
analysis in [45] showed that the PCL dictates where along Sa, - 

\epsilon a solution is pulsed, which
determines the rotational sector that the solution enters on Sa,+

\epsilon , and hence determines how
many EADs are produced. One of the primary differences between the previously analyzed
model from [35] and Luo--Rudy I is the presence of a stable hyperpolarized equilibrium, E1,
of the unforced problem. Because of this attractor, the system is at rest in the absence of
stimuli, and the trajectory is on or near Sa, - 

\epsilon between pulses. In fact, the trajectory follows the
almost-linear invariant submanifold corresponding to the weakest eigendirection of E1 after a
stimulus-induced AP. We refer to this almost-linear submanifold as the curve of approach.

We next partition this curve of approach into segments of uniform behavior upon stimu-
lation; if a pacing stimulus is applied while the trajectory is at any point within one segment,
the response will be the same (e.g., it will produce an AP with the same number of EADs).
This is because, within any one segment, the stimulus injects the trajectory into the same
rotational sector of Sa,+

\epsilon . Figure 9 shows how the curve of approach can be partitioned in this
way. It also shows the three leading maximal canards (\gamma 0, magenta; \gamma 1, cyan; \gamma 2, orange), all
of which are superimposed on the critical manifold. The segments of the curve of approach areD
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V

x

f

Figure 9. Position on the curve of approach at the time of pulse initiation determines the number of EADs
evoked. Following an AP, the solution trajectory returns to E1 along a curve of approach on Sa, - 

\epsilon . This is
partitioned into three segments, ``10"" (magenta), ``11"" (cyan), and ``12"" (orange). Stimulation on segment 10

injects the trajectory to the left of \gamma 0, outside the funnel. Stimulations on segment 11 injects the trajectory into
the rotational sector between \gamma 0 and \gamma 1, yielding 1 EAD. Stimulations on segment 12 injects the trajectory into
the rotational sector between \gamma 1 and \gamma 2, yielding 2 EADs.

color coded using the same color scheme as that of the maximal canards in order to indicate
how pulse timing determines which rotational sector a solution enters. If a trajectory in a
rotational sector exhibits n EADs, we say that the sector has cardinality n.

Solutions that are given a single pulse along the segment labeled 10 (magenta) are injected
into Sa,+

\epsilon to the left of \gamma 0---outside the funnel region---and do not exhibit any EADs (the
cardinality is 0). Solutions pulsed along the segment labeled 11 (cyan) are injected into the
rotational sector of Sa,+

\epsilon to the left of \gamma 1 (and to the right of \gamma 0) which generates a single EAD,
and solutions pulsed along the segment labeled 12 (orange) are injected into the rotational
sector of Sa,+

\epsilon to the left of \gamma 2 (and to the right of \gamma 1) which generates two EADs. Hence,
the boundaries between these distinguishable segments along the curve of approach in Sa, - 

\epsilon 

correspond to the rotational sector boundaries of Sa,+
\epsilon delimited by the maximal canards. The

reason that longer PCLs are more likely to produce EADs, or an increased number of EADs,
is that the longer PCL allows the trajectory to move further along the curve of approach,
entering a segment corresponding to a rotational sector with higher cardinality.

5.3. Canards, PCL, and initial conditions underlie pulse-induced termination of EADs
and EAD alternans. We use the curve of approach presented in Figure 9 to frame our discus-
sion of how the richer set of responses produced by the Luo--Rudy I model, as compared to the
minimal model [35], are the result of complex interactions between the maximal canards, the
PCL, and the point of ejection along Sa, - 

\epsilon . We start by examining the responses generated by
the model that have also been observed in experiments, the first of which is early termination
of EADs due to intra-AP pulses.D
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(a)

V

x

f

*

**

(b)

Figure 10. Pulse-induced termination of EADs. (a) The complete solution trajectory exhibiting pulse-
induced EAD termination from Figure 8(c) (blue) is superimposed, along with the three leading maximal canards
(\gamma 0, magenta; \gamma 1, cyan; \gamma 2, orange), onto the critical manifold. The dashed line with double arrows represents
a stimulus: * represents the first stimulus and ** the second. (b) A 2D (x, V ) projection with inset close-up
view of the funnel.

Figure 10 shows two different views of the solution from Figure 8(c) in (f, x, V ) phase
space. Figure 10(a) superimposes the complete 11+ solution (blue), along with the three
leading maximal canards (\gamma 0, magenta; \gamma 1, cyan; \gamma 2, orange) and the partitioned curve of
approach from Figure 9, onto the critical manifold. This solution is period-2 with respect
to the PCL. The initial depolarizing pulse (thin blue segment, upward arrow) occurs on the
bottom sheet, within the orange 12 segment of the curve of approach with a cardinality of
two. This solution moves along Sa,+

\epsilon for a long time, and before it leaves the manifold a
new stimulus is applied. This stimulus ejects the trajectory upward (double arrow, **) out
of the funnel, where the flow then leads the solution (thick blue curve, single arrow) back to
the upper sheet, outside of the funnel. The solution quickly repolarizes, but the PCL is long
enough to allow the trajectory to return to the 12 segment of the curve of approach before
the next stimulus is applied, completing the cycle.

Figure 10(b) shows a projection of this solution and the invariant structures into the
(x, V )-plane. The inset contains a magnified view of the region where the EADs occur to
show that the EAD-terminating second stimulus occurs near the end of the first EAD within
the funnel region.

We now look at the generation of EAD alternans. Specifically, we focus on the case where
APs with two EADs are interleaved by APs without EADs. We find that this phenomenon is
also due to the complex interactions between the maximal canards, the PCL, and the position
along the curve of approach where a stimulus is applied.D
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(a)

*
**

V

x

f

(b)

Figure 11. EAD alternans can be explained in terms of canards and the PCL. (a) The solution trajectory
projected into the (f, x, V ) phase space exhibiting 1211 EAD alternans from Figure 8(e) (brown) is superimposed,
along with the three leading maximal canards (\gamma 0, magenta; \gamma 1, cyan; \gamma 2, orange), onto the critical manifold.
The dashed line with double arrows represents a stimulus: * represents the first stimulus and ** the second.
(b) Projection into the (x, V )-plane (with inset close-up of the funnel).

Figure 11 shows the solution from Figure 8(e) projected into both (f, x, V ) and (x, V )
phase spaces. In Figure 11(a) we have again superimposed the complete 1210 solution (brown),
along with the three leading maximal canards (\gamma 0, magenta; \gamma 1, cyan; \gamma 2, orange) and the
partitioned curve of approach, onto the critical manifold in (f, x, V ) phase space. Similarly
to the case of pulse-induced termination of EADs, the stimulus occurs while the trajectory
is within the segment of the curve of approach with cardinality of 2. However, unlike in
the previous case, the PCL is large enough for the solution to complete two EADs before
returning to the bottom sheet. The second pulse occurs before the solution can reach the
curve of approach. As such, the solution is ejected (upward arrow, **) back to the upper
sheet outside of the funnel region, resulting in an AP without EADs. Lacking EADs, this
second AP repolarizes rapidly and a sufficiently long PCL allows the solution to slowly return
to the cardinality 2 segment of the curve of approach, completing the cycle.

5.4. Bistability creates the potential for hysteresis. We have seen from Figures 10 and 11
that the novel behavior generated by pacing the Luo--Rudy I model cell is due to the complex
interplay between the canards, the PCL, and the slow flow along the curve of approach.
The production of regions of bistability between different EAD attractors in the periodically
stimulated system is no exception. Figures 8(b) and 8(c) show two different attractors at
PCL = 820 ms, but what determines whether a PCL of 820 ms produces APs without EADs
(Figure 8(b)) or with EADs that are prematurely truncated by ensuing stimuli (Figure 8(c))?
We know that if the trajectory is within the 10 (magenta) segment of the curve of approachD
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(a)

(b)

Figure 12. Hysteresis is revealed by periodic variation of the PCL through a bistable interval. (a) Sinusoidal
oscillations in the PCL across the bistable interval are imposed to induce switching behavior between the no
EAD (red) and EAD (blue) attractors. (b) The voltage trace shows that for the same PCL value a standard AP
can be produced or an AP with EADs, depending on whether the PCL is increasing (red) or decreasing (blue)
through the bistable interval. The bistable interval is the horizontal band delimited by dashed lines in the upper
panel. Lightning bolts (�) in both panels denote the times at which pulses are applied.

when a stimulus occurs, then an AP without EADs is produced. If the trajectory has not yet
reached this segment when a stimulus is applied, then again an AP without EADs is produced.
Hence, if the first stimulus occurs when the trajectory is in the 10 segment or has not yet
reached it, then standard APs will be produced. However, if the trajectory is in a different
segment when the first stimulus occurs, then EADs that exhibit pulse-induced termination
(11+) will occur.

A similar approach can be used to determine which pattern is produced in the second
bistable interval. In this case, for example, with PCL = 1600 ms, if the phase point is in the
11 segment of the curve of approach when the first stimulus is given, then periodic 11 behavior
will occur. If the phase point is in either the 10 or 12 segment, then a 1210 pattern will be
produced. This is because if the phase point is in the 10 segment during the first stimulus,
then the resulting short AP will allow the trajectory to reach the 12 segment before the next
stimulus occurs. With the resulting long AP with two EADs, the trajectory will only reach
the 10 segment before the next stimulus arrives, restarting the 1210 cycle.

The bistability that is present over two PCL intervals provides the foundation for hysteresis
in the system for slowly varying PCLs. We demonstrate this in Figure 12 for the cases of a
periodically varying PCL that covers one of the bistable intervals. The traces in both panels
are partitioned into red or blue segments in accordance with the coloring used in Figure 8(a);
red segments denote that the trajectory is in the basin of attraction of APs with no EADs
according to the location of the stimulus on the curve of approach (e.g., the 10 segment),
while blue segments denote that the trajectory is in the basin for APs with EADs (i.e., theD
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11+ segment). The red segments of the time course begin when the PCL decreases below 715
ms---the value at which the blue solution family loses stability and the red branch is the only
attractor. The blue segments begin when the PCL increases above 924 ms---the PCL at which
the red solution family loses stability and the blue branch is the only attractor. The bistable
region, between these two critical PCL values, is shown as a horizontal strip delimited by
dashed lines in Figure 12(a). In both panels, the times at which pulses are applied are labeled
with lightning bolts (�).

While hysteresis is not a novel behavior, it does have important implications. In particular,
within a bistable interval, the existence of EADs depends not just on the PCL, but also on
prior values of the PCL. For example, if the PCL is slowly increased through the bistable
interval (red curves in Figure 12(a)), then the PCL threshold for EAD generation is higher
(> 900 ms) than it is if the PCL is slowly decreased through the bistable interval (\approx 700
ms, blue curves). This could influence the interpretation of experimental studies in which the
EAD threshold is determined by varying the PCL.

6. Discussion. Recent mathematical studies of a minimal model for the electrical activity
of cardiomyocytes demonstrated that canards organize the emergence and properties of EADs
[23] and that the finding that EADs occur only at long PCLs can be explained in terms of
canards [45]. The current study extends this prior work by using a more biophysical model.
With this model, we demonstrated that large EADs can be produced as a result of canards,
and that these EADs occur far in phase space from the folded node singularity that gives
rise to the canards. This is unlike prior results with the minimal model, where the EADs are
found near the folded node and can be explained by singular limit analysis [23, 45]. Although
the model that we used has a higher dimension, which makes the analysis more difficult, it has
additional benefits beyond the larger EAD amplitude. In particular, behaviors that have been
observed experimentally, such as alternans that pair APs with and without EADs [1, 3, 29, 35]
and APs with aborted EADs [1, 10, 29], are produced by the higher-dimensional model, and
can be understood in terms of canards.

Hypokalemia is a reliable condition for inducing EADs in cardiomyocytes [25, 30, 31,
49]. This condition, achieved by decreasing the extracellular K+ concentration, increases the
magnitude of the K+ Nernst potential. This effect is replicated in Figure 3. At larger values
of the extracellular K+ concentration it is unlikely to see EADs, while at lower values the
likelihood of EAD production is much greater. Why is this? Twists in the top sheet of the
slow manifold are present throughout the range of values of [K+]\mathrm{o}, but for larger [K

+]\mathrm{o} values
the trajectory does not enter the funnel following a stimulus, so it experiences no twists.
Smaller values of [K+]\mathrm{o} move the twisted region closer to the location in phase space that the
trajectory enters following a stimulus, making it more likely that EADs will be produced.

Figure 3 also indicates that increasing the Ca2+ conductance, g\mathrm{C}\mathrm{a}, is a maneuver that can
convert an AP to an AP with EADs. How does this happen? Again, this occurs because
increasing g\mathrm{C}\mathrm{a} moves the twisted region of the slow manifold closer to where the trajectory is
injected upon stimulation. This can explain the experimental finding that exposing myocytes
to BayK8644, a drug that increases Ca2+ current, can induce EADs [35]. In the model, if
g\mathrm{C}\mathrm{a} is increased too much then the equilibrium E2 stabilizes, so that following stimulation the
trajectory does not repolarize to the rest state (at E1). This is the reason that the EAD regionD
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is so narrow in Figure 3 at higher values of [K+]\mathrm{o}; the large values of g\mathrm{C}\mathrm{a} needed to move the
twists sufficiently close to the injection site to induce EADs are nearly large enough to stabilize
E2. So even a small additional increase in g\mathrm{C}\mathrm{a} will be sufficient to induce depolarization block
(and no repolarization).

This discussion shows the advantage of knowing the slow-fast structure of the system.
Computer simulations, as were done to construct Figure 3, can indicate what behaviors occur
across parameter space, but not why they occur. The slow-fast analysis tells us why, and
thereby provides the means to interpret both computational and experimental findings.

Our slow-fast approach to the problem is similar in some ways to a previous mathematical
analysis of EADs in a modified 4D Luo--Rudy I model that used a (1,3)--slow-fast decomposi-
tion [43]. Contrary to this previous analysis, our work utilized an alternative (2,2)--slow-fast
decomposition that did not require alteration of the model's intrinsic timescale structure. Our
approach revealed that canards induced by a folded node singularity were a possible explana-
tion for EADs, but that the EADs occur far from where the singular analysis predicts that
they should (Figure 4). Figure 5 shows how increasing the capacitance dramatically shifts
twists in the slow manifold away from the folded node, and this is accompanied by a shift
in the funnel (Figure 6). Importantly, along with the shift in location, the size of the twists
increased significantly, resulting in EADs of an amplitude that is similar to those often seen
in experiments (e.g., [28, 51]). Such large EADs were not produced by the minimal model
studied previously [23, 45].

Another property of this model under pacing that was not seen in the minimal model is
bistability (Figure 8). This leads naturally to hysteresis for slow variation of the PCL across
a bistable interval (Figure 12). To our knowledge, such bistability or hysteresis has not been
reported in experimental studies of EADs, but it is also unlikely that either was explicitly
investigated. Bistability could be investigated with a fixed PCL, in a bistable interval, and
the application of occasional additional stimuli to perturb the trajectory from one basin of
attraction to another. The hysteresis effect could be observed by slowly ramping the PCL up
and then slowly ramping it down (or vice versa) over the bistable interval. We have not seen
studies employing either protocol, so such behaviors qualify as untested model predictions.

A potential limitation of using this model is that it only allows for the production of
EADs through a strictly electrical process. However, there is experimental evidence that
spontaneous release of Ca2+ from the sarcoplasmic reticulum is an alternate mechanism for
EADs [19, 20]. A model demonstrating how this could work was recently published [50]. An
additional limitation of this model is that it does not include some ionic currents that have
been shown to play a role in EAD genesis. These additional currents include, for instance,
late Na+ (I\mathrm{N}\mathrm{a},\mathrm{L}) [14] and the Na+-Ca2+ exchanger (I\mathrm{N}\mathrm{C}\mathrm{X}) [40].

These myriad routes to EAD genesis raise important questions about the ubiquity of the
canard mechanism. For example, does the intracellular Ca2+-handling subsystem possess the
elements necessary for canard dynamics? Or, does the canard mechanism, as it has been
shown to underlie voltage-driven EADs, persist under the added complexity brought on by
other ionic currents? It may be the case that from a dynamics viewpoint the mechanism is the
same, even though the biological substrate for the dynamics differs substantially. Indeed, the
hormone-secreting endocrine cells of the pituitary gland produce bursting electrical activity
that appears quite similar to APs with EADs, although the bursts are much longer [41]. TheD
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dynamical mechanism of these bursts has been suggested to be canards induced by a folded
node singularity, just as we suggest for EADs [46]. Thus, it seems possible that the dynamic
phenomenon may appear in different contexts and using different biological substrates, but
the common element is twisting of slow manifolds and the canard solutions that accompany
this twisting.

Appendix A. The modified Luo--Rudy I model. We describe here the model used
throughout the study. This includes formulations for each of the ionic currents, the gating
expressions, and time constants as well as a table of parameter values.

The model differential equations are

Cm
dV

dt
=  - (I\mathrm{C}\mathrm{a} + I\mathrm{K} + I\mathrm{K}1 + I\mathrm{K}\mathrm{p} + I\mathrm{b}) + I\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m},

dd

dt
=

d\infty (V ) - d

\tau d(V )
,

df

dt
=

f\infty (V ) - f

\tau f (V )
,

dx

dt
=

x\infty (V ) - x

\tau x(V )

with ionic currents given by

I\mathrm{C}\mathrm{a} = g\mathrm{C}\mathrm{a} d f (V  - V\mathrm{C}\mathrm{a}),

I\mathrm{K} = g\mathrm{K} xX\mathrm{i},\infty (V ) (V  - V\mathrm{K}),

I\mathrm{K}1 = g\mathrm{K}1K1,\infty (V ) (V  - V\mathrm{K}1),

I\mathrm{K}\mathrm{p} = g\mathrm{K}\mathrm{p}K\mathrm{p},\infty (V ) (V  - V\mathrm{K}\mathrm{p}),

I\mathrm{b} = g\mathrm{b} (V  - V\mathrm{b}),

where

y\infty (V ) =
\alpha y(V )

\alpha y(V ) + \beta y(V )
and \tau y(V ) =

1

\alpha y(V ) + \beta y(V )
for y = d, f, x, andK1.

Separate tables for the voltage-dependent rate constants/instantaneous gating expressions
and the parameter values used in the analysis are presented below. Table 1 includes both the
voltage-dependent rate constants, \alpha y and \beta y, for each of the gating variables d, f , and x and
the instantaneous gating expressions for inactivation of I\mathrm{K} and activation of I\mathrm{K}\mathrm{p}. Table 2 gives
the parameter values used in our analysis. The value of the parameter T that appears in the
Nernst equations for V\mathrm{K} and V\mathrm{K}1 was reduced from the original value used in [27] (310.15 K)
in order to obtain the same Nernst potential, V\mathrm{K} =  - 77 mV, used in [43].

Appendix B. Computation of the EAD onset boundary. The EAD onset boundary
was computed by continuation of a particular solution to a suitably posed 2-point boundary
value problem. Formulation of the problem relies on the fact that the emergence of EADs
should correspond to a bifurcation of standard AP solutions due to increases in the parameter,
g\mathrm{C}\mathrm{a}. However, the system under consideration is nonautonomous, requiring time-dependentD
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Table 1

Voltage-dependent rate constants

ddd: \alpha d(V ) = 0.095
e - 0.01(V  - 5)

1 + e - 0.072(V  - 5)
\beta d(V ) = .07

e - 0.017(V +44)

1 + e0.05(V +44)

fff : \alpha f (V ) = 0.012
e - 0.008(V +28)

1 + e0.15(V +28)
\beta f (V ) = 0.0065

e - 0.02(V +30)

1 + e - 0.2(V +30)

xxx: \alpha x(V ) = 0.0005
e0.083(V +50)

1 + e0.057(V +50)
\beta x(V ) = 0.0013

e - 0.06(V +20)

1 + e - 0.04(V +20)

Instantaneous gating expressions

K1K1K1: \alpha \mathrm{K}1(V ) =
1.02

1 + e0.2385(V  - V\mathrm{K}1 - 59.215)

\beta \mathrm{K}1(V ) =
0.49124e0.08032(V  - V\mathrm{K}1+5.476) + e0.06175(V  - V\mathrm{K}1 - 594.31)

1 + e - 0.5143(V  - V\mathrm{K}1+4.753)

X\mathrm{i}X\mathrm{i}X\mathrm{i}: X\mathrm{i},\infty (V ) = 2.837
e0.04(V +77)  - 1

(V + 77)e0.04(V +35)

K\mathrm{p}K\mathrm{p}K\mathrm{p}: K\mathrm{p},\infty (V ) =
1

1 + e - (V  - 7.488)/5.98

Table 2

Ideal gas constants

R = 8.3144598 J/mol\cdot K T = 307.69146 K F = 96.4853329 kC/mol

Ion concentrations

[K+]o = 5.4 mM (default), 3.0 mM (EADs) [K+]i = 145 mM

[Na+]o = 140 mM [Na+]i = 18 mM

PRNaK (Na+ permeability of I\mathrm{K} channels) = 0.01833

Maximal conductances

g\mathrm{C}\mathrm{a} = 0.09 mS/cm2 (default), 0.123 mS/cm2 (EADs) g\mathrm{K} = 0.282
\sqrt{} 

[K+]o/5.4 mM mS/cm2

g\mathrm{K}1 = 0.6047
\sqrt{} 

[K+]o/5.4 mM mS/cm2 g\mathrm{K}\mathrm{p} = 0.0183 mS/cm2 g\mathrm{b} = 0.03921 mS/cm2

Nernst potentials

V\mathrm{C}\mathrm{a} = 80.0 mV V\mathrm{K} =
RT

F
Log

\Biggl( 
[K+]o + PRNaK[Na+]o
[K+]i + PRNaK[Na+]i

\Biggr) 
= -76.994 mV

V\mathrm{K}1 =
RT

F
Log

\Biggl( 
[K+]o
[K+]i

\Biggr) 
= -87.2425 mV V\mathrm{K}\mathrm{p} = V\mathrm{K}1 V\mathrm{b} = 59.87 mV
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forcing in order to exhibit APs. To obtain an extended autonomous analogue, we introduce
s as a dummy variable that parameterizes time (i.e., \.s = 1 with s(0) = 0) and for smooth-
ness/numerical feasibility, we approximate the (single) square-wave pulse current as

I\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}(s) =
a

2

\biggl[ 
tanh

\biggl( 
s - 1

\sigma 

\biggr) 
 - tanh

\biggl( 
s - 3

\sigma 

\biggr) \biggr] 
,(B.1)

where a = 70 \mu A/cm2 is the maximum amplitude of the square wave and \sigma = 20 sets its
steepness. This expression gives a single pulse that initiates at s \approx 1 ms and terminates at
s \approx 3 ms.

A starting solution, without EADs, is generated by numerical integration of the autono-
mous extended initial value problem. To do this, we simply choose parameter values that lie
within the region of parameter space where EADs are absent (green in Figure 3). This solution
is initialized at the hyperpolarized equilibrium, E1 (which is globally stable in the absence of
forcing), and is halted when voltage reaches a chosen value, V\mathrm{r}\mathrm{e}\mathrm{p} =  - 70 mV, that indicates
repolarization. Our particular starting solution was computed using the default parameter
values, g\mathrm{C}\mathrm{a}= 0.09 mS/cm2 and [K+]\mathrm{o}= 5.4 mM.

This general setup can be represented formally as a 2-point boundary value problem:

\.u = T \bfitg (u,p), u =

\left(      
V
d
f
x
s

\right)      , p =

\biggl( 
gCa

[K+]o

\biggr) 
,(B.2)

\left(    
V (0)
d(0)
f(0)
x(0)

\right)    =

\left(    
VE1

dE1

fE1

xE1

\right)    ,

\biggl( 
V (1)
s(1)

\biggr) 
=

\biggl( 
V\mathrm{r}\mathrm{e}\mathrm{p}

T

\biggr) 
.(B.3)

Here, T is the total integration time, scaling the time domain so that t \in [0, 1], and \bfitg (\cdot , \cdot ) is
the extended vector field. Having 6 boundary conditions (4 at t = 0 and 2 at t = 1) allows us
to continue the starting solution in two parameters; we choose (g\mathrm{C}\mathrm{a}, T ) since increases in g\mathrm{C}\mathrm{a}

generically lead to EADs for fixed [K+]\mathrm{o}. With respect to Figure 3, continuing in both g\mathrm{C}\mathrm{a} and
T lets us traverse the grid rightward, toward the suspected EAD boundary, while letting the
total integration time grow with the extended duration of APs. The EAD boundary is marked
by a heteroclinic bifurcation connecting equilibria E1 and E3. The depolarized segment of this
heteroclinic orbit coincides with the primary strong canard \gamma 0. Once located, this heteroclinic
orbit can be continued in the three system parameters (g\mathrm{C}\mathrm{a}, [K

+]\mathrm{o}, T ) in order to generate
the EAD initiation curve.

Appendix C. Dimensional analysis and limiting subproblems. To show that the Luo--
Rudy I model is a multitimescale system, we begin by rescaling each of the time constants
\tau j(V ) = \=\tau j \cdot \~\tau j(V ) for j = d, f, x, where each \=\tau j is the average time constant attained over the
duration of the AP with 2 EADs (from stimulus initiation until 90\% repolarization) depicted
in Figure 2(d). Next, we nondimensionalize the system via the rescalings

V = kvv, t = ktts, gx = G\mathrm{t}\mathrm{o}\mathrm{t}gx, x \in \{ Ca,K,K1,Kp,b\} ,(C.1)
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where kv = 100 mV and kt = \=\tau f = 173 ms are reference voltage and timescales, respec-
tively, G\mathrm{t}\mathrm{o}\mathrm{t} = 0.841 mS/cm2 is the sum of all conductances, and gx denotes the dimensionless
conductances. With these rescalings, the dimensionless version of (2.1) is

\epsilon 
dv

dts
=  - (I\mathrm{C}\mathrm{a} + I\mathrm{K} + I\mathrm{K}1 + I\mathrm{K}\mathrm{p} + I\mathrm{b}) =: F1(v, d, f, x),

\epsilon 

r

dd

dts
=

d\infty (v) - d

\~\tau d(v)
=: F2(v, d),

df

dts
=

f\infty (v) - f

\~\tau f (v)
=: H1(v, f),

dx

dts
=

\=\tau f
\=\tau x

x\infty (v) - x

\~\tau x(v)
=: H2(v, x),

(C.2)

where \epsilon := Cm/G\mathrm{t}\mathrm{o}\mathrm{t}

\=\tau f
\approx 0.007 and r := Cm/G\mathrm{t}\mathrm{o}\mathrm{t}

\=\tau d
\approx 0.05 (as in the main text), and each of

F1, F2, H1, and H2 are \scrO (1). The system (C.2) is identical to (3.1) aside from ascribing
shorthand labels to each of the expressions of the right-hand side.

As written, system (C.2) describes the evolution of Luo--Rudy I on the slow timescale. By
rescaling time, tf = ts

\epsilon , we can rewrite the system in reference to the fastest timescale:

dv

dtf
= F1(v, d, f, x),

dd

dtf
= rF2(v, d),

df

dtf
= \epsilon H1(v, f),

dx

dtf
= \epsilon H2(v, x).

(C.3)

Systems (C.2) and (C.3) are equivalent in that their solutions trace out the same paths in
the (v, d, f, x) phase space; the different time parameterizations determine the rate at which
solutions move in phase space.

We can then take advantage of the intrinsic separation in timescales to formally decompose
(C.2) into the constituent fast and slow subsystems ((3.2) and (3.3), respectively) that appear
in the main text. Taking the limit \epsilon \rightarrow 0 in (C.3) gives the fast subsystem

dV

dtf
= F1(v, d, f, x),

dd

dtf
= r F2(v, d),

df

dtf
= 0,

dx

dtf
= 0,

(C.4)
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and taking the singular limit, \epsilon \rightarrow 0, of (C.2) yields the slow subsystem

0 = F1(v, d, f, x),

0 = F2(v, d),

df

dts
= H1(v, f),

dx

dts
= H2(v, x).

(C.5)

While (C.2) and (C.3) are equivalent up to the rate at which solutions evolve in phase
space, the corresponding limiting subproblems (C.4) and (C.5) are not.

Appendix D. Bifurcations of the fast subsystem. Here we give a more detailed treatment
of the bifurcation structure of the fast subsystem. The set of equilibria of the fast subsystem,

S := \{ (v, d, f, x) \in \BbbR 4 : F1(v, d, f, x) = F2(v, d) = 0\} ,(D.1)

is called the critical manifold and can be represented globally as the graph over (v, x) given by
(3.4). The critical manifold is cubic shaped (Figure 4), with upper and lower attracting sheets,
Sa,+
0 and Sa, - 

0 (Figure 4(a), blue surfaces), and a middle sheet, Ss
0 (Figure 4(a), red surface),

of saddle-type. The Sa,+
0 and Ss

0 sheets are separated by a 1D curve (Figure 4, green), L, of
fold bifurcations of (3.2):

L :=

\biggl\{ 
(v, d, f, x) \in S : det Jr = r

\biggl( 
\partial F1

\partial v

\partial F2

\partial d
 - \partial F1

\partial d

\partial F2

\partial v

\biggr) 
= 0

\biggr\} 
,(D.2)

where

Jr =

\Biggl( 
\partial F1
\partial v

\partial F1
\partial d

r \partial F2
\partial v r \partial F2

\partial d

\Biggr) 
is the Jacobian of the fast subsystem. The saddle and lower attracting sheets are also separated
by another 1D fold curve, but this curve falls far outside of the physiologically meaningful
phase space and does not play any role in model dynamics. Here, and for the remainder of
the appendix, we suppress the explicit dependence of the right-hand side expressions on the
dynamical (dimensionless) variables.

Since the fast subsystem is planar, Hopf bifurcations and emerging periodic solutions of
the fast subsystem are possible, and it has been suggested that these are responsible for EADs
in the Luo--Rudy 1 model [43]. Necessary conditions for the existence of a 1D curve of Hopf
bifurcations are given by

H :=

\biggl\{ 
(v, d, f, x) \in S : det Jr > 0 and tr Jr =

\partial F1

\partial v
+ r

\partial F2

\partial d
= 0

\biggr\} 
.(D.3)

However, for physiologically meaningful regions of parameter space, phase space, and reason-
able choices of r, the Hopf criteria (D.3) are never satisfied.

Appendix E. The slow subsystem, desingularization, and the folded node. The slow
subsystem assumes that the fast-(v, d) dynamics adjust instantaneously to the slow motionsD
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in (f , x). The algebraic constraints of (3.3) then constrain the reduced flow to lie along the
critical manifold. This makes the critical manifold the interface between the fast and slow
subsystems.

The differential equations in system (3.3) describe the slow (f, x) motions along S. To
obtain a description of the (v, d) motions slaved to S, we use the graph representation (3.4).
Having a critical manifold with a global graph representation saves us from having to analyze
the reduced flow under a suitable atlas of coordinate charts. Hence, we can reobtain globally
valid explicit expressions for the motions of the fast variables and project onto the (v, x)-
plane. More specifically, we take a total time derivative of the algebraic constraints in (3.3)
and rearrange to obtain

\biggl( 
 - J 0
0 I2

\biggr) 
d

dts

\left(    
v
d
f
x

\right)    =

\left(      
\partial F1

\partial f
H1 +

\partial F1

\partial x
H2

0
H1

H2,

\right)      ,(E.1)

where

J =

\Biggl( 
\partial F1
\partial v

\partial F1
\partial d

\partial F2
\partial v

\partial F2
\partial d

\Biggr) 
,

I 2 is the 2 \times 2 identity matrix, and 0 is the 2 \times 2 zero matrix. We then left-multiply both
sides of the equation by the matrix ( - \mathrm{a}\mathrm{d}\mathrm{j} J \bfzero 

\bfzero I2
), where adj J is the adjoint (or adjugate) of J,

to obtain:

\biggl( 
(det J) I2 0

0 I2

\biggr) 
d

dts

\left(    
v
d
f
x

\right)    =

\left(      
 - \partial F2

\partial d

\Bigl( 
\partial F1
\partial f H1 +

\partial F1
\partial x H2

\Bigr) 
\partial F2
\partial v

\Bigl( 
\partial F1
\partial f H1 +

\partial F1
\partial x H2

\Bigr) 
H1

H2

\right)      .(E.2)

In light of (3.4) (with V rescaled), the differential equations for the evolution of d and f in
(E.2) are redundant. As such, the remaining 2D (v, x) system is

(det J)
dv

dts
=  - \partial F2

\partial d

\biggl( 
\partial F1

\partial f
H1 +

\partial F1

\partial x
H2

\biggr) 
,

dx

dts
= H2,(E.3)

where d and f are given by (3.4) (rescaled).
System (E.3) is equivalent to the original reduced system (3.3); it is the projection onto

the (v, x)-plane. More importantly, the projection (E.3) highlights that the reduced flow
experiences a finite-time blowup of solutions in the regions of phase space where det\bfitJ = 0,
exactly at the fold curves. To handle this finite-time blowup of solutions, we make the phase-D

ow
nl

oa
de

d 
08

/1
1/

20
 to

 6
9.

25
4.

16
3.

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIG DUCKS IN THE HEART 1731

space-dependent time rescaling dts = (det \bfitJ ) dtd, which gives the desingularized system

dv

dtd
=  - \partial F2

\partial d

\biggl( 
\partial F1

\partial f
H1 +

\partial F1

\partial x
H2

\biggr) 
:= Y (v, x),

dx

dtd
= (det J)H2.

(E.4)

The benefit of this transformation is that the fold curves, L\pm , have been converted from
singularities of the reduced problem (E.3) into nullclines of the desingularized system (E.4).
Thus, we study the desingularized system in order to learn about the dynamics of the reduced
system. Care must be taken, however, in relating systems (E.3) and (E.4). The phase-space-
dependent time rescaling reverses the direction of flow on the middle sheet of saddle-type
(where det J < 0) and may introduce additional equilibria beyond those present in (3.3) or
(3.1), which do not correspond to true equilibria of the full flow.

Any additional equilibria of (E.4) that are introduced by the desingularization must lie
along folds, satisfying

EFS := \{ (V, d, f, x) \in L : Y = 0\} .(E.5)

These special points of (E.4), called folded singularities, are the same points of (E.3) where a
cancellation of simple zeroes in a l'H\^opital-type limit occurs. That is, solutions of (E.3) can
cross the fold with finite speed at these points (where uniqueness of solutions is lost). These
solutions are called singular canards.

Stable nodes within a fold of (E.4), called folded node singularities, have been shown to
organize the small oscillations of mixed-mode dynamics, including those of EADs. We find
that the desingularized reduced system possesses a folded node singularity (FN , purple),
shown on the fold curve, L, in Figure 4. Along with the folded node comes a submanifold of
Sa,+
0 called the singular funnel which funnels all entrant solutions through the folded node.

The funnel is bounded from below by the upper fold curve, L, and from above by the strong
stable manifold of the folded node. The strong stable manifold (tangent to the dominant
eigenvector) of the folded node is called the strong singular canard, and is depicted in Figure
4 (\gamma 0; purple). Similarly, the weak stable manifold (tangent to the nondominant eigenvector)
of the folded node is called the weak singular canard (not depicted).

Appendix F. The stability properties of the equilibrium \bfitE \bftwo under variation in \bfitC \bfitm .
In contrast with canonical geometric singular perturbation analysis, where the qualitative

stability properties of ordinary singularities are preserved away from the singular limit, the
singularity E2 in our system is a saddle point under the singular limit (i.e., E2 is on Ss

0 in
Figure 4) but, undergoes a subcritical Hopf bifurcation to gain stability as Cm approaches the
default value 1 \mu F/cm2 in the full system. Equilibrium E2 is the only one for which a change
in stability occurs between the singular and nonsingular problems. Figure 13 shows how the
real parts of the eigenvalues of E2 vary under changes in Cm.

Starting near Cm \approx 0 \mu F/cm2, E2 is a saddle point with 4 real eigenvalues: 2 (\lambda 1,2:
dashed black and red curves, respectively) are positive and 2 (\lambda 3,4: solid green and blue curves,
respectively) are negative. Near Cm \approx 0.2 \mu F/cm2, the two positive eigenvalues coalesce alongD
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Figure 13. Real parts of the eigenvalues of \bfitE \bftwo for gCa = 0.123 mS/cm2 and [K+]o = 3.0 mM.

the real axis and become a complex conjugate pair, with positive real part. This configuration
of eigenvalues remains through further increases in Cm, until the subcritical Hopf bifurcation
point (HB, vertical cyan segment), near Cm \approx 0.996 \mu F/cm2, is reached and \lambda 1,2 cross the
imaginary axis, making E2 stable.
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