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Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and
chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some
cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold
for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to
maintainthecells inaresponsivestatewithcytosolic calciumnear,butbelow,thethreshold level. Somepituitarycells
also express gap junction channels, which could be used for intercellular Ca2� signaling in these cells. Endocrine cells
also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hor-
monesleadstoamplificationofthepacemakingactivityandfacilitationofcalciuminfluxandhormonerelease.These
cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action
potential-dependent calcium influx and hormone release. Other members of this receptor family can activate cal-
cium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This
review summarizes recent findings in this field and our current understanding of the complex relationship between
voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in
pituitary cells. (Endocrine Reviews 31: 845–915, 2010)
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I. Introduction

The pituitary gland is composed of two embryonically,
anatomically, and functionally distinct entities, the

neurohypophysis and the adenohypophysis. The neuro-
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Abbreviations: AC, Adenylyl cyclase; AMPA, �-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onic acid; AP, action potential; AVP, arginine vasopressin; BK, calcium-activated big conduc-
tance K� (channels); [Ca2�]ER, Ca2� concentration in the ER; [Ca2�]i, intracellular calcium
concentration;CaCC,calcium-activatedchloride (channels);Cav, voltage-gatedcalcium(chan-
nels); [Cl�]i, intracellular chloride concentration; CNG, cyclic nucleotide-gated; CNS, central
nervous system; DAG, diacylglycerol; EAG, ether-a-go-go; ER, endoplasmic reticulum; erg,
eag-related; ET, endothelin; GABA, �-aminobutyric acid; GEF, guanine nucleotide exchange
factor; GlyR, glycine receptor; GPCR, G protein-coupled receptor; �-GSU, glucoprotein hor-
mone �-subunit; HCN, hyperpolarization-activated and cyclicnucleotide-modulated (chan-
nels); 5-HT, 5-hydroxytryptamine (serotonin); Ih, hyperpolarization-activated current; IP3, ino-
sitol 1,4,5-trisphosphate; IP3R, IP3 receptor; KCa, Ca2�-activated K� (channels); Kir, inwardly
rectifying K� (channels); Kv, voltage-gated potassium (channels); Nab, background sodium
(channels); nAChR, nicotinic acetylcholine receptors; Nav, voltage-gated sodium (channels);
Nax, Na� channel-like protein; NMDA, N-methyl-D-aspartate; PACAP, pituitary adenylyl cy-
clase-activating peptide; PDE, phosphodiesterase; PIP2, phosphatidylinositol 4,5 bisphosphate;
PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; PMA, phorbol 12-my-
ristate 13-acetate; POMC, proopiomelanocortin; PRL, prolactin; P2XR, ATP-gated (purinergic)
receptor (channels); P2YR,P2Yreceptor;RyR, ryanodine receptor; S, transmembranesegment;
SERCA, sarcoplasmic-ER Ca2� ATPase; sGC, soluble guanylyl cyclase; SK, calcium-activated
small-conductance K� (channels); STIM, stromal-interacting molecule; TM, transmembrane;
TRP, transient receptor-potential (channels); TRPC, canonical TRP; TRPM,melastatinTRP;TRPV,
vanilloid TRP; TTX, tetrodotoxin; UDP, uridine-5�-diphosphate; VGCI, voltage-gated Ca2� in-
flux; VIP, vasoactive intestinal polypeptide.
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hypophysis includes the posterior pituitary lobe, whereas
the adenohypophysis includes the intermediate and ante-
rior pituitary lobes. The posterior lobe is composed of
axonal terminals of the hypothalamic magnocellular neu-
rons surrounded by astrocytes, also known as pituicytes.
The magnocellular neurons from paraventricular and su-
praoptic nuclei synthesize vasopressin and oxytocin and
transport them to the axonal terminals in the posterior
pituitary where they are secreted into the general circula-
tion. The intermediate lobe is populated by melanotrophs,
which synthesize and release �-MSH (or intermedins). The
anterior pituitary is a heterogeneous gland with multiple
cell types that secrete six major peptide hormones neces-
sary for reproduction, lactation, growth, development,
metabolic homeostasis, and the response to stress: FSH
and LH-producing gonadotrophs, prolactin (PRL)-produc-
ing lactotrophs, GH-producing somatotrophs, TSH-pro-
ducing thyrotrophs, and ACTH-producing corticotrophs.
This lobe also contains the non-hormone-producing follicu-
lostellate cells, which are glia-like cells, and endothelial cells
that line the capillaries. The adenohypophysis of the fish pi-
tuitary is directly innervated by hypothalamic neurons,
whereas in other vertebrates such a connection was pre-
served with the intermediate lobe, and whereas in the ante-
rior lobecentralnervoussystem(CNS)neurotransmittersact
as releasing and inhibitory hormones delivered through the
portal vessels.

This year, we celebrate the 35th anniversary of the dis-
covery that not only neurons and muscle fibers but also
endocrine pituitary cells fire action potentials (APs) (1).
This pathway, known as the electrical signaling system, is
composed of two basic elements: the lipid bilayer and two
classes of macromolecular proteins, known as voltage-
gated ion channels and ion transporters (2). From the be-
ginning, it was obvious that the role of APs in the prop-
agation of signals along the cells is not of great importance
for spherical endocrine cells. However, the discovery of
the electrical signaling system in endocrine pituitary cells
supported the earlier proposed concept of stimulus secre-
tion coupling (3). The elegance of this concept is that single
cells contain all the elements needed for generating Ca2�

signals and triggering Ca2�-dependent hormone secre-
tion. The electrical signaling system of endocrine pituitary
cells is under intrapituitary and hypothalamic control. Re-
search on chemical signaling within the pituitary cells re-
sulted in the discovery of autocrine and paracrine modes
of regulation of pituitary functions and emphasized the
role of extracellular ligand-gated ion channels (hereafter
called receptor channels) and G protein-coupled receptors
(GPCRs) in modulation of electrical activity (4). Commu-
nication between pituitary cells through gap junction
channels has also been proposed (5).

The main control of spontaneous electrical activity and
accompanied voltage-gated Ca2� influx (VGCI) in some pi-
tuitary cell types in vivo occurs through hypothalamic re-
leasing and inhibitory hormones acting on pituitary GPCRs
signaling through Gi/o and Gs signaling pathway. Activated
receptors engage variable cellular processes, utilizing G pro-
teins, cyclic nucleotides cAMP and cGMP, and their kinases,
protein kinase A (PKA) and protein kinase G. All endocrine
pituitary cells have an additional pathway for Ca2� signal-
ing, called the calcium-mobilizing pathway. This pathway is
triggered by activation of Gq/11-coupled receptors and some
tyrosine kinase receptors, leading to inositol 1,4,5-trisphos-
phate (IP3) and diacylglycerol (DAG) production, IP3-medi-
ated Ca2� release from the endoplasmic reticulum (ER),
and activation of protein kinase C (PKC) and other sig-
naling pathways. Activated GPCRs also cause a very
complex and cell type-specific pattern of changes in the
spontaneous firing of APs (6).

The pioneering work on pituitary cell excitability has
been summarized in several reviews. The focus in the re-
view by Ozawa and Sand (7) was on voltage-gated ion
channels expressed in the pituitary, the effects of TRH on
electrical activity and Ca2� signaling, and the character-
ization of electrical properties of several cell lines. Two
subsequent reviews were focused on the plasma mem-
brane and ER Ca2� channels that contribute to Ca2� sig-
naling in pituitary cells (6, 8). Calcium signaling pathways
of endocrine pituitary cells have also been reviewed (9).
The roles of GPCR-triggered intracellular messengers in
hormone secretion were also studied in great detail in (10).
Since then, several hundred experimental and tens of the-
oretical studies have been published describing the struc-
tural and functional properties of ion channels expressed
in pituitary cells and their roles in spontaneous and recep-
tor-controlled electrical activity, Ca2� signaling, and se-
cretion. In this review, we summarize novel findings on
expression, signaling functions, and regulation of ion
channels in endocrine pituitary cells.

II. Pituitary Cell Types

The adenohypophysis and neurohypophysis develop from
two distinct embryological sources. During craniofacial
development, separation of the neuroepithelium (which
will become the brain) and the surface ectoderm (which
will become the oral epithelium) occurs everywhere except
in the middle region forming Rathke’s pouch. The neuro-
hypophysis is derived from the neuroepithelium and orig-
inates at the base of the diencephalons. Rathke’s pouch
separates from the oral epithelium and forms the adeno-
hypophysis (Fig. 1, inset). Initially, Rathke’s pouch forms
a closed epithelial structure with the lumen. Soon after, the
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cells from the ventral side of the pouch leave and prolif-
erate to form the nascent anterior lobe, whereas a more
limited development of the dorsal wall gives rise to the
intermediate lobe. Proliferation is accompanied by the ep-
ithelium-mesenchyme transition, with the pituitary-spe-
cific transcription factors, Pit-1 (also called Pou1f1) and
prophet of Pit-1 (Prop-1) playing important roles in this
transition. This stage is closely associated with the initia-
tion of the cell differentiation program (11).

It appears that cell-to-cell contact with the primordial
neuroepithelium of the ventral hypothalamus is a critical
factor in the differentiation of anterior pituitary cells. The
hormone-secreting cells differentiate in a temporal- and
spatial-specific fashion under the influence of various
transcriptional factors (Fig. 1). In mouse, the expression of
the glycoprotein hormone �-subunit (�-GSU) gene is the
earliest marker of anterior pituitary differentiation, oc-
curring at embryonic d 11.5 of gestation. Thyrotrophs,
somatotrophs, and lactotrophs arise through a common
cell lineage determined by Prop-1 and Pit-1 (also known as
Pou1f1) transcriptional factors, and mutations of these
genes are a cause of combined pituitary hormone defi-
ciency of GH, PRL, and TSH. Terminal differentiation of
corticotrophs and melanotrophs is dependent on the T-
box transcriptional factor Tbx-19, also known as Tpit. In
contrast, Tbx-19 is a negative regulator of the gonado-
tropic and Pit-1-independent rostral type of thyrotrophs.
Steroidogenic factor-1 and the zinc finger transcriptional
factor GATA-2 appear to be important positive regulators
of gonadotroph differentiation (11–14). Consistent with

this developmental pattern, lactotrophs, gonadotrophs,
somatotrophs, and thyrotrophs express neurofilaments NS-
68, whereas cells of proopiomelanocortin (POMC) lineage
lack the expression of this protein (15, 16).

A. POMC-producing cells
The POMC gene is highly expressed in corticotrophs

and melanotrophs and is transcribed by the pituitary pro-
moter P1 to an approximately 1200 nucleotide POMC
mRNA transcript. In mammals, POMC is posttranslation-
ally modulated by intracellular proteolytic cleavage into an
N-terminal peptide, ACTH (1-39) and �-lipotropic hor-
mone in corticotrophs, and into �-MSH, �-lipotropic hor-
mone, and �-endorphin in melanotrophs. This specific
processing of POMC is due to differential expression of
prohormone convertases in the two cell types. Cortico-
trophs only express prohormone convertase-1, which
cleaves at a limited number of sites on the POMC pro-
hormone, whereas melanotrophs express prohormone
convertase-1 and -2 and more extensively cleave POMC at
a number of sites during biosynthesis (17, 18).

Corticotrophs are the first anterior pituitary cells to
differentiate during embryogenic development; they are
derived from the intermediate pituitary but are scattered
throughout the anterior lobe in adult animals (Fig. 1). It
has been reported that these cells comprise 2 to 15% of AP
cells in rats. The large range could reflect age and sex, and
also the methods used for identification. The main control
of ACTH release is mediated by CRH, which is secreted by
paraventricular neurons that project to the median emi-

FIG. 1. Schematic representation of pituitary gland development. Inset, Formation of Rathke’s pouch and early pituitary development. Gray areas,
Neuroepithelium; red areas, oral epithelium. Main panel, Cell lineage development and selected transcriptional factors involved during mouse pituitary
organogenesis. Prop-1 and Pit-1, Pituitary-specific transcription factors; Sf1, steroidogenic factor-1; GATA2, zinc finger transcription factor; Tbx19 (or
Tpit), member of the T-box family of transcription factors; I, POMC-producing cells; II, �-GSU-producing cells; and III, PRL/GH-producing cells.

Endocrine Reviews, December 2010, 31(6):845–915 edrv.endojournals.org 847



nence and release CRH into the hypophyseal portal sys-
tem. In corticotrophs, CRH binds to Gs-coupled CRH
receptors and facilitates spontaneous electrical activity
and ACTH release. In addition to CRH and the CRH
family of peptides (urocortin 1-3), arginine vasopressin
(AVP) directly stimulates ACTH release and acts in syn-
ergy with CRH to potentiate ACTH release (19). Glu-
cocorticoid receptors are expressed in corticotrophs and
CRH neurons and contribute to negative feedback actions
of glucocorticoids on ACTH secretion (20). There is one
corticotroph mouse cell line available, called AtT-20 cells.
Like corticotrophs in primary culture, AtT-20 cells syn-
thesize POMC and have been extensively used to study the
processing of POMC. These cells can also package ACTH
into secretory vesicles and were originally used to define
the constitutive and regulated secretory pathways. These
cells express glucocorticoid, somatostatin, IL-1, dopamine,
histamine H3, and muscarinic cholinergic receptors (21).

Melanotrophs are the only secretory cells present in the
intermediate lobe and account for more than 95% of the
cells found in this lobe. In contrast to the anterior pitu-
itary, which is richly vascularized, the intermediate lobe
contains very few blood vessels but is supplied by nerve
fibers originating from the hypothalamus. Mammalian
melanotrophs are electrically excitable cells, and sponta-
neous electrical activity is sufficient to trigger release of
POMC-derived peptides. Such secretion is primarily reg-
ulated by dopaminergic neurons that originate in the me-
diobasal hypothalamus and directly innervate the inter-
mediate lobe. Dopamine tonically inhibits the synthesis
and release of POMC peptides by activating D2 receptors,
leading to inhibition of electrical activity and Ca2� sig-
naling. Connections between dopamine-secreting neurons
and the intermediate lobe in rats are established during the
first postnatal week (22). Mammalian melanotrophs also
express GPCRs for �-aminobutyric acid (GABA) (23),
prostaglandin E2 (24), and serotonin (5-hydroxytrypta-
mine; 5-HT) (25), whereas frog melanotrophs also express
receptors for TRH, neuropeptide Y (26), acetylcholine
(27), and adenosine (28). Cells from the melanotroph cell
line mIL39 express POMC and dopamine D2 receptors
and thus could represent a good cell model for studies on
dopaminergic regulation of melanotroph functions (29).

B. Heterodimeric glucoprotein-producing cells
Thyrotrophs and gonadotrophs express the 92-amino

acid-long �-GSU, which is needed for the formation of
TSH, FSH, and LH (and also chorionic gonadotropin)
heterodimers with hormone-specific �-subunits. Thyro-
trophs are the smallest subpopulation of anterior pituitary
cells, representing less than 10% of cells in the gland, and
are regionally localized within the anteromedial and lat-
eral portions of the gland. The �-TSH subunit containing

110 amino acids is unique for thyrotrophs and confers
specificity of biological actions. TSH is packed into secre-
tory vesicles, which are small (50–100 nm in diameter).
The hypothalamic control of thyrotrophs is mediated by
TRH, which is released by neurons localized in the hypo-
thalamic paraventricular nucleus. TRH acts as an agonist
for Gq/11-coupled TRH receptors expressed in thyro-
trophs and lactotrophs. In thyrotrophs, TRH stimulates
TSH release, as well as the transcription of both �- and
�-subunits, whereas T4 and T3 suppress transcription. The
feedback regulation occurs primarily in the pituitary (30).
Somatostatin and dopamine have small suppressive effects
in TSH-secreting tumors. Secretion of TRH is also con-
trolled by numerous autocrine and paracrine factors, in-
cluding endothelins (ETs) acting on ETA receptors (31).
There are two thyrotroph cell lines: �-TSH cells, secreting
the �-subunit and missing some of the Pit-1 transcript
isoforms; and T�T-1 cells, expressing both �- and �-sub-
units and the transcriptional factor Pit-1 (21).

Gonadotrophs constitute about 10–15% of the ante-
rior pituitary cell population and are localized throughout
the anterior lobe, frequently adjoining lactotrophs. They
secrete the gonadotropins LH and FSH, which are packed
in secretory vesicles of about 200 and 500 nm in diameter,
respectively. The decapeptide GnRH is the main agonist
for these cells. GnRH-secreting neurons are dispersed
within the mediobasal hypothalamus and preoptic areas,
but organize functionally as a pulse generator, delivering
GnRH in portal blood every 30 min in rodents; this release
is influenced by numerous factors, including the age and
gender of the animals, and the stage of the estrous cycle
(32). In gonadotrophs, GnRH binds to Gq/11-coupled
GnRH receptors, leading to the release of both LH and
FSH in a pulsatile manner (33). GnRH also affects FSH�

and LH� transcription (34, 35). In addition to GnRH re-
ceptors, gonadotrophs also express functional receptors
for pituitary adenylyl cyclase-activating peptide (PACAP)
(36), ETs (37), AVP (38), and substance P (39), which
contribute to gonadotropin synthesis and secretion. In-
hibins, activins, and follistatin are important regulators of
gonadotropin synthesis and secretion. Sex steroids exert
negative feedback on gonadotropin release via GnRH neu-
ronsanddirectlyat thepituitary level; estradiol canalsoexert
a positive action on pituitary gonadotrophs (40, 41).

There are four mouse cell lines developed by Mellon
and colleagues (42, 43): �T1-1, �T3-1, L�T2, and L�T4.
The �T1-1 is not a gonadotroph cell line but rather is an
anterior pituitary precursor cell line that expresses �-GSU
and probably represents a progenitor for the thyrotroph
and gonadotroph lineages. The �T3-1 cell type represents
a later stage in cell differentiation, corresponding to the
early embryonic gonadotroph cell lineage. It expresses
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GnRH receptors and �-GSU, which is secreted in a con-
stitutive manner, but does not express LH� and FSH�.
These cells were used to clone the GnRH receptor and
were extensively used for studies on GnRH- and PACAP-
dependent signaling and gene regulation as well as the
roles of various homeobox genes in pituitary cell differ-
entiation. The L�T2 and L�T4 cells have more mature
gonadotroph phenotypes because they express LH� and
FSH�-subunits, as well as steroidogenic factor-1 and
GnRH receptor (for references, see Ref. 21).

C. GH- and PRL-producing cells
A fraction of anterior pituitary cells, known as mam-

mosomatotrophs, secrete both GH and PRL and are prob-
ably transitional cells capable of becoming somatotrophs
or lactotrophs (Fig. 1). Somatotrophs are the most com-
mon cell type in the anterior pituitary, representing up to
50% of cells, and are localized predominantly in the lat-
eral portions of the anterior lobe. They synthesize GH, a
single-chain polypeptide containing 191 amino acids,
which is packed into secretory vesicles of variable sizes.
Two hypothalamic neuropeptides, GHRH and soma-
tostatin, play major roles in the control of GH synthesis
and release. GHRH is a 44-amino acid peptide secreted by
neurons in the arcuate nucleus of the hypothalamus that
acts as a native agonist for GHRH receptors. These re-
ceptors are coupled to the Gs signaling pathway (44). So-
matostatin is a 14-amino acid neuropeptide that is se-
creted by neurons in the periventricular nucleus of the
hypothalamus and is delivered to pituitary cells by a portal
vascular system. It binds to receptors coupled to the Gi/o

signaling pathway (45). These cells also express receptors
for ghrelin (46), PACAP (47), and ETs (48).

PRL is a single-chain protein of 198 amino acids that is
similar in structure to GH. It is synthesized and released by
lactotrophs, which account for 10–25% of pituitary cells.
This is a nonhomogeneous group of cells (some have large
and irregular dense-core vesicles, and others have small
roundvesicles) thatsecretePRLduetospontaneouselectrical
activity. These cells can be separated into subpopulations
based on morphology (49) or density (50). Consistent with
the high basal level of PRL secretion, the predominant hy-
pothalamic influence is inhibitory rather than stimulatory
andismediatedbydopamineD2receptorscoupledtotheGi/o

signaling pathway (51). These cells also express ETA recep-
tors, which transiently stimulate PRL release, followed by
sustained inhibition (52, 53). On the other hand, TRH, an-
giotensin II, oxytocin, ATP, acetylcholine, and 5-HT stimu-
late PRL release (54). Estrogens stimulate PRL gene tran-
scription and secretion, and prolonged estrogen treatments
lead to an increase in the number of lactotrophs (55).

There are several cell lines that secrete GH, PRL, or
both hormones. GH3 cells produce PRL and GH and ex-

press TRH, vasoactive intestinal polypeptide (VIP), and
epidermal growth factor receptors but not dopamine D2

receptors. GH4C1 cells are derived from GH3 cells and
produce only PRL. Both cell types have been very useful in
the characterization of electrical activity and the channels
involved. There are four MtT cell lines; among them,
MtT/S cells are pure somatotroph cell lines expressing
high levels of GH and GHRH receptors, whereas MtT/SM
are mammosomatotrophs. On the other hand, the 235-1
lactotroph cell line has the PRL gene, but not the GH gene.
These cells do not express TRH and D2 receptors, but
secrete PRL in a Ca2�-dependent manner. The MMQ cells
also secrete PRL only in a Ca2�-dependent manner, but in
addition express functional D2, ETA, and oxytocin recep-
tors and thus could be used for studies on the receptor-
controlled electrical activity and secretion (21).

D. Nonsecretory cells
Folliculostellate cells from the anterior lobe are derived

from the neuroectodermal cells and are nonendocrine cells
devoidofsecretorygranules.Thesecells express theneuronal
marker S-100 protein and glial fibrillary acidic protein, re-
flecting their neuroectodermal origin. It has also been sug-
gested that folliculostellate cells develop from marginal lay-
ers of the pars tuberalis and pars intermedia. Although they
represent only 5–10% of the anterior pituitary cells and are
sparsely distributed within the gland, folliculostellate cells
make a complex three-dimensional anatomical network ex-
tendingover thewholegland. Ithasbeensuggested that these
cells express gap junction channels and play important roles
in intercellular communication (56, 57). There are several
folliculostellate cell lines, including human PDFS cells,
mouse TtT/GF and Tpit/F cells, and rat FS/D1 h cells. Like
native cells, these immortalized cells also express muscarinic
acetylcholine, �-adrenergic and PACAP receptors positively
coupled to cAMP production, and Ca2�-mobilizing angio-
tensin II receptors (21).

Pituicytes constitute approximately 30% of the posterior
pituitary volume, and are the only resident cells. It is well
established that neurosecretory axons are capable of making
synaptoid contacts with pituicytes. GABA-containing axons
also terminate in synaptoid contacts either on pituicytes or
the neurosecretory axons. Other neurons can make direct
synaptoid contacts with pituicytes. These cells express recep-
tors for GABA, as well as for AVP, �-opioid, nucleotides,
atrial natriuretic peptide, 5-HT, bradykinin, angiotensin II,
and ETs. Cultured pituicytes express several Ca2�-mobiliz-
ing receptors, the activation of which leads to the generation
of Ca2� waves, either through gap junctions that are ex-
pressed in these cells or via the release of ATP and activation
ofpurinergic receptors. Pituicytes also express IL-1 receptors
and release IL-6. Such a complex expression pattern of re-
ceptors indicates that released neurohormones can act on
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pituicytes (58). The physiological role of activated pituicytes
is unknown, but they could trigger release of various neuro-
active substances and influence the release of AVP and oxy-
tocin. For example, it is known that ATP released by pi-
tuicytes activates purinergic receptor channels expressed in
vasopressinergic terminals and stimulates hormone release
(59, 60).

III. Ion Channels Expressed in Pituitary Cells

A. Voltage-gated channels
Functional analysis, homology cloning, and the se-

quencing of genomes of several species have revealed that
voltage-gated channels are one of the largest groups of signal
transduction proteins. These channels have been classi-
fied into two major subgroups: a superfamily of more
than 140 members of voltage-gated cation channels that
share structural similarity; and a small family of struc-
turally different voltage-gated chloride channels. The su-
perfamily of voltage-gated channels includes sodium
(Nav) (Fig. 2), calcium (Cav) (Figs. 2 and 3), and potassium
(Kv) channels (Figs. 4–6), as well as numerous less selective
channels. These channels are composed of the pore-forming
�-subunits and auxiliary subunits. The �-subunits of Na�

channels and Ca2� channels have similar amino acid se-
quences and folding, whereas the pore-forming subunit
of K�-channels is smaller, but with obvious homology
to Na� and Ca2� channels. In cation-selective channels,
the part of the pore known as the ionic selectivity filter
is able to distinguish among Na�, Ca2�, and K�. The
majority of voltage-gatedchannelscontainvoltagesensors,
charged transmembrane (TM) helices or segments (S) that

sense the electrical field in the membrane
and drive conformation changes, leading
to opening and closing of the gates near
the mouth of the pore (61).

Combined pharmacological, elec-
trophysiological, and molecular biol-
ogy experiments have revealed that
there is a high diversity of Kv channels,
whereas Cav and Nav channels are less
diverse. Among voltage-gated chan-
nels, the structures of inwardly rectify-
ing K� (Kir) channels and bacterial K�

channels, known as KcsA, are the sim-
plest. The �-subunit of these channels is
a tetramer, each monomer of which
contains two TM segments (S), with a
reentry P loop in between (Fig. 4). The
primordial members of the voltage-
gated cationic channel superfamily
were probably 2TM domain K� chan-

nels. The K2P channels are known as leak K� channels, and
these channels have two P loops and 4TM domains, a
topology similar to a tandem fusion of two Kir channels.
These channels do not have a voltage sensor. The Kv chan-
nel �-subunit monomer contains the two TM segments
found in Kir channels plus an additional four TM seg-
ments (Fig 5). Cyclic nucleotide-gated (CNG) channels,
hyperpolarization-activated and cyclicnucleotide-mod-
ulated (HCN) channels, transient receptor-potential
(TRP) channels, and some members of Ca2�-activated K�

channels (KCa) also have this type of architecture (Figs. 6
and 7). Like Kir channels, all 6TM domain channels are
homo- or heterotetramers of principal subunits, fre-

FIG. 2. Nav and Cav channels. Top, Structural TM folding model of Nav and Cav channels. In
this and the following models, �-helices are illustrated as cylinders and the extracellular and
intracellular chains of amino acids as continuous lines. The positively charged 4S domain
illustrates the voltage sensor, and the S5 and S6 domains contribute to the formation of the
channel pore. Bottom, TTX and saxitoxin (SAX) sensitivity of Nav-� subunits. Rectangles show
the subunits whose presence was identified in pituitary cells at the mRNA level. TTX-sensitive
Nav currents have been identified in all endocrine pituitary cells.

FIG. 3. Classification of Cav channel �-subunits. HVA, High-voltage
activated; LVA, low-voltage activated; DHP, dihydropyridines; IVA,
w-agatoxin; GVIA, w-conotoxin; SNT, SNK-482. HVA and LVA currents
have been detected in all endocrine pituitary cells. Rectangles
indicate the mRNA transcripts for Cav-� subunits in pituitary cells.
Immunocytochemical studies showed the presence of Cav1.1, 1.2, 1.3,
2.1, 2.2, 2.3, and 3.1-� subunits in these cells.
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quently associated with auxiliary �-subunits. The 6TM
domain of these channels is doubled in the two pore
channels and quadrupled in Nav and Cav channels. In all
of these channels, the 4S in the 6TM domain serves as
a voltage sensor, whereas the pore loop between 5S and

6S in each domain determines ion conductance and se-
lectivity (61, 62).

1. Voltage-gated Na� channels
Mammals express nine genes for the Na� channel

�-subunit, termed Nav1.1–Nav1.9, and closely related
Na� channel-like proteins (Nax) with approximately 50%
structure similarity with Nav1 channels. The �-subunit
contains four homologous domains, each consisting of a
6TM domain and a reentry P loop between 5S and 6S,
which contains the tetrodotoxin (TTX) binding site, a
voltage gate and sensor, and contains the sites for phos-

FIG. 5. Kv channels reduce excitation in pituitary cells. Top, Structural
TM folding model of Kv channels (left) and tetrameric organization of
�-subunits (right). Bottom, Families of Kv channels. Rectangles indicate
Kv-�-subunits for which mRNAs were identified in pituitary cells.

FIG. 6. Two types of KCa channels are expressed in pituitary cells. Top
left, SK channels have similar TM organization as Kv channels, but are
not voltage-regulated. Top right, BK (maxi) channels have an additional
TM domain (S0) and are regulated by both voltage and calcium.
Bottom, Phylogenetic tree for KCa channels. The KCa1.1 mRNA
transcript was found in pituitary cells, and the presence of SK and BK
currents in pituitary cells was confirmed using specific blockers of these
channels.

FIG. 7. Cyclic nucleotide-modulated channels are nonselective cation
channels. Top, Structural TM folding model of CNG channels and HCN
channels. Bottom, Phylogenetic tree of CNG and HCN channels. The
mRNA transcripts for all four HCN �-subunits and CNGA1 �-subunit
were identified in pituitary cells, as well as the functional HCN current.

FIG. 4. Kir channels play important roles in the control of resting
membrane potential and agonist-induced inhibition of spontaneous
electrical activity in pituitary cells. Left, Structural TM folding model of
Kir channels. Right, The 15 known members of Kir channels are divided
into three groups, based on their regulation. Rectangles indicate Kir-�
subunits identified in pituitary cells. The presence of Kir3.1 and 3.2 has
also been confirmed by Western blot analysis.
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phorylation by protein kinases on the intracellular sur-
face. Nav 1.5, 1.8, and 1.9 are TTX insensitive (Fig. 2).
Four auxiliary subunits have been identified so far, termed
NaV�1, NaV�2, NaV�3, and NaV�4. They belong to a sin-
gle family of proteins, which interact with different �-sub-
units and alter their physiological properties. The main
function of Nav channels is to depolarize cells and generate
the upstroke of the AP, controlling the firing amplitude in
excitable cells, including nerve, muscle, and neuroendo-
crine cell types. In some cells, these channels are solely
responsible for the rapid and regenerative upstroke of an
AP. In others, they act in conjunction with Cav channels to
depolarize cells. Nav channels are also expressed in non-
excitable cells at a lower level, where their physiological
role is unclear (63).

The expression of TTX-sensitive and -insensitive Nav

channels has been extensively studied in endocrine pitu-
itary cells. Electrophysiological experiments revealed that
both freshly dispersed and cultured melanotrophs express
functional channels composed of TTX-sensitive and TTX-
resistant components (64, 65). Single-cell Ca2� measure-
ments further indicated the presence of functional Nav

channels in frog melanotrophs (66, 67). The TTX-sensi-
tive current has also been identified in rat (68–70), mouse
(71), ovine (72, 73), and fish (74, 75) gonadotrophs, as
well as in �T3-1 mouse gonadotrophs (76, 77). The pres-
ence of functional Nav channels in gonadotrophs was re-
cently confirmed using mice pituitaries with genetically
labeled gonadotrophs (78). Rat lactotrophs (79, 80), so-
matotrophs (70), corticotrophs (68), and GH3 cells (81),
and fish lactotrophs (82) also express Nav channels. GH3

cells were frequently used as a cell model to study the
gating properties of Nav channels (83, 84). Thus, it is rea-
sonable to conclude that Nav channels are native to all
secretory pituitary cells.

There has also been progress in identifying the mRNA
transcripts for Nav subunits in pituitary cells in various
physiological conditions influencing the expression of
these channels. Rat melanotrophs express mRNA tran-
scripts of seven �-subunits, including the TTX-insensitive
Nav1.8 and 1.9 subunit mRNAs and �1 and �2 auxiliary
subunit mRNAs (65). The mRNA transcripts for the
�-subunit of Nav1.1, Nav1.2, Nav1.3, and Nav1.6, as well
as �1- and �3-subunits of Na� channels, are present in
GH3 cells (85). The expression of the Nav1.7-�-subunit in
the rat anterior pituitary was confirmed by in situ hybrid-
ization and immunohistochemistry (86). Somatotrophs
from GH-green fluorescent protein transgenic mice ex-
press mRNA transcripts for Nav1.5, 1.8, and 1.9, as well
as the TTX-sensitive and TTX-resistant Na� current (87).
It appears that the level of Na� channel expression is
greater in cultured rat gonadotrophs than in soma-

totrophs and lactotrophs (70). The level of expression of
Nav channels inGH3 cells is inhibitedbyglucocorticoids (81)
and stimulated by long-term activation of the ghrelin-GH
secretagogue receptor (88) and activation of L-type Cav

channels (85). The role of these channels in electrical activity
is summarized in Section IV.C.

2. Voltage-gated Ca2� channels
Electrophysiologically, Cav channels are separated into

two groups. The first group of channels is known as high-
voltage-activated Cav channels because these channels re-
quire moderate to strong membrane depolarization to
open. Among this group, biophysical and pharmacologi-
cal studies have identified L-, N-, P/Q-, and R-type Ca2�

channels that are distinguished by their single-channel
conductance, pharmacology, and metabolic regulation.
The second group is known as low-voltage-activated Cav

channels because they require less depolarization for ac-
tivation and subsequent inactivation than high-voltage-
activated channels, and a strong membrane hyperpolar-
ization is required to bring them out of steady inactivation.
Because of such gating properties, these channels are often
referred to as transient or T-type Cav channels (Fig. 3).
Purification of calcium channels has identified five sub-
units: a pore-forming large �1-subunit and four smaller
ancillary subunits: �2, �, �, and �. Like �-subunits of Nav

channels, the �1-subunit of Cav channels consists of four
homologous repeats, each consisting of a 6TM domain
and a P-loop between 5S and 6S. In addition to the voltage
sensor, gating machinery, and the channel pore, the �1-
subunit also contains most of the known sites of channel
regulation by intracellular messengers, drugs, and toxins,
including G�� domains and multiple PKA phosphoryla-
tion sites (89).

Cav channels serve two major functions in cells: elec-
trogenic and regulatory. In some neurons and many neu-
roendocrine cells, these channels give rise to APs in the
same way as Nav channels, although typically with slower
kinetics and lower amplitude. In other neurons, Cav chan-
nels shape the Na�-dependent APs. The regulatory func-
tion of these channels is based on Ca2� influx during the
transient depolarization, which acts as an intracellular
(second) messenger controlling a variety of cellular func-
tions. During a short-term depolarization, Ca2� entry
through T-type channels constitutes a disproportionately
large fraction of the total Ca2� entry (90). Because T-type
Cav channels exhibit rapid and complete voltage-depen-
dent inactivation, however, they are unlikely candidates to
promote Ca2� influx of sufficient amplitude to generate
global Ca2� signals in neuroendocrine cells firing slow
APs. The major function of these channels is electrogenic;
at the resting potential, these channels depolarize cells to
the threshold level for a Na� or Ca2� spike. In contrast,
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high-voltage-activated channels inactivate incompletely
and help to keep the cells depolarized for a prolonged
period. Such APs increase intracellular calcium concen-
tration ([Ca2�]i) of sufficient amplitude to trigger Ca2�-
dependent processes (89, 91).

The functional expression of both inactivating and
noninactivating Cav currents is well documented in rat
(68–70, 92), ovine (93), and fish (75) gonadotrophs, as
well as in genetically labeled mouse gonadotrophs (78)
and �T-3 immortalized mouse gonadotrophs (76). These
currents are also present in somatotrophs and lactotrophs
(70, 94) and GH cells (95–97). In GH3 cells, there are
multiple conductance levels of the L-type Cav channels
(98), and estrogens stimulate the expression of T-type
channels (99). In the same preparation of rat anterior pi-
tuitary cells, it appears that Cav channels are more prom-
inent in rat somatotrophs than in lactotrophs and gona-
dotrophs (70). Within the same subpopulation of cells, the
expression of T-type Cav channels varies, as is well doc-
umented for lactotrophs (100). Mouse (101) and rat (102,
103) melanotrophs also express functional Cav channels.
The properties of inactivating Cav channels are consistent
with the expression of T-type Ca2� channels, whereas the
noninactivating Ca2� current in pituitary cells is mediated
by dihydropyridine-sensitive and -insensitive Cav chan-
nels (69, 92, 96, 104). The prominent expression of T-type
Ca2� channels in somatotrophs is reflected by their con-
tribution to the generation of the high-amplitude [Ca2�]i

transients in spontaneously active cells, whereas L-type
channels are essential to the generation of both spontane-
ous and agonist-induced electrical activity and Ca2� sig-
naling in pituitary cells (for details, see Section IV).

Progress has been made in the identification of Cav-�-
subunit transcripts present in pituitary cells. The Cav3.1
and Cav3.3 mRNAs were detected in GH3 cells exhibiting
prominent T-type Ca2� current (105). Several pore-form-
ing subunits of Cav channels are present in GH3/B6 pitu-
itary cells and account for the formation of T-type
(Cav3.1), L-type (Cav1.1, 1.2, and 1.3), and P/Q (Cav2.1)
type currents. The mRNA transcripts for �1, �2, and �3
Cav subunits were also detected in these cells (95). Immu-
nocytochemical analysis confirmed the expression of
Cav1.2, 1.3, 2.2, and 3.1 �-subunits in mouse anterior
pituitary cells (106). The disulfide-linked �2�-subunit was
cloned from human pituitary (107). An immunocyto-
chemical study also suggested that pituicytes express
Cav1.2, 2.1, 2.2, 2.3, and 3.1 subunits (108). In GH so-
matotrophs, ghrelin and GH-releasing peptide-6 en-
hanced the expression of the Cav1.3 pore-forming �-sub-
unit (109). In L�T2 gonadotrophs, leptin increases L-type
Cav channel expression and GnRH-stimulated LH release
(110). In guinea pigs, estrogen significantly increases the

mRNA expression of the Cav3.1 �-subunit in the pituitary
and the hypothalamus, accompanied by an increase in the
peak T-current, which could explain the stimulatory ef-
fects of estrogens on burst firing (111). This increase is
dependent on the expression of estradiol receptor � (112).
Because of their enormous physiological relevance (dis-
cussed in Section IV.E), it is reasonable to speculate that
other hormones and neuropeptides affect the expression
of Cav channels in pituitary cells and other excitable cells.

3. Inwardly rectifying K� channels
The term “inward rectifier” describes the activation of

inward current under hyperpolarization, leading to K�

influx, and almost no K� efflux under depolarization. Be-
cause of these unusual activation properties, these chan-
nels are also known as anomalous rectifiers. Kir channels
are expressed in numerous tissues, including brain, heart,
kidney, endocrine cells, ears, and retina. They participate
in the control of resting potential and are closed by a
strong depolarization. There are 15 members of this fam-
ily of channels that are divided into three groups, based on
their regulation (Fig. 4). The majority of channel subtypes
are “classical” Kir channels that are controlled by intra-
cellular messengers (Kir1, 2, 4, 5, and 7). On the other
hand, Kir3 channels are regulated by G proteins and Kir6
channels by intracellular ATP. The long cytoplasmic pore
of these channels plays a critical role for inward recti-
fication and provides the structural basis for modula-
tion of gating by G proteins and phosphatidylinositol
4,5 bisphosphate (PIP2) (113).

G protein-regulated Kir channels are present in endo-
crine pituitary cells. In rat pituitary lactotrophs, Kir cur-
rents are activated by dopamine (114) and ETs (115),
whereas in somatotrophs they are activated by somatosta-
tin (116) and ETs (48). AtT-20 corticotrophs also express
Kir channels activated by G protein-coupled somatostatin
and muscarinic receptors (117–120). The G protein de-
pendence of activation of Kir currents in AtT-20 cells and
human GH-secreting adenoma cells was shown by down-
regulation of their expression by antisense oligonucleo-
tides (121, 122). Consistent with the G protein-dependent
Kir currents, RT-PCR analysis showed the presence of Kir

3.1, 3.2, and 3.4 mRNA transcripts in female rat pituitary
cells (123), and Kir3.1–3.4 mRNA transcripts in GH3/B6

mammosomatotrophs (124). The presence of Kir3.1 and
3.2 proteins in AtT-20 cells was also confirmed by West-
ern blot analysis (118). For details on the role of these
channels in receptor-controlled electrical activity see Sec-
tion VII.B.

Other members of this family of channels are also ex-
pressed in pituitary cells but were only partially charac-
terized. In GH3 cells, constitutively active Kir channels
play an important role in the maintenance of the resting
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membrane potential (125, 126). These channels are in-
hibited by activation of the TRH receptor, presumably
through their cross-coupling to the Gs signaling pathway
(127). TRH also inhibits Kir channels in lactotrophs from
lactating rats (128). In ovine somatotrophs, GH-releasing
peptide-2 reduces Kir current via the PKA-dependent sig-
naling pathway (129). The presence of ATP-sensitive K�

channels in pituitary cells has also been reported (130).
RT-PCR analysis revealed the presence of Kir 1.1, 2.2, 4.1,
6.1, and 6.2 mRNA transcripts in GH3/B6 cells (124). Fur-
ther studies are required for identification of classical and
ATP-regulated Kir channels in native pituitary cells and
their roles in spontaneous and receptor-stimulated elec-
trical activity and Ca2� signaling.

4. Voltage-gated K� channels
Electrophysiological studies have revealed that at least

four functional classes of Kv channels exist: fast or rapidly
activating delayed rectifier, slow delayed rectifier (includ-
ing M channels), A-type K� channels, and EAG (ether-a-
go-go gene) channels. The fast delayed rectifier is ex-
pressed in unmyelinated axons, motoneurons, and fast
skeletal muscle, and is responsible for very short APs. Slow
delayed rectifier channels are expressed in cardiac tissue
and are also involved in cell repolarization. As indicated
by their name, the gating kinetics of these channels is slow
and the channels are noninactivating, which is reflected in
the shape of APs. A-type channels show rapid and tran-
sient activation in the subthreshold range of membrane
potential, fast inactivation and fast recovery from inacti-
vation. These channels contribute to the regulation of fir-
ing frequency in cardiac and other excitable tissues. Tet-
raethylammonium blocks delayed rectifier channels, but it
is much less effective in blocking A-type channels. 4-Ami-
nopyridine blocks A-type channels in a millimolar con-
centration range and delayed rectifier channels in a mi-
cromolar concentration range (131). There are three
subfamilies of EAG channels: eag, eag-like (elk), and eag-
related (erg). Among them, the erg channels are the best
characterized. They are expressed in heart, neuroblastoma
cells, smooth muscle cells, and neuroendocrine cells and
are selectively blocked by E-4031. Like Kir channels, erg
channels also have inward-rectifying properties and con-
tribute to the maintenance of the resting potential (132).

Molecular studies have identified a large number of
pore-forming �-subunits of Kv channels, which are clas-
sified into several groups or subfamilies based on sequence
similarities (Fig. 5). This diversity allows for the genera-
tion of many subtypes of Kv channels. Formation of het-
erotetramers between different subunits within the Kv1, 7,
and 10 families, as well as the presence of �-subunits and
modifier subunits (Kv5, 6, 8, and 9), further increases di-
versity of this group. The coding regions of Kv3, 4, 6, 7, 9,

10, and 11 gene families are made up of several exons that
are alternatively spliced, leading to a further increase in
functional diversity (133). It is likely that Kv1.4, 3.3, 3.4,
4.1, 4.2, and 4.3 contribute to the formation of A-type
channels (133, 134). The M-channel is made up of several
subunits from the Kv7 (KCNQ) family of �-subunits, and
the voltage-dependent activity of this channel is modu-
lated by PIP2 (135). The members of Kv1, 2, and 3 con-
tribute to the formation of the fast activating delayed rec-
tifier, and the members of Kv10, 11, and 12 generate
various EAG channels, including the erg1 channel ex-
pressed in cardiac tissues (133).

Qualitative RT-PCR analysis revealed that GH3/B6 pi-
tuitary cells express mRNA transcripts for Kv1.3, 1.4, 1.6,
2.1, 2.2, 3.2, 3.4, 4.1, 4.2, 4.3, 6.1, 7.1, 7.2, 7.3, 10.1,
11.1–11.3, and 12.1–12.3 (124). Others reported about
the expression of Kv1.5 in pituitary cells (136). There is
also evidence that Kv expression is modulated by hor-
monal status. Glucocorticoid injection in vivo increases
8-fold the amount of Kv1.5 mRNA in rat pituitaries (137).
The increase in Kv1.5 (but not Kv1.4) expression is asso-
ciated with an increase in a noninactivating component of
the Kv current in GH3 cells (138). Interestingly, both de-
polarization and TRH application reduces Kv1.5 expres-
sion in GH3 cells, increasing cell excitability (136, 139).
Thus, hormonal and physiological status can dynamically
alter the excitability of pituitary cells on a time scale of
hours.

Electrophysiological experiments confirmed the pres-
ence of delayed rectifier current in GH cells (96, 140–142)
and their regulation by GHRH (143). This current is also
present in native rat lactotrophs and somatotrophs (70,
144–146). Mouse �T3-1 gonadotrophs (76), and native
goldfish (75), rat (70), and ovine (147) gonadotrophs also
express delayed rectifiers, and estrogens transiently in-
crease the expression of these channels (147). Other fish
pituitary cell types also have these channels (74, 148). The
potential role of delayed rectifier K� channels in electrical
activity was examined in various pituitary cells. In GH3

cells, inhibition of this channel by tetraethylammonium
increases the duration of the AP (149) and the amplitude
of the spontaneous [Ca2�]i transients (125), whereas in
native rat lactotrophs, tetraethylammonium does not alter
the pattern of AP firing (149). In frog melanotrophs, aden-
osine potentiates the delayed rectifier K� conductance,
leading to inhibition of electrical activity (150).

A-type Kv channels are also expressed in the majority of
secretory pituitary cells. They were identified in GH3

mammosomatotrophs (142) and �T3-1 gonadotrophs
(76). Native fish (74, 75, 148), frog (150), and rat (70,
144, 145) pituitary cells also express A-type Kv channels.
In frog melanotrophs, adenosine potentiates these chan-
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nels (151). Direct comparison of rat lactotrophs, soma-
totrophs, and gonadotrophs indicates that the expression
level of the A-type Kv channels is much higher in lac-
totrophs and gonadotrophs than in somatotrophs (70). In
contrast, high levels of expression of these channels have
been observed in ovine somatotrophs and may contribute
to the regulationofAP firingandhormone secretion (152).
The participation of the A-type K� channel in regulating
AP firing in other anterior pituitary cell types is unclear. In
rat lactotrophs, for example, they do not appear to par-
ticipate in AP generation (149), which may be due to their
prominent inactivation at the resting membrane potential
in these cells.

The M-type K� current has also been identified in lac-
totrophs, where it is inhibited by TRH, leading to an in-
crease in the firing frequency during sustained stimulation
(153). The M-type current resembles one generated by erg
channels (154), which are also expressed in GH mammo-
somatotrophs and native rat lactotrophs (155). Blockade
of erg channels by E-4031 causes depolarization of the
membrane potential of about 5 mV, facilitating the release
of PRL (156). In our hands, E-4031 did not alter basal PRL
release in perifused pituitary cells measured by RIA, in
contrast to Cs� in concentrations that inhibit Kir channels
(157). Erg channels are inhibited by TRH through an un-
identified intracellular messenger (155, 158). TRH was
also able to inhibit erg1, erg2, and erg3 channels, as well
as human erg, when expressed in HEK293 cells (159). Erg
currents are also expressed in MMQ lactotrophs, and their
blockade facilitates AP firing and PRL secretion (160).
Functional channels were identified in mouse gonado-
trophs, and GnRH inhibits these channels through a still
uncharacterized signal cascade (161). Human PRL-secret-
ing tumors also express human erg, and they are function-
ally coupled to PRL secretion (162).

5. Calcium-activated K� channels
KCa are the third major group of K� channels and are

composed of two families (Fig. 6). One family of these
channels includes three small-conductance [calcium-acti-
vated small K� channels (SK)] channels (KCa2.1, 2.2, and
2.3) and one intermediate-conductance channel (KCa3.1).
Splice variants have also been identified for SK channel
genes. These channels have a general topology similar to
that of Kv channels but show little voltage dependence and
are activated by Ca2� entering through Cav channels and
released from intracellular stores, but they are not tightly
coupled to Ca2� channels. SK channels use calmodulin
constitutively bound to the C terminus of each �-subunit
as a high-affinity Ca2� sensor (163, 164). The high-con-
ductance K� [calcium-activated big K� channels (BK)]
channels represent the other family of KCa channels, only
distantly related to SK and intermediate-conductance

channels. BK channels are composed of four pore-forming
KCa1.1 �-subunits that share the 6TM topology of Kv

channels but contain an additional TM segment at the N
terminus, termed S0 (Fig. 6). Alternative splicing of the
RNA produces numerous transcripts, resulting in chan-
nels exhibiting distinct functional properties. BK channels
are activated by voltage, and their open probability is
modulated by Ca2�. In contrast to SK channels, BK chan-
nels form macromolecular complexes with Cav channels
and establish a prototypic Ca2� nanodomain. This pro-
vides an effective mechanism for control of activity of
these channels by Ca2� influx through Cav channels. Cal-
cium activation of BK channels is not dependent on cal-
modulin but is mediated by cation binding sites in the C
termini of channel �-subunits (165). The gating properties
of these channels are influenced by auxiliary �-subunits.
BK channels are blocked by charybdotoxin, iberiotoxin,
and paxilline (164, 166).

There are several reasons why KCa channels are incor-
porated into the Ca2� signaling pathway. The colocaliza-
tion of BK and Cav channels facilitates spike repolariza-
tion, which limits AP-driven Ca2� influx. BK channel
activation can also influence the frequency of AP-driven
[Ca2�]i transients by slowing the pacemaker depolariza-
tion. Activation of these channels may relieve the steady
inactivation of Nav and Cav channels, which stimulates or
enhances AP generation in some cells. BK channels may
also play a role in the generation of the pseudo-plateau
bursting type of electrical activity in pituitary cells (see
Section IV.D). Such diverse effects on AP firing probably
depend on the type of KCa channels expressed and the
context of other channels (167). Activation of KCa chan-
nels and the resulting membrane hyperpolarization may
also serve to synchronize electrical activity and secretion in
cell networks and electrical activity and Ca2� release
through IP3 receptors (IP3Rs) (168).

Both BK and SK channels are operative in endocrine
pituitary cells. SK currents were initially identified in GH
cells and had magnitude of less than 20% that of Cav

current (169, 170) and about 25% of the hyperpolarizing
current triggered by TRH (171). The expression of SK
channels is also well documented in rat (172, 173), mouse
(174), and ovine gonadotrophs (72), and the level of their
expression is dependent on estradiol (71). SK currents are
mainly responsible for the oscillatory hyperpolarization
triggered by activation of GnRH receptors, leading to pe-
riodic Ca2� release from the ER (discussed in Section
VIII.A). In these cells, the function of SK channels is fa-
cilitated by PKC (175). Corticotrophs also express SK
channels that are activated by AVP (176). An additional
Ca2�-activated current was observed in rat gonadotrophs
and masked by SK channels when the recording was done
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in cells held at �40 mV (177). Other Ca2�-sensitive chan-
nels, such as Cl� channels, which are expressed in AtT-20
cells (178) and native lactotrophs (179), may also be
masked. It has also been suggested that SK channels con-
tribute to the after-spike hyperpolarization in GH cells
(96). In GH3 cells, SK channel activation requires high-
frequency firing, prolongation of APs by voltage-depen-
dent K� channel inhibitors, or release of Ca2� from in-
tracellular Ca2� stores (169). In native pituitary cells,
VGCI does not activate SK channels (70). We speculated
that the SK channels in pituitary cells are in close prox-
imity to intracellular Ca2� release sites and can be acti-
vated only by Ca2�-mobilizing receptors, sustained
VGCI, and/or Ca2�-induced Ca2� release (180). In
GnRH-secreting neurons, agonist-induced Ca2� mobili-
zation and the concomitant increase in firing frequency are
needed to activate SK channels (181).

Single-channel recordings have shown that BK chan-
nels are expressed in melanotrophs (182) and lactotrophs
(183). Whole cell current recordings confirmed the pres-
ence of BK current in rat somatotrophs and lactotrophs,
but not in gonadotrophs (70). The relatively high levels of
BK channel expression in somatotrophs and lactotrophs
should limit AP-driven Ca2� influx compared with that in
gonadotrophs, which exhibit the lowest levels of BK chan-
nel expression. However, duration of the AP waveform is
longer in somatotrophs and lactotrophs (100–500 msec)
than in gonadotrophs (10–100 msec) (69, 116, 149, 184).
In addition, both the amplitude and duration of the spon-
taneous, extracellular Ca2�-dependent Ca2� transients
are greater in somatotrophs and lactotrophs than in go-
nadotrophs (184–186). It is unlikely that the prolonged
duration of AP-driven Ca2� entry in somatotrophs and
lactotrophs is due to the inability of AP firing to activate
BK channels because short Ca2� influx steps (�25 msec)
were sufficient to activate BK channels in both cell types.
An atypical role of BK channels in regulating the pattern
of spontaneous AP firing and Ca2� signaling in anterior
pituitary cells is discussed in detail in Section IV.D. The
role of GPCRs in regulation of BK channel activity in en-
docrine pituitary cells has not been systematically inves-
tigated. In one study, the role of Gi/o-coupled ETA and
dopamine D2 receptors in activation of these channels in
lactotrophs was addressed (183).

The BK-type K� channels are expressed in GH3 and
AtT-20 pituitary cell lines (169, 187–189), and activation
of PKC inhibits these channels, which could account for
the sustained excitability of pituitary cells during sus-
tained activation of Gq/11-coupled GPCRs (190). In GH3

cells, BK channels contribute to AP repolarization (169),
and these cells have been used frequently to study modu-
lation of native BK channels by different compounds

(191–193). The mslo transcripts encoding the pore-form-
ing �-subunit of BK channels are robustly expressed in
AtT-20 cells, and native channels are not functionally cou-
pled to �-subunits (194). In these cells, glucocorticoids
rapidly activate BK channels via a nongenomic mechanism
(195). Glucocorticoids applied for 2 h also promote de
novo BK mRNA and protein synthesis and antagonize
PKA- and PKC-dependent inhibition of BK channels (188,
196). Further studies revealed that glucocorticoid regula-
tion of BK channels in these cells is mediated by serine/
threonine protein phosphatase (197) and that alternative
splicing determines sensitivity of BK channels to glucocor-
ticoids and switches their sensitivity to protein phosphor-
ylation (198, 199). The functional effect of such regulation
is thought to be to facilitate ACTH release in response to
CRH through inhibition of BK channels (188).

Alternative splicing of the BK channel pore-forming
�-subunit also occurs in the adrenal and pituitary gland
(200–202). Hypophysectomy of rats causes changes in
alternative splicing of the �-subunit in the adrenal me-
dulla, which can be reversed by ACTH treatment (202).
This splice decision is also regulated in both adrenal and
pituitary tissues in stress situations (200, 203). The role of
glucocorticoids in the regulation of BK �-subunit alterna-
tive splicing in these tissues was confirmed in vitro (200,
201), and the action of glucocorticoids is mediated by both
mineralocorticoid and glucocorticoid receptors (200). Fe-
male mice genetically deficient in the pore-forming BK
subunit respond to restraint stress with reduced ACTH
and corticosterone release. It appears that both CRH ex-
pression in the paraventricular nucleus and ACTH peptide
content in the pituitary were reduced in mice deficient in
BK channels (204). Gonadal testosterone also plays a role
in the regulation of Slo �-subunit alternative splicing in
pituitary cells (205). Stress influences not only the splice
decision but also the level of mRNA expression of �-, �2-,
and �4-subunits (167). The �2- and �4-subunits of BK
channels are regulated by steroid hormones (206).

6. Cyclic nucleotide-modulated channels
These channels are directly activated by cyclic nucleo-

tides, in contrast to other channels regulated by their pro-
tein kinases. Thus, they translate changes in concentra-
tions of cyclic nucleotides to changes in membrane
potential. These channels belong to two families: the hy-
perpolarization-activated and cyclic nucleotide-modu-
lated channels (HCN channels, with resulting current Ih,
where “h” stands for hyperpolarization) and CNG chan-
nels (Fig. 7). As their name indicates, HCN channels are
activated by voltage and cyclic nucleotides, whereas CNG
channels are virtually voltage-independent and activated
by cyclic nucleotide binding. Structurally, these channels
belong to the superfamily of Kv channels. However, HCN
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and CNG channels functionally dissociate from other
6TM domain K� channels. Their activation does not
dampen excitation, but it increases the firing of APs. Such
a paradoxical role for channels that structurally belong to
the K�-channel family comes from their permeability
properties: HCN channels are weakly K�-selective chan-
nels, and CNG are practically nonselective cation chan-
nels (207).

In mammals, the HCN channel family comprises four
subunit isoforms, encoded by four genes, HCN1-4 (Fig.
7). When expressed alone, each subunit forms functional
channels, but the native channels are probably organized
as heterotetramers. HCN channels are activated by hy-
perpolarization beyond �60 mV, do not inactivate, and
conduct Na� and K�. In cells expressing these channels,
their activation leads to slow depolarization, an action
consistent with their equilibrium potential of about �30
mV. HCN channels were identified first in cardiac sino-
atrial node cells, and subsequently in a variety of periph-
eral and central neurons. Their voltage sensitivity is mod-
ulated by cAMP. HCN channels serve three principal
functions in excitable cells: 1) they contribute to the resting
potential; 2) they generate or contribute to the pacemaker
depolarization that controls rhythmic activity in sponta-
neously firing cells; and 3) they compensate for inhibitory
postsynaptic potentials. A small fraction of HCN channels
are tonically activated at rest, producing the first two func-
tions of these channels (208).

Qualitative RT-PCR analysis suggests that AtT-20 cells
express mRNA transcripts for HCN1 (209). GH3 cells
express mRNA transcripts for HCN2, HCN3, and
HCN4, but not for HCN1 (210). Consistent with these
data, electrophysiological experiments confirmed the
presence of Ih in GH3 cells (210, 211), AtT-20 cells (209),
melanotrophs (150), somatotrophs (211), and lactotrophs
(212). The biophysical and pharmacological properties of
this current are similar to the Ih current described in neu-
ronal and cardiac cells. This includes the sensitivity to both
ZD7288 and Cs� (209–211) as well as to tramadol (213).
In contrast to neuronal and cardiac cells, experiments with
GH3 cells showed no effect of elevated cyclic nucleotides
on the channel activity in resting cells. Specifically, appli-
cation of TRH, forskolin, and 8-Br-cAMP does not affect
the channel activity in GH3 cells (210, 211). However,
inhibition of the basal cAMP production significantly at-
tenuates the Ih current, which fully recovers by the appli-
cation of 8-Br-cAMP (210). In AtT-20 cells, current is also
robustly inhibited by a cAMP antagonist (209). These re-
sults suggest that in pituitary cells, Ih is under tonic acti-
vation by basal levels of cAMP.

This current is unlikely to play a major role in pace-
making or setting the resting membrane potential in pitu-

itary cells in vitro. First, in GH3 cells these channels op-
erate in the range of potentials negative to �60 mV, with
small activation at the resting membrane potential. Sec-
ond, although the extracellular application of Cs� and
ZD7288 almost completely blocks Ih, it does not stop
spontaneous electrical activity or influence the resting
membrane potential. However, Ih may limit the excessive
hyperpolarization in response to hyperpolarizing stimuli
(209–211). Finally, in normal and immortalized GH3 pi-
tuitary cells, ZD7288 has Ih-independent effects. This
compound induced a rapid increase in the frequency of
spontaneous APs and Ca2� transients in a fraction of cells,
which was accompanied by a transient and dose-depen-
dent increase in PRL release in perifused pituitary cells,
indicating that channels other than Ih could also be af-
fected by this compound (210, 212). Further studies
should be focused on characterization of HCN channels in
intact pituitary tissue, including the effects of dopamine
and somatostatin on cAMP production, and the role of Ih

in pacemaking activity.
In vertebrates, there are six CNG subunits: CNGA1,

CNGA2, CNGA3, CNGA4, CNGB1, and CNGB3 (Fig.
7). As with other channels, differential splicing of primary
transcripts yields channels of altered structure and behav-
ior. CNGA1-3 subunits can form homomeric channels in
heterologous expression systems, and other subunits can
coassemble to form functional heteromeric channels.
These channels are expressed in olfactory neurons and
outer segments of rod and cone photoreceptors, where
they play a critical role in sensory transduction. Photore-
ceptors have a strong preference for cGMP, whereas the
olfactory channel is almost equally sensitive to both li-
gands. The channels are permeable to Na�, K�, and Ca2�,
but not to Cl� and other anions. Low levels of mRNA
transcripts for these channels are also found in brain, tes-
tes, kidney, and heart (207). The mRNA transcripts for
rod CNG were also detected in rat pituitary cells by RT-
PCR analysis (214) and RNA blot hybridization (215).
The zebrafish-specific CNGA5 mRNA and protein
transcripts are also expressed in the pituitary (216).
Stimulation of cGMP production by nitric oxide donors
did not change the pattern of spontaneous VGCI in rat
lactotrophs (217), and application of a cell permeable
8-Br-cGMP was also ineffective (218), arguing against
the relevance of CNG channels in signaling and secretion.
Further studies are required to clarify their expression at
the protein level and their potential role in electrical ac-
tivity and Ca2� signaling in other endocrine and/or non-
secretory pituitary cells.

7. Transient receptor potential channels
TRP channels were initially found in Drosophila,

where they contribute to phototransduction. Six protein
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families comprise the mammalian TRP superfamily: the
“canonical” receptors (TRPCs), the vanilloid receptors
(TRPVs), the melastatin receptors (TRPMs), the poly-
sistins (TRPPs), the mucolipins (TRPMLs), and the
ankyril TM protein 1 (TRPA1). These channels resemble
Kv channels in overall structure. However, they show lim-
ited conservation of the S4-positive charges and P loop
sequences. Assembly of channel subunits as homo- and
heterotetramers results in the formation of cation-selec-
tive channels. Two members of this superfamily are Ca2�-
selective (TRPV5 and TRPV6), and two are monovalent
cation selective (TRPM4b and TRPM5); all other chan-
nels are relatively nonselective (219). These channels have
been studiedextensively innumerous tissues, butnot in the
pituitary gland. The TRPM3 channel mRNA transcripts
are present in pituitary cells (220) as well as unidentified
member(s) of the TRPC family of channels that are acti-
vated by phospholipase C (PLC) (221). The mRNA tran-
scripts for TRPC1, TRPC3, TRPC5, and TRPC7 have also
been identified in human pituitary cells (222). There are at
least two types of currents present in pituitary cells whose
nature is unknown and could be mediated by TRP chan-
nels: Ca2�-activated nonselective cationic currents in GH3

cells (223) and gonadotrophs (177), and TTX-insensitive
Na� conductance present in all endocrine pituitary cells
(80, 224). It is reasonable to suggest that future electro-
physiological investigations in pituitary cells should be
focused on this superfamily of channels, especially on
members of the TRPC and TRPM families.

B. Chloride channels and transporters
Anion channels are proteins forming pores in biological

membranes that allow the passive diffusion of negatively
charged ions along their electrochemical gradients. Be-
cause all of these channels conduct Cl�, the most abun-
dant anion in organisms, they are often called chloride
channels. However, some of these channels may be better
conductors of ions other than Cl�. As with cation chan-
nels, the most logical classification of Cl� channels is
based on their molecular structure, but entire gene families
of anion channels remain to be discovered. The most com-
mondivisionof these channels is basedonmolecular struc-
ture and biophysical characteristics and include: voltage-
gated chloride channels, ligand-gated (GABA and glycine)
chloride channels, calcium-activated chloride (CaCC)
channels, high (maxi) conductance channels, the cystic
fibrosis TM conductance receptor, and volume-regulated
channels (225).

GABA and glycine channels have been studied in pitu-
itary cells and are described in Section VI.A.3. The ex-
pression and role of voltage-gated chloride channels in
pituitary cells have not been studied. The CLlC6, a mem-
ber of the intracellular Cl� channel family, was identified

in the posterior pituitary (226). Most studies on pituitary
cells were focused on CaCC channels. The first report
about the Ca2�-dependent Cl� conductance was done in
GH3 cells (227). These channels are also present in AtT-20
cells and contribute to the control of APs and VGCI (178).
In native lactotrophs, TRH activates CaCC channels in
addition to BK and SK channels (228). Depolarization-
induced Ca2� influx and Ca2� ionophore application also
trigger activation of these channels in lactotrophs (179). A
large conductance Ca2�-sensitive chloride channel is
present in lactotrophs and takes part in the background
regulation of the intracellular chloride concentration
(229). Hypotonicity also activates CaCC channels in
GH4/C1 cells (230).

The common characteristic of K� and Cl� ions in neu-
rons is their negative equilibrium potential. Activation of
channels conducting these ions draws the membrane po-
tential closer to their equilibrium potentials and farther
from the threshold for firing. Channels conducting these
ions tend to stabilize the membrane potential by setting the
resting potential, repolarize and hyperpolarize cells after a
depolarizing event, and control the interspike interval. In
the majority of cells from adult animals, intracellular chlo-
ride concentration ([Cl�]i) is low, which permits chloride
channels to stabilize the membrane potential of excitable
cells. Experiments with AtT-20 cells, however, found that
[Cl�]i was between 40 and 50 mM and that activation of
CaCC channels by Ca2� influx during APs tends to main-
tain the membrane potential at a depolarized level and to
enhance VGCI (178). In lactotrophs, [Cl�]i was estimated
to be around 60 mM (231). Electroneutral ion transport-
ers, such as the Cl� extruding K�-Cl� cotransporter
KCC2 and the Cl� accumulating Na�-K�-2Cl� cotrans-
porter NKCC1, participate actively in maintaining a high
[Cl�]i in the endocrine pituitary cell (232). For further
discussion on this subject, see Section VI.A.3.

Elevated basal [Cl�]i may explain the finding that Cl�

channel blockers inhibit ACTH release from cortico-
trophs (233) and provides a rationale for the complex
pattern of interactions between Ca2� and Cl� movements
in pituitary lactotrophs (179). It has also been shown that
PRL secretion is an osmotically driven process depending
on [Cl�]i (234). Additionally, granule fusion recorded by
the patch clamp technique is facilitated when the intrapi-
pette Cl� is elevated (235, 236). Experiments with sub-
stitution of Cl� with other ions also confirmed the specific
role for this anion in stimulus-secretion coupling (237).

C. Channels expressed in and controlled by the
endoplasmic reticulum

The expression of ion channels is not limited to the
plasma membrane. Two families of Ca2� release channels,
IP3Rs and ryanodine receptors (RyRs), are predominantly
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expressed in the ER/sarcoplasmic reticulum membrane.
These channels are structurally and functionally similar.
IP3Rs are activated by two classes of plasma-membrane
receptors known as Ca2�-mobilizing receptors, whereas
RyRs provide an effective mechanism for intracellular
transduction and translation of electrical signals. The ac-
tivity of both types of channels is regulated by Ca2�, and
the variety of Ca2� signaling patterns, including Ca2�

sparks and puffs and oscillatory Ca2� waves, depends crit-
ically on the [Ca2�]i dependence of these two families of
channels. Activation of IP3Rs leads to stimulation of volt-
age-insensitive Ca2� channels expressed on the plasma
membrane, a process known as capacitative Ca2� entry
(238, 239).

1. IP3 receptors
IP3Rs are found in the ER and nuclear membranes of

almost all cells. These receptors are composed of four sim-
ilar subunits that are noncovalently associated to form a
four-leaf clover-like structure, the center of which makes
the Ca2�-selective channel. Each subunit contains ap-
proximately 2700 amino acids, with the cytoplasmic N
terminus comprising approximately 85% of the protein
mass, a hydrophobic region predicted to contain six
membrane-spanning helices, and a short cytoplasmic C
terminus. Physiologically, activation of IP3Rs is triggered
by GPCRs and the plasma membrane receptor tyrosine
kinases. Calcium-mobilizing GPCRs activate PLC-�,
whereas receptor tyrosine kinases activate PLC-�. Both
enzymes hydrolyze the membrane-associated PIP2 to in-
crease the production of IP3 and DAG. IP3 rapidly diffuses
into the cytosol to activate IP3Rs. In addition to IP3, Ca2�

plays an important role in the control of permeability of
these channels. There are three subtypes of IP3Rs, which
exhibit the isoform-specific properties in terms of their
sensitivity to IP3 and Ca2�. Further diversity of IP3R ex-
pression is created by alternative splicing. Most cells ex-
press multiple isoforms of IP3Rs, indicating that they have
different functions (240).

IP3Rs are commonly expressed in pituitary cells, as in-
dicated by the ability of numerous Ca2�-mobilizing ago-
nists, including GnRH (241), TRH (242), AVP and oxy-
tocin (54, 243), angiotensin II (244), ET-1 (245),
neurotensin (246), and ATP (247), to trigger an extracel-
lular Ca2�-independent rise in [Ca2�]i. The presence of
high-affinity IP3 binding sites was initially demonstrated
using bovine pituitary membranes (248). The ability of IP3

and its nonmetabolized form to initiate Ca2� oscillations
has been shown in patch-clamped rat gonadotrophs (173,
249). In these cells, Ca2� can stimulate Ca2� release in the
presence of IP3, as indicated by phase resetting of IP3-
dependent Ca2� oscillations by membrane depolarization
(250). Elevated [Ca2�]i (above 500 nM) can also stop IP3-

dependent Ca2� oscillations (251). Thus, the gating of
IP3Rs in gonadotrophs depends on both IP3 and Ca2�. The
existence of stimulatory and inhibitory effects of Ca2� on
IP3-dependent Ca2� release combined with Ca2� influx
was the basis of a mathematical model of GnRH-induced
Ca2� oscillations that nicely reproduces experimental
records (252) (for details see Section VIII).

Among pituitary cells, the oscillatory pattern of Ca2�

release through IP3Rs is a unique characteristic of gona-
dotrophs and is not species specific (174, 253). Other na-
tive pituitary cells typically release Ca2� from the ER in a
nonoscillatory manner (254). Immortalized �T3-1 and
L�T2 gonadotrophs also release Ca2� in a nonoscillatory
manner (42, 255), indicating that the oscillatory response
is not established at an early phase of pituitary develop-
ment. However, it is already established at birth because
neonatal gonadotrophs respond to GnRH application
with oscillatory Ca2� release (256). The cell-type speci-
ficity in the pattern of Ca2� release could be related to the
expression of IP3R subtypes, which has not been studied
in native pituitary cells. �T3-1 gonadotrophs express all
three subtypes of receptors, but the expression of IP3R1

dominates (257). Furthermore, in these cells the sustained
desensitization of GnRH action is due to uncoupling of IP3

generation and Ca2� mobilization (258) and down-regu-
lation of IP3R1 (257). Ubiquitination and proteasomal
degradation account for down-regulation of endogenous
and exogenous IP3R1 in �T3-1 gonadotrophs (259), and
this action is triggered by the concerted action of IP3 and
Ca2� binding to this receptor (260).

2. Ryanodine receptors
RyRs are the largest known ion channels. Mammalian

tissues express three isoforms: RyR1 is expressed predom-
inantly in skeletal muscle; RyR2 is expressed in cardiac
muscle; and RyR3 has a wide tissue distribution, including
the nonexcitable cells. RyRs are tetramers, with a large
N-terminal region forming the head and a C-terminal re-
gion that forms the Ca2�-selective channel. Intracellular
Ca2� is a major regulator of RyRs. The ability of Ca2� to
stimulate Ca2� release from the endoplasmic/sarcoplas-
mic reticulum via RyRs is known as Ca2�-induced Ca2�

release. This process is of fundamental importance for co-
ordinating the elementary Ca2�-release events into Ca2�

spikes and waves. Unlike IP3Rs, RyRs can release Ca2� in
response to an increase in [Ca2�]i with no other change in
the concentration of second messengers. This is crucial for
excitation-contraction coupling. For example, in cardiac
cells, Ca2� entry through dihydropyridine-sensitive Cav

channels activates RyRs to induce a further increase in
[Ca2�]i. In skeletal muscle cells, the dihydropyridine re-
ceptors act primarily as voltage sensors to directly activate
RyRs in response to membrane depolarization. These
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receptors are susceptible to many different modulators.
Ryanodine and dantrolene activate and inhibit RyRs,
depending on their concentrations, and caffeine is a
standard pharmacological tool for the activation of
RyRs (261, 262).

Ryanodine-sensitive Ca2� stores are present in goldfish
pituitaries and contribute to agonist-induced Ca2� signal-
ing and secretion (263). In tilapia fish pituitary cells, how-
ever, ryanodine-sensitive Ca2� stores do not contribute to
hyposmotically-induced PRL release (264). The mRNA
transcripts for RyR1 and RyR3 are present in AtT-20 cells,
and caffeine stimulates ACTH release, presumably by ac-
tivating these receptors (265). Furthermore, it has been
suggested that cADP-ribose is a second messenger in these
cells that regulates ACTH secretion by a mechanism de-
pendent on activation of RyRs by extracellular Ca2�

(266). In GH3 cells, caffeine stimulates Ca2� release from
intracellular pools but also inhibits Ca2� influx through
L-type Cav channels (267). The mRNA transcripts for
RyR2 and RyR3, but not RyR1, are present in rat pituitary
cells, and ruthenium red treatment, which should block
these channels, inhibits GnRH-induced LH release from
gonadotrophs (268). In contrast, the ryanodine treatment
does not affect GnRH-induced Ca2� oscillations, suggest-
ing that a ryanodine-sensitive pool does not contribute
significantly to IP3-dependent Ca2� oscillations in rat go-
nadotrophs (249, 269). It is also unlikely that Ca2� influx
through Cav channels is coupled to Ca2�-induced Ca2�

release in rat somatotrophs (214), lactotrophs, and GH3

cells (270). A detailed characterization of the expression
and function of RyRs in endocrine and nonendocrine pi-
tuitary cells is needed.

3. STIM-controlled Orai channels
The term “capacitative Ca2� entry,” by analogy with a

capacitor in an electrical circuit, implies that intracellular
Ca2� stores prevent entry when they are charged (filled by
Ca2�) but promote entry as soon as the stored Ca2� is
discharged (released). The similarities in the properties of
this entry within different cell types, including excitable
cells, suggest a common mechanism. In addition to Ca2�-
mobilizing agonists, capacitative Ca2� entry can be acti-
vated by injection of IP3 or its nonmetabolized forms into
the cell, inhibition of the ER-Ca2� pumps [sarcoplasmic-
ER Ca2� ATPase (SERCA)] by thapsigargin, discharge of
the intracellular content by Ca2� ionophores, or pro-
longed incubation of cells in Ca2�-deficient medium.
When heparin, an IP3R inhibitor, was injected into the
cells, it completely blocked agonist and IP3-induced Ca2�

mobilization and capacitative Ca2� entry. Because deple-
tion of the ER-Ca2� stores is followed by the influx of
Ca2� into the cell, the channels involved in such influx
were termed store-operated Ca2�-selective plasma-mem-

brane channels. Two proteins have been identified as
critical for this pathway: stromal-interacting molecule
(STIM) and Orai (271).

Capacitative Ca2� entry is probably operative in im-
mortalized pituitary cells. It has been suggested that ca-
pacitative Ca2� entry cooperates with Cav channels to
generate spontaneous Ca2� oscillations and the sustained
rise in [Ca2�]i in TRH-stimulated GH3 cells (272). In these
cells, thapsigargin and thymol treatment is also accompa-
nied with capacitative Ca2� influx, which is inhibited by
La3� and SKF 96365 (273–275). In GH4C1 cells, the con-
tribution of capacitative Ca2� entry to [Ca2�]i is modest
compared with the robust Ca2� influx through Cav chan-
nels (276, 277) and is facilitated by loperamide (278).
Furthermore, some of the effects could be related to the
expression of TRP channels in pituitary cells (222). Thap-
sigargin also triggers Ca2� influx in �T3-1 cells, but in
these cells GnRH stimulates Ca2� influx predominantly
through L-type Cav channels (279, 280).

At the present time, there is no information about the
contribution of capacitative Ca2� entry in normal pitu-
itary cells. Two lines of evidence, however, argue against
their activation upon ER-Ca2� store depletion. In lac-
totrophs, activation of ETA receptors leads to stimulation
of Ca2� release through Gq/11 coupling accompanied with
a sustained inhibition of Ca2� influx, in contrast to the
expected rise in [Ca2�]i (281, 282), suggesting that deple-
tion of the ER-Ca2� pool does not trigger capacitative
Ca2� influx in these cells. In gonadotrophs, the duration
of GnRH-induced Ca2� oscillations depends on the mem-
brane potential (269). Hyperpolarization of the cell mem-
brane should facilitate capacitative Ca2� influx, but in
gonadotrophs Ca2� signaling is terminated after depletion
of the ER-Ca2� pool. Furthermore, there was a rapid re-
covery of Ca2� oscillations when cells were depolarized to
facilitate VGCI, suggesting that Cav channels in these cells
provide the major pathway for Ca2� influx after the ER-
Ca2� depletion (283). It has also been shown that in rat
gonadotrophs, GnRH-stimulated LH release is not medi-
ated by store-dependent Ca2� influx (279). Further stud-
ies in this field should focus on the expression of STIM-
Orai in secretory and nonsecretory pituitary cells and, if
expressed, on the mechanism of their activation and
blockade by GPCRs.

IV. Spontaneous Electrical Activity

A. Spiking and bursting
Electrically excitable cells have been defined as those

with voltage-sensitive ion permeability that show regen-
erative and propagated electrical activity spontaneously
or in response to stimulation. Thirty-five years ago it was
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shown for the first time that endocrine pituitary cells, like
neurons, generate APs (1). Initially, it was believed that
only lactotrophs and GH pituitary cells are excitable. With
time, it became obvious that all secretory pituitary cell
types of vertebrates fall into this category. The membrane
potential of isolated pituitary cells in vitro is not stable but
oscillates from resting potentials of �60 to �50 mV, re-
flecting the balance between the activity of depolarizing
and hyperpolarizing channels. When membrane potential
oscillations reach the threshold level, cells generate APs. In
vitro, firing of APs has been observed in frog (284), mouse
(285), porcine (286), ovine (72), and bovine (287) endo-
crine pituitary cells. Firing of APs in cultured cells is not an
in vitro artifact; it has also been observed in situ in rat
pituitary slices (288).

However, the pattern of electrical activity varies among
cells. Gonadotrophs obtained from male rats are typically
quiescent (69), whereas about half of those from female
rats exhibit spontaneous spiking (184, 289), but this dif-
ference could reflect the method of recording (whole cell
recording in male gonadotrophs and perforated cell re-
cording in female gonadotrophs). The spiking frequency is
typically approximately 0.7 Hz, and the APs are tall and
narrow, with amplitude of more than 60 mV (from initi-
ation to peak) and half-width of less than 50 msec (185).
Ovine gonadotrophs also fire single APs spontaneously
(72). In one study, approximately 80% of lactotrophs and
somatotrophs from female rats exhibited spontaneous ac-
tivity (184). The pattern of activity can be similar to female
gonadotrophs, with large and narrow spikes (80, 218,
290), but more often a bursting pattern is produced. These
bursts consist of periodic depolarized potentials with su-
perimposed small-amplitude spikes (185, 290, 291). The
bursts have a much longer duration (several seconds) than
gonadotroph APs, and the burst frequency is significantly
lower (�0.3 Hz). The membrane potential rarely goes
above �10 mV during a plateau burst, and the spikes are
quite small, with amplitude of 10 mV or less (185). This
was originally termed “plateau bursting,” but it has re-
cently been renamed “pseudo-plateau bursting” to distin-
guish it from the type of bursting produced in agonist-
stimulated gonadotrophs and pancreatic islets, where the
spikes are larger and the bursting pattern is longer and
more regular (292). Corticotrophs also exhibit both spon-
taneous large-amplitude spiking and pseudo-plateau
bursting (293, 294), as do melanotrophs (284–286) and
GH cell lines (96, 295, 296). Little is known about the
spontaneous electrical activity of thyrotrophs.

B. Pacemaking mechanisms
What drives the spontaneous activity of anterior pituitary

cells? Although there is still uncertainty about which sub-
threshold ionic currents are most responsible for depolariz-

ing the cell to the AP threshold, much has been learned in
recent years about the candidate currents. The resting mem-
brane potential of �50 to �60 mV in pituitary cells suggests
that in addition to resting K� conductance, there are also
depolarizing conductances due to other ions. The resting
membrane potential rapidly reaches about �85 mV, a value
close to equilibrium potential for K�, when extracellular
Na� is substituted with large organic cations, suggesting the
constitutive activity of a Na�-conducting channel. Such
prominenthyperpolarizationof theplasmamembrane in the
absence of bath Na� causes abolition of spontaneous firing
of APs in gonadotrophs, lactotrophs, somatotrophs, and
GH3 cells. In contrast, blockade of Nav channels by TTX
does not affect resting membrane potential in a majority of
pituitary cells. These observations indicate that constitutive
activity of TTX-insensitive Na�-conducting channels,
termed the background Na� (Nab) channels, contributes to
the control of resting membrane potential and may account
for the pacemaking depolarization (80, 96, 224, 297). The
nature of Nab channels has not been clarified. There are sev-
eral channel candidates, which could potentially account for
theexistenceof this conductance inpituitarycells. It hasbeen
shown recently that the neuronal channel Na� leak channel,
nonselective contributes resting Na� permeability (298). Be-
cause pituitary cells express several TRP channels (see Sec-
tion III.A.7), it is also possible that the background activity
of these channels could contribute to the resting membrane
potential.

The channels that mediate subthreshold TTX-insensi-
tive Na� currents are frequently activated by cyclic nu-
cleotides, either directly or indirectly. Evidence for this
hypothesis comes from data showing that inhibition of
phosphodiesterases (PDEs) led to an increase in the fre-
quency of bursting in somatotrophs, suggestive of in-
creased excitation (291). Stimulation of pituitary cells
with forskolin also initiates firing of APs in quiescent lac-
totrophs and increases the frequency of firing in sponta-
neously active lactotrophs (218). Both treatments increase
levels of cAMP and cGMP (218, 299), suggesting that
elevation in their intracellular concentrations accounts for
changes in the pattern of electrical activity.

In general, cAMP can modulate channel activities in-
directly, by PKA-mediated phosphorylation of channels
(89, 300) or directly by activating HCN and CNG chan-
nels (207). Some years ago, Kato et al. (301) showed that
GHRH stimulates a rise in [Ca2�]i and GH secretion by a
mechanism involving cAMP/PKA. They also reported that
these effects were dependent on bath Na� but were not
abolished by TTX in concentrations that block Nav1-4
and Nav6-7 channels. Elevation in TTX concentrations
had a partial inhibitory effect, suggesting that TTX-insen-
sitive Nav5 and Nav8-9 channels could account for the

Endocrine Reviews, December 2010, 31(6):845–915 edrv.endojournals.org 861



GHRH-stimulation of VGCI and GH secretion (301).
Hille’s group (302) also reported a TTX-insensitive Na�

current that is up-regulated by PKA phosphorylation and
was proposed to be important for GHRH-stimulated
pacemaking activity in somatotrophs. The synthetic pep-
tide, GHRP-6, elevates the intracellular Na� concen-
tration in somatotrophs by facilitating Na� influx,
which in turns facilitates VGCI (303). This agonist,
however, does not elevate cAMP production but oper-
ates as a Ca2�-mobilizing agonist (304). Recently,
Chen’s group (87) reported a stimulatory effect of GHRH
on TTX-resistant Nav channels in somatotrophs from
GH-green fluorescent protein transgenic mice, but sug-
gested that PKC mediates the action of GHRH. None of
these studies suggested that TTX-insensitive Nav chan-
nels account for the Nab conductance.

The HCN channels are permeable to both Na� and K�,
and the current mediated by the channels (Ih) has a reversal
potential of about �30 mV (305). Thus, activation of the
currents depolarizes the cell. The HCN channels activate
at hyperpolarized voltages, typically negative to �50 or
�60 mV, and deactivate upon depolarization. Their ac-
tivity is up-regulated by cAMP, and to a much lesser extent
by cGMP. The cyclic nucleotides bind directly to HCN
channels and shift the voltage dependence of activation
toward more depolarized potentials (306). HCN current
is present in several pituitary cell types (see Section
III.A.6), but it appears to contribute little to pacemaking.
In both AtT20 and GH3 cell types, spontaneous activity
continued when Ih was blocked, although Ih was maxi-
mally activated at basal levels of cAMP (209, 210). Such
fully activated HCN channels in turn may contribute to
resting Na� permeability. These currents may also play
the role of a brake of membrane hyperpolarization or in
the fast recovery from inhibition that follows activation of
Gi/o-coupled receptors (209). Pituitary cells also express
mRNA transcripts for the rod type of CNG channels (see
Section III.A.7). However, if functional CNG channels
are expressed in pituitary cells, it is unlikely that they con-
tribute to spontaneous firing of APs. Neither application
of cGMP-permeable analogs nor stimulation/inhibition of
soluble guanylyl cyclase (sGC) activity had any effect on
the spontaneous firing of APs in lactotrophs (217, 218).
Also, spontaneous firing persisted in lactotrophs when ad-
enylyl cyclase (AC) activity was blocked (218).

One subthreshold current, commonly found in neu-
rons, is the T-type Ca2� current. Voltage-clamp studies
have shown that this current is present in anterior pituitary
cells and is most prominent in somatotrophs (see Section
III.A.2). The T-type current activates at lower voltages
than other types of Cav channels, but inactivates within
approximately 10 msec. Thus, it provides transient depo-

larization that can help bring a repolarized cell to the AP
threshold. It has been suggested that T-type Ca2� current
acts as the pacemaker current for the firing of APs in go-
nadotrophs (307) or contributes to the control of pace-
making because the frequency of AP decreases in cells with
blocked T-type Cav channels (291). Because PKA does not
phosphorylate the T-type channel (91), it is unlikely that
it accounts for forskolin-stimulated electrical activity in
pituitary cells. The L-type Ca2� channels are stimulated by
PKA-dependent phosphorylation of their �-subunits (89),
which in turn could change the steady-state Ca2� influx
(308) and facilitate pacemaking.

C. Channels involved in spike depolarization
In neurons, TTX-sensitive Nav channels are critical for

the development of the depolarizing phase of APs (131).
As previously discussed, all pituitary cells express TTX-
sensitive Nav channels. However, in the majority of rat
anterior pituitary cells, inhibition of these channels does
not affect the pattern of spontaneous electrical activity,
whereas removal of extracellular Ca2� or blockade of
L-type Cav channels by dihydropyridines abolishes elec-
trical activity without affecting the resting membrane po-
tential, indicating that these channels are critical for spike
depolarization (184, 291). In contrast, in a fraction of ovine
gonadotrophs (72) and bovine lactotrophs (287), Nav chan-
nels are responsible for AP generation. Also, two lactotroph
subpopulations have been identified that differ with respect
to their level of Na� channel expression; only in lactotrophs
expressing high levels of Na� channels did TTX application
abolish basal hormone secretion (79). Furthermore, TTX-
sensitive Nav channels may contribute to the firing of APs
and the accompanied VGCI in frog and rat melanotrophs
(65, 66). Involvement of TTX-sensitive Nav channels in
PACAP-induced GH secretion was also reported (309).

These differences could reflect the impact of culturing
conditions on cell behavior in vitro and the status of TTX-
sensitive Nav channels at the resting potential. The lack of
TTX-sensitive Na� channel involvement in controlling
membrane excitability and secretion in many rat pituitary
cells is most likely due to the inactivation of a large pro-
portion (above 90%) of these channels at the resting mem-
brane potential in these cells in vitro (70). Consistent with
this, GnRH-induced transient membrane hyperpolariza-
tion in rat gonadotrophs is required to remove the steady-
state inactivation of TTX-sensitive Na� channels before
they can contribute to AP firing (69). In melanotrophs, at
typical resting potential of �50 mV, approximately 60–
70% of the channels are in the inactivated state, which
may explain the presence of a TTX-sensitive component in
spike depolarization. However, the firing of TTX-sensi-
tive APs is not an essential requirement for hormone re-
lease from these cells (64). These observations raised the
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question about the physiological importance of the resting
membrane potential on the contribution of Nav and L-type
Cav channels in the spike depolarization. In GnRH-secret-
ing GT1 neurons, a shift in the firing of APs from
TTX�dihydropyridine sensitive to exclusively dihydropyr-
idine-sensitiveAPswasconsistentlyobserved in receptorand
nonreceptor depolarized cells, which limits the participation
of both channels in firing but facilitates AP-driven Ca2� in-
flux (310, 311). Further studies are needed to clarify whether
the same mechanism is operative in endocrine pituitary cells.

D. A mechanism for bursting
Why is the spontaneous activity of gonadotrophs char-

acterized by tall AP spiking, whereas that of other cell
types is often characterized by bursting? The simplest ex-
planation could be that there is a cell-specific expression of
channels, leading to different patterns of spiking. In a
study of ion channel distribution in cells from randomly
cycling female rats, it was shown that lactotrophs and so-
matotrophs express lower levels of TTX-sensitive Nav cur-
rent than do gonadotrophs (70). As mentioned above, how-
ever, blockage of these channels with TTX was shown to
have no impact on the frequency of spontaneous electrical
activity in these cells (184). The T-type Cav current is more
abundant in somatotrophs than in lactotrophs and gonado-
trophs (70), but this could not explain why bursting is ob-
served in both somatotrophs and lactotrophs, but not
gonadotrophs.

One type of current that is larger in somatotrophs and
lactotrophs than in gonadotrophs is the BK current. These
channels activate rapidly upon membrane depolarization,
most likely due to colocalization of the BK channels with
Ca2� channels (70, 185). The BK current acts in conjunc-
tion with the delayed rectifying K� current to repolarize
the cell membrane during the downstroke of an AP (312).
There is evidence that this inhibitory current is the key
to bursting behavior in a fraction of somatotrophs
(185). First, the membrane-permeable Ca2� chelator
BAPTA-AM was used in somatotrophs and converted
spontaneous bursting to large-amplitude spiking. By rap-
idly chelating Ca2�, BAPTA is thought to greatly attenu-
ate the Ca2� nanodomain that forms at the mouth of an
open Cav channel, and thus reduce the degree of activation
of BK channels. Second, the BK channel blockers iberio-
toxin and paxilline both convert bursting to large-ampli-
tude spiking in somatotrophs. Apamin, a blocker of SK
channels has little effect on KCa current in somatotrophs.
Third, other agents including GHRH and KCl did not
convert the bursting to spiking, but only increased the
burst frequency and produced baseline depolarization.
Taken together, these data suggest that BK channels are a
key element in the production of bursting, and that their
greater expression in somatotrophs is responsible for the

different activity patterns of somatotrophs/lactotrophs
and gonadotrophs (185).

Mathematical modeling was used to understand how
an inhibitory current could have a stimulatory action by
converting spiking to bursting (185). Results from a sim-
ilar model are shown in Fig. 8 to demonstrate the behavior.
When a hyperpolarizing voltage-independent current is
added to a spiking model cell, it simply reduces the spike
frequency and produces some baseline hyperpolarization
(Fig. 8A). Increasing the magnitude of the current accen-
tuates this effect and eventually brings the model cell to a
low-voltage steady state (data not shown). If instead a
hyperpolarizing BK-like current is added to a spiking cell,
the spiking is converted to bursting (Fig. 8B). The burst
frequency and size of the spikes is decreased when more
BK-like current is added. The explanation is that the fast
activation of the BK current reduces the amplitude of an
AP. As a result, less delayed rectifying current is activated,
so the downstroke of the spike is less extreme, reaching less
negative voltages. Thus, the spikes of the burst ride on a
depolarized plateau. It is thought that the burst ends when
Ca2� has built up sufficiently to activate BK channels that
are more distant from the Ca2� channels (185). When this
accumulated Ca2� is removed by Ca2�-ATPases, a new
burst is initiated. A mathematical analysis of this type of
bursting has been performed (291, 313), and the bursting
is named “pseudo-plateau bursting.” The resetting prop-
erties of this type of bursting oscillation are quite different
from those of “plateau bursting” typically exhibited by
neurons (292).

Consistent with this observation, stimulation of BK
channels prolongs the duration of APs, whereas their in-
hibition potentiates the firing of APs in dorsal root gan-
glion neurons (314). Participation of these channels in
broadening of APs was also observed in rat amygdala cells

FIG. 8. Model simulation of the transition from spiking to bursting
with the addition of BK current. A, Application of a voltage-
independent hyperpolarizing current slows down spiking, but does not
convert the spiking to bursting (thin bar, small current; thick bar, larger
current). B, Application of a rapidly activating BK-type K� current
converts spiking to bursting.

Endocrine Reviews, December 2010, 31(6):845–915 edrv.endojournals.org 863



(315). However, in some pituitary cells exhibiting burst-
ing, blockade of BK channels does not lead to single spik-
ing. In GH3 cells, BK channels act primarily to end the APs
(169, 312). Mathematical modeling suggests that the A-
type K� current, like the BK current, can help convert a
spiking cell to a bursting cell (313). The mechanism for this
is similar to that for the BK current, in that the A-current
limits the amplitude of the voltage spike and thus reduces
the activation of the delayed-rectifying K� current. It has
been suggested recently that such diverse effects on AP
firing probably depend on the type of KCa channels, gating
properties, and the context of other channels (167). In rat
chromaffin cells, inactivating and noninactivating BK
channels contribute differentially to AP firing behavior
(316). Also, in the somatotroph cell model the localized
Ca2� rather than bulk Ca2� accounts for the burst-pro-
moting effect of BK channels. A small distance between
Cav and BK channels was also proposed for rat supraoptic
neurons (317) and Xenopus motor nerve terminals (318).
Additional experiments are needed using several different
pituitary cell types exhibiting plateau bursting and single
spiking, preferably in intact tissue, to clarify the specific
roles of BK channels in electrical activity and the alterna-
tive mechanisms for generating plateau bursting.

E. Functional roles of spontaneous spiking
In their article published in 1996, Mollard and Schlegel

(319) addressed the question of why endocrine pituitary
cells are excitable. Since then there has been significant
progress in understanding the role of excitability in pitu-
itary cell functions. It appears that both changes in the
membrane potential and the accompanied changes in
Ca2� influx have functional roles in endocrine pituitary
cells. In this section, we review the functional role of spon-
taneous excitability in isolated pituitary cells at resting
conditions. In the following sections, the focus is on mod-
ulation of spontaneous electrical activity by gap junction
coupling (Section V) and activation of receptor channels
(Section VI) and GPCRs (Sections VII and VIII) that are
endogenously expressed in pituitary cells.

1. AP-driven Ca2� signals
The high-voltage activated Cav channels in pituitary

cells not only give rise to APs in the same way as Nav

channels, but also provide an effective pathway for Ca2�

influx during the transient depolarization, which acts as
an intracellular messenger controlling a variety of cellular
functions. The patterns of spontaneous electrical activity
in the different cell types have a large impact on the in-
tracellular Ca2� dynamics and overall Ca2� levels. Simul-
taneous measurements of membrane potential and [Ca2�]i

showed that the bulk Ca2� levels are low in spontaneously

spiking gonadotrophs (20 to 70 nM), whereas they are
much higher (300 to 1200 nM) and clearly oscillatory in
spontaneously bursting lactotrophs and somatotrophs
(184, 291) and GH3B6 cell line (296). Others also ob-
served high-amplitude spontaneous Ca2� transients in so-
matotrophs (186), lactotrophs (94), corticotrophs (320),
and GH and AtT-20 cell lines (96, 125, 321–323). Rhyth-
mic bursts of Ca2� transients were also observed in acute
anterior pituitary slices (324). The pattern of Ca2� sig-
naling also varies among cells of the same origin. For ex-
ample, the light fraction of lactotrophs was found to have
higher basal PRL release and this is correlated with high
[Ca2�]i and the presence of spontaneous Ca2� transients,
as well as a depolarized (� �45 mV) resting potential and
spontaneous electrical activity. In contrast, the heavy frac-
tion of lactotrophs has a more hyperpolarized resting po-
tential (� �65 mV), and the cells are generally silent with
lower [Ca2�]i levels (325). A similar heterogeneity was
found in porcine somatotrophs, with the low-density so-
matotrophs exhibiting higher basal [Ca2�]i than the high-
density somatotrophs (326).

The difference in the patterns of Ca2� transients be-
tween cells firing single APs and those exhibiting pseudo-
plateau bursting is reflected in the dynamics of Ca2� chan-
nel activation and in the spatial distribution of Ca2�

within the cell. Both large-amplitude spikes and bursts
depolarize the membrane sufficiently to activate the var-
ious types of Ca2� channels expressed in pituitary cells
(70, 104). However, Cav channels are open for a short time
during the short duration of a gonadotroph AP, and as a
consequence the elevated Ca2� concentration is localized
to nanodomains that form at the inner mouth of open
channels. With the longer duration and smaller amplitude
of somatotroph/lactotroph bursts, channels stay open
longer and significant Ca2� entry occurs throughout the
burst, which lasts several seconds. A global Ca2� signal is
produced because individual Ca2� nanodomains overlap,
producing a global signal that is easily resolved with flu-
orescent Ca2� dyes such as fura-2, as shown by confocal
measurements in pituitary somatotrophs (214). Thus, the
Ca2� influx summed over time is much greater during
bursting than during large-amplitude spiking (180).

It is unlikely that Ca2�-induced Ca2� release trough
RyRs contribute to the generation of such global Ca2�

signals in mammalian lactotrophs and somatotrophs
(214, 270), but their contribution in GH4C1 pituitary cell
types should not be excluded at the present time (323). The
most complex pattern of spontaneous Ca2� oscillations
was observed in frog melanotrophs. These cells also ex-
hibit spontaneous Ca2� transients, which are dependent
on Ca2� influx through Cav channels (327, 328). The rise
in Ca2�, however, occurs in a stepwise manner (329), and
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generation of Ca2� transients is abolished in cells in which
the ER Ca2� pump is blocked by thapsigargin (330). It
appears that in these cells spontaneous VGCI is coupled
to Ca2�-induced Ca2� release, presumably through
IP3Rs (331).

2. Dependence of the cyclic nucleotide signaling pathway
on electrical activity

Anterior pituitary cells not only fire APs spontaneously,
but also generate cyclic nucleotides in resting conditions.
Two lines of evidence support the conclusion that basal
AC activity accounts for cAMP production in unstimu-
lated cells. First, in pituitary cells in vitro several inhibitors
of ACs decrease basal cAMP production in cells with in-
hibited PDEs, a family of enzymes that metabolize cyclic
nucleotides (218). Second, basal cAMP production in pi-
tuitary cells in vitro was also inhibited by activation of two
Gi/o-coupled receptors, dopamine D2 and ETA (218, 281).
Unstimulated pituitary cells also generate cGMP due to
basal activity of the nitric oxide synthase-sGC signaling
pathway, as indicated by a concentration-dependent de-

crease in cGMP production in cells
treated with variable nitric oxide syn-
thase inhibitors (332–335). Intracellu-
lar cyclic nucleotide levels in pituitary
cells in resting conditions are controlled
by PDEs (336) and multidrug resistance
proteins, which in pituitary cells oper-
ate as cyclic nucleotide efflux pumps
(224, 332). The relevance of PDEs in the
control of intracellular cyclic nucleotides
in pituitary cells at rest was indicated in
experiments with 3-isobutyl-1-methylx-
anthine, a general inhibitor of these en-
zymes (218, 334), whereas the relevance
of multidrug resistance proteins in the
control of cyclic nucleotide intracel-
lular levels at rest was suggested based
on experiments with probenecid, an
inhibitor of this pump (224, 332).

Inmanycell types,Ca2� andcyclicnu-
cleotide signalingpathwaysare tightly in-
terconnected at the level of intracellular
messenger generation and at the level of
their intracellular effectors. That is also
thecasewithpituitarycells.Figure9sum-
marizes the effects of VGCI on the cyclic
nucleotide signaling pathway in pituitary
cells. Both normal and immortalized GH
pituitary cells express Ca2�-inhibitable
AC, as indicated by the ability of elevated
Ca2� to inhibit cAMP production in rat
brokencells andcellmembranes. In these

experiments, concentrations of Ca2� required for inhibi-
tion of AC activity were in the range observed in intact
pituitary cells, suggesting that spontaneous electrical ac-
tivity may influence cAMP production. In intact pituitary
cells, VGCI also attenuates intrinsic AC activity indepen-
dently of the status of PDEs (218). In GH3 cells, there is an
intimate colocalization of ACs with L-type Cav channels
and capacitative Ca2� entry channels (276). RT-PCR and
Western blot analysis confirmed the expression of Ca2�-
inhibitable AC3, AC5/6, and AC9 in pituitary cells (218).
AC9 is also expressed in AtT-20 cells, and its activation
leads to stimulation of VGCI, which inhibits the enzyme.
The negative feedback effect of Ca2� on the enzyme ac-
tivity is mediated by calcineurin (337).

The nitric oxide synthase-sGC signaling pathway is
also modulated by Ca2� influx through Cav channels. Pi-
tuitary cells express neuronal and endothelial nitric oxide
synthase, which require spontaneous VGCI for their ac-
tivation. This in turn results in nitric oxide-dependent
stimulation of sGC (333, 334). In pituitary cells, there is

FIG. 9. Dependence of the cyclic nucleotide signaling pathway on Ca2� influx through Cav

channels. Calcium stimulates the activity of several adenylyl cyclases, PDE1, and nitric oxide
synthase (NOS) in a calmodulin (CaM)-dependent manner (continuous lines). It also inhibits
some adenylyl cyclase isozymes and sGS directly (dotted lines). Changes in the resting
membrane potential affect the multidrug resistance protein (MRP)-mediated cyclic nucleotide
efflux. PKG, Protein kinase G; LPS�IFN, lipopolysaccharide and interferon.
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also Ca2�-independent and cAMP/PKA-dependent acti-
vation of sGC (299, 333). In contrast, facilitation of VGCI
in high K�-depolarized pituitary cells leads to inhibition of
sGC activity, suggesting that Ca2� also serves as a negative
feedback to break the stimulatory action of nitric oxide on
enzyme activity in intact pituitary cells (335). It is also well
established that Ca2� plays important roles in the control
of PDE-1 activity in other cells types. Roles of these en-
zymes in the control of cyclic nucleotide signaling have not
been systematically investigated in pituitary cells.

The excitability of pituitary cells may also influence
multidrug resistance protein-mediated cyclic nucleotide
efflux. In normal and GH3 pituitary cells, abolition of Nab

conductance by complete or partial replacement of extra-
cellular Na� with organic cations or sucrose not only in-
duces a rapid and reversible hyperpolarization of cell
membranes and inhibition of AP firing, but also rapidly
inhibits cyclic nucleotide efflux. Valinomycin-induced hy-
perpolarization of the plasma membranes also inhibits cy-
clic nucleotide efflux, whereas depolarization of the cell
membrane facilitates cyclic nucleotide efflux. In contrast
to AC and sGC, AP-driven Ca2� influx is not coupled to
the control of the cyclic nucleotide efflux pump activity. It
appears that changes in the resting membrane potential
not only influence steady-state Ca2� influx through Cav

channels and switches the pattern of firing between TTX-
sensitive and dihydropyridine-sensitive channels, but also
represents the signal for changes in cyclic nucleotide pump
activity (224).

3. AP-secretion coupling
Neurotransmitter and hormone secretion is a process of

synthesis and release of proteins out of the cell. The path
of a protein destined for secretion has its origins in the
rough ER, and the protein then proceeds through the
many compartments of the Golgi apparatus before ending
up in small secretory vesicles containing neurotransmit-
ters (neurons) and large dense-core vesicles (also known as
secretory granules) containing hormones (neuroendocrine
and endocrine cells). Biogenesis of both types of secretory
vesicles (formation of immature vesicles and their remod-
eling to form mature secretory vesicles) was followed over
a significant distance, using actin- and the microtubule-
based cytoskeletons along with several motor proteins.
Vesicles in the reserve pool are loosely tethered to the
plasma membrane, whereas those that are docked are held
within a bilayer’s distance from the plasma membrane
(�5–10 nm for synaptic vesicles). Stable docking probably
represents several distinct, molecular states: the molecular
interactions underlying the close and tight association of
a vesicle with its target may include the molecular rear-
rangementsneeded to triggerbilayer fusion.Tetheringand
docking of a vesicle at the target membrane precedes the

formation of a tight core SNARE complex, a step called
priming. Vesicle fusion is driven by SNARE proteins,
which when triggered cause the vesicle membrane to
merge with the plasma membrane, releasing the neuro-
transmitters/hormones into the synaptic cleft (for neu-
rons) or extracellular space (for hormones). The traffick-
ing of secretory vesicles toward the plasma membrane and
their fusion with the plasma membrane is termed exocy-
tosis (338).

In general, this process can occur in the absence of stim-
uli (constitutive exocytosis), or in response to stimuli (reg-
ulated exocytosis). The main difference between consti-
tutive and regulated exocytosis is in the last two steps of
exocytosis. In neuronal and endocrine exocytosis, there is
priming of secretory vesicles, including all of the molecular
rearrangements and ATP-dependent protein and lipid
modifications taking place after the initial docking of a
synaptic vesicle but before fusion, and a rise in [Ca2�]i is
needed to trigger nearly instantaneous neurotransmitter
release. In other cell types, whose secretion is constitutive
(i.e., continuous, Ca2�-independent, nontriggered), there
is no priming and no need for elevation in [Ca2�]i to com-
plete fusion of secretory vesicles. In cells secreting by reg-
ulated exocytosis, not only VGCI but also GPCR-medi-
ated Ca2� mobilization from the ER can initiate vesicle
release. Other signaling molecules triggered by activation
of GPCRs also contribute to the control of hormone re-
lease by exocytosis, suggesting that the term stimulus-se-
cretion coupling is more appropriate for regulated exocy-
tosis, independent of the pathways involved (338–340).
Here we will use the term AP secretion coupling to focus
on the role of spontaneous electrical activity and the ac-
companying VGCI in hormone secretion by endocrine pi-
tuitary cells.

Pituitary cells secrete hormones in a Ca2�-regulated
manner. Calcium plays several roles in this process, in-
cluding priming of secretory granules, and triggering of
granule exocytosis (101, 341–343). The last step has a low
Ca2� affinity and requires an elevation of intracellular
Ca2� that results from the opening of Ca2� channels or
release of Ca2� from intracellular stores (which does not
occur in unstimulated pituitary cells). Early experiments
by Douglas and Shibuya (344) showed that removal of
Ca2� and blockade of L-type Cav channels by dihydropy-
ridines diminish �-MSH release, whereas facilitation of
VGCI by high K�-induced depolarization of cells facili-
tated hormone release. Our early experiments also showed
that removal of bath Ca2� and addition of nifedipine re-
duced [Ca2�]i and diminished GH and PRL release (345).
However, we were unable to observe any significant
changes in basal release of LH, FSH, TSH, and ACTH. In
contrast, high K�-induced depolarization and the conse-
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quent Ca2� influx stimulated secretion of all six hormones
in a mixed population of pituitary cells (345). These obser-
vations could suggest that only melanotrophs, lactotrophs,
and somatotrophs exhibit spontaneous firing of APs.

However, as discussed above, all endocrine pituitary
cells are excitable. More recently, we showed that lac-
totrophs, somatotrophs, and gonadotrophs from the same
preparation exhibit spontaneous firing of APs, but only in
somatotrophs and lactotrophs is the spontaneous electri-
cal activity coupled to hormone secretion (184). Specifi-
cally, in perifused pituitary cells, the level of basal secre-
tion of PRL from lactotrophs and GH from somatotrophs
is high, whereas basal secretion of LH from gonadotrophs
is negligible, although these cells also exhibit spontaneous
activity. The near absence of secretion from gonado-
trophs, even in the presence of electrical activity, is in con-
trast with neurotransmitter release from synapses, where
single APs are typically effective at evoking release. In the
case of the synapse, there is spatial colocalization of Ca2�

channels and secretory vesicles, so that single Ca2� nan-
odomains are capable of evoking release (346). Such ex-
treme colocalization is not present in endocrine and neu-
roendocrine cells, so secretion is evoked by the overlap of
many Ca2� nanodomains. This is well illustrated in ex-
periments with melanotrophs, in which all classes of Cav

channels couple with equal efficiency to exocytosis (347).
The difference in basal secretion between gonado-

trophs and lactotrophs/somatotrophs is likely due to the
very different basal levels of [Ca2�]i and the location of
release sites relative to Ca2� channels. In the presence of
Bay K 8644, the duration of single APs in gonadotrophs is
prolonged, resulting in larger [Ca2�]i transients and ini-
tiation of LH release (184). On the other hand, in soma-
totrophs, conversion of pseudo-plateau bursts to single
APs by BK channel blockade reduced spontaneous Ca2�

influx (185). Similarly, single APs evoke only a small
amount of secretion from chromaffin cells, whereas pro-
longed depolarization induces massive secretion (348). So
the much higher basal level of [Ca2�]i in lactotrophs and
somatotrophs compared with gonadotrophs leads to the
higher basal hormone secretion in these cells. Indeed,
blockage of Ca2� channels with nifedipine reduces basal
secretion from lactotrophs and somatotrophs to levels
similar to the basal secretion level from gonadotrophs
(184). The dependence of basal GH secretion on the am-
plitude of spontaneous Ca2� transients is nicely shown in
measurements of [Ca2�]i by imaging microscopy and GH
secretion by plaque assay in the same cells (186). The same
study also showed that the amount of GH released cor-
relates with both the amplitude and the frequency of Ca2�

transients. The L-type Cav channels and Kir channels play
a critical role in the frequency control of Ca2� transients

and PRL release (125). Single-cell recordings of secretion
in lactotrophs using single green fluorescent atrial natri-
uretic peptide-labeled secretory vesicles and FM 4-64 re-
vealed that basal hormone release, also known as spon-
taneous secretion, is slow compared with stimulated
exocytosis, which occurs rapidly. The authors also ob-
served differences between two secretion modes in lac-
totrophs, both in terms of kinetics and in the rates of load-
ing and discharge of the two probes (349).

V. Signaling by Gap Junction Channels

Pituitary cells are not randomly distributed throughout
the gland but are highly organized in three-dimensional
network structures. Folliculostellate cells make the most
impressive network (350). In rodents, this network starts
to develop 10 d after birth and is fully developed by the
peripubertal period (351). The GH-producing cells also
form a network shortly after GH-expressing cells are
formed (embryonic d 16), and this network undergoes
profound changes, especially during puberty (352). Dif-
ferent contact and signaling molecules could contribute to
the formation of these networks, including cadherins
(353). Such networks provide the basis for coordinating
the activities of different members of the endocrine pitu-
itary population. There are two mechanisms for commu-
nication between cells: electrical and chemical. The first
requires cells to be coupled through low resistance path-
ways suchasgap junctions.The secondrequires the release
of chemical transmitters, which act as agonists for recep-
tors expressed in electrically interconnected (autocrine
mode of regulation) and neighboring cells (paracrine
mode of regulation). In this section, we discuss the expres-
sion of gap junction proteins in pituitary cells, and in Sec-
tions VI–VIII, we focus on receptor channels and GPCRs.

The cytoplasmic compartments of neighboring cells are
frequently connected by gap junctions, which are clusters
of intercellular channels that form a cytoplasmic bridge
between adjacent cells to allow for the cell-to-cell transfer
of ions, metabolites, and small messenger molecules, in-
cluding Ca2�, ATP, cAMP, cADP ribose, and IP3. Thus,
gap junction channels provide an effective mechanism for
electrical, Ca2�, and metabolic coupling, depending on
the size of the pore. Vertebrate intercellular channels are
made up of a multigene family of conserved proteins called
connexins. The invertebrate gap junction channels, called
innexins, have no detectable sequence homology with ver-
tebrate gap junctions, although they exhibit similar func-
tions and membrane topology. Recently, another family of
junctional coupling proteins, called pannexins, has been
identified in mammals. These channels have low sequence
homology, but general structure similarity, to a family of

Endocrine Reviews, December 2010, 31(6):845–915 edrv.endojournals.org 867



innexins. The gap junction proteins show identical mem-
brane topology: four TM domains connected by two ex-
tracellular loops and one intracellular loop with both N
and C termini in the cytosol. Such structure is essential for
the formation of hexameric pore complexes termed
hemichannels, which are large, nonselective ion channels
expressed in the plasma membrane before their assembly
into gap junctions (354).

A. Connexins
Mammalian connexins are encoded by a gene family of

20 members. Six connexin subunits assemble in a circle to
form hemichannels known as connexons in the plasma
membrane that can dock to another hemichannel in the
plasma membrane of an adjacent cell to form an intercel-
lular channel that spans the gap between the two cells.
Hemichannels can contain a single type of connexin (ho-
momeric), or multiple connexins (heteromeric) to form the
hemichannel pore, and two identical connexons or differ-
ent connexons can join to form either homotypic or het-
erotypic intercellular channels, respectively. The presence
of heteromeric connexins and heterotypic intercellular
channels can produce a diverse group of structurally dif-
ferent intercellular channels, with different permeabilities
and/or function. A variety of other factors, including
membrane potential, Ca2�, pH, and phosphorylation of
channels, can modulate gap junction channels. Several
neurotransmitters and hormones, such as dopamine, ace-
tylcholine, GABA, and estrogens, have also been found to
alter intercellular channel activity. Because of the large size
of the channel pore, several diffusible second-messenger
molecules are potential candidates for mediating the prop-
agation of intercellular Ca2� waves via gap junctions, in-
cluding IP3 and Ca2� itself (355, 356).

Gap junctions in the anterior pituitary were initially
shown by Fletcher et al. (5). Subsequent studies have re-
vealed that gap junctions are formed between folliculos-
tellate cells and that the number of gap junctions increases
with the developmental increase in the number of these
cells. Other physiological and experimental conditions
also influence the gap junction connections of the follicu-
lostellate cells (56, 357, 358). Electrical coupling between
some, but not all, folliculostellate cells was observed
(359). The network of these cells participates in the long
distance conduction of information in intact anterior pi-
tuitary cells, which involves Ca2� (350). It has also been
suggested that the gap junction-mediated network of fol-
liculostellate cells provides messages necessary for the hor-
mone release by anterior pituitary cells (357).

Northern blot analysis and immunostaining studies
indicated the expression of connexins 26, 32, and 43 in
pituitary cells (360), and localization of connexin 43 in
folliculostellate cells and pituicytes (361). In mink anterior

pituitary, changes in connexin 43 expression in folliculos-
tellate cells are associated with seasonal changes in PRL
content (362). TGF�3 may act on folliculostellate cells to
increase gap junction communication, resulting in stimu-
lation of fibroblast growth factor by these cells (363). Lo-
cally produced adenosine stimulates connexin 43 expres-
sion and gap junctional communication in folliculostellate
cells (364). In a folliculostellate cell line, proinflammatory
cytokines also modulate the level of connexin 43 expres-
sion (365), and TNF-� causes cell uncoupling mediated by
connexin 43 dephosphorylation (366). The recent devel-
opment of the S100b-GFP transgenic rat with expressed
green fluorescent protein specifically in folliculostellate
cells in anterior pituitary will facilitate further work on the
relevance of this network in pituitary cell functions (367).

It has also been suggested that the endocrine anterior
pituitary cells could be coupled by gap junctions. In a
hypothalamo-pituitary slice preparation from the tilapia
fish, electrotonic coupling between neighboring cells was
detected, as well as diffusion of Lucifer Yellow between
cells. Such coupling was observed in about one third of the
cells (368). Diffusion of Lucifer Yellow was also observed
in intact anterior pituitary cells up to 300 �m apart from
its site of induction. In addition to folliculostellate cells,
coupling was also observed between lactotrophs and so-
matotrophs (369). This conclusion was confirmed using
[Ca2�]i measurements by real-time confocal imaging in
pituitary slices and halothane, a gap junction blocker. It
appears that somatotrophs in pituitary slices are either
single units or arranged in synchronized gap junction-
coupled assemblies scattered throughout the anterior
lobe (370).

B. Pannexins
Pannexins are a three-member family of channels. Un-

like connexins and innexins, homomeric pannexin 1 hex-
amers do not form gap junctions when expressed in mam-
malian cells but operate as hemichannels (371). They are
activated by membrane depolarization, mechanical stress,
and in a receptor-dependent manner. The channel pore is
permeable to ions, small molecules, and metabolites up to
1 kDa, including ATP, ADP, nicotinamide adenine dinu-
cleotide, cyclic nucleotides, and IP3. Such wide permeabil-
ity probably accounts for their numerous nonjunctional
functions in variable cell types (372, 373). ATP-gated
P2X7 receptor channels are the potential partners in
Panx1-mediated signaling (374, 375). However, the de-
tails regarding the association of pannexin 1 with puri-
nergic receptors and their modes of interaction have not
been clarified. This includes a lack of information regard-
ing the specificity of physical associations between puri-
nergic receptors and pannexins. Recently, it has been
shown that rat anterior pituitary cells expressed pannex-
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ins 1 and 2 but not pannexin 3. The mRNA transcripts for
two novel pannexin 1 splicing isoforms were also identi-
fied in pituitary cells. Heterologous expression of the three
pannexin 1 isoforms and pannexin 2 formed homomeric
and heteromeric complexes in any combination. All three
pannexin 1 isoforms physically associate with several
ATP-gated (purinergic) receptor (P2XR) channels, which
are expressed endogenously in pituitary cells (376).

VI. Signaling by Receptor Channels

The pattern of electrical activity in single pituitary cells is
also modulated by chemical signals. These signals act as
ligands or agonists for specific plasma membrane recep-
tors expressed in pituitary cells. Many of these agonists are
delivered by hypothalamic neurons and are released into
the posterior lobe or into the hypophyseal portal systems.
Other agonists are secreted by pituitary cells and act in
autocrine and paracrine manners. Agonists can also reach
the pituitary cells through the general blood circulation.
There are several classes of stimuli, including neurotrans-
mitters, hormones, eicosanoids (metabolites of arachi-
donic acid), growth factors, and chemokines. Four groups
of receptors recognize these agonists: extracellular ligand-
gated ion channels (receptor channels), GPCRs, enzyme-
linked receptors (receptor tyrosine kinases, natriuretic
peptide receptors, cytokine receptors, and intracellular
enzyme-containing receptors), and intracellular steroid re-
ceptors. There are other channels that are activated or
modulated by ligands, such as IP3Rs and RyRs that are
expressed in the ER membrane (see Section III.C) and
cyclic nucleotide-regulated channels of the plasma mem-
brane (see Section III.A.6), and they are known as intra-
cellular ligand-gated ion channels. In this section, we re-
view the literature on the role of receptor channels in
electrical activity, whereas the role of GPCRs in electrical
signaling is summarized in Sections VII and VIII. Pituitary
cells also express the enzyme-linked receptors and the in-
tracellular steroid receptors, but their roles in electrical
activity and Ca2� signaling have not been systematically
investigated and will not be reviewed here.

Receptor channels contain two functional domains: an
extracellular domain that binds an agonist, and a TM do-
main that forms an ion channel. Because these proteins
combine transmitter binding and channel functions into a
single molecular entity, they are also called ionotropic re-
ceptors. The agonists for these channels are acetylcholine,
GABA, glycine, 5-HT, glutamate, and ATP. Based on ion
conductivity, receptor channels are divided into two class-
es: the excitatory cation-selective channels, operated by
acetylcholine, glutamate, 5-HT, and ATP; and the anion-
selective channels, activated by GABA and glycine, which

are usually inhibitory. With the exception of glycine, these
agonists can also activate so-called metabotropic recep-
tors, which belong to the family of GPCRs. These recep-
tors do not have an ion channel as a part of their structure,
but they can affect channel activity through one or several
metabolic steps (see Sections VII and VIII).

From a structural point of view, receptor channels be-
long to three families of evolutionary related proteins
(377, 378). The acetylcholine, 5-HT, GABA, and glycine-
activated receptor channels are grouped as one family,
known as ligand-gated ion channels of the Cys-loop fam-
ily. These channels are composed of five subunits (pen-
tamers), each of which contributes to the ionic pore. All
subunits have a large extracellular N-terminal region fol-
lowed by four hydrophobic TM segments and an extra-
cellular C terminus (379). The second family represents
glutamate-activated receptor channels, which are also
composed of four TM segments, but their TM2 segment
forms a pore-loop structure, entering and exiting the cell
membrane from the intracellular side. Thus, the N termi-
nus is extracellularly located, whereas the C terminus is
intracellularly located and is regulated by signaling mol-
ecules, including the kinases. A detailed analysis of the
intrasubunit interactions that govern glutamate-receptor
assembly indicates that these channels are dimers of
dimers (380). The third family is known as P2XR chan-
nels. Members of this family have only two TM do-
mains, with the N and C termini facing the cytoplasm.
As with acetylcholine and glutamate channels, the func-
tional diversity of P2XR channels is generated by sub-
unit multimerization. The functional channels are com-
posed of three subunits (381).

A. Cys-loop family of receptor channels

1. Nicotinic acetylcholine receptor channels
Acetylcholine is an agonist for two classes of membrane

receptors: muscarinic and nicotinic acetylcholine recep-
tors. Muscarinic receptors belong to the GPCR superfam-
ily of receptors. There are five subtypes of these receptors,
termed M1–M5; the M1, M3, and M5 receptors signal pre-
dominantly through the Gq/11 pathway, whereas M2 and
M4 receptors are coupled to the Gi/o signaling pathway
(382). Nicotinic acetylcholine receptors (nAChRs) are a
family of acetylcholine-gated channels. The nAChRs are
more diverse, with genes encoding a total of 17 identified
subunits that can assemble into a variety of pharmacolog-
ically distinct receptor subtypes. Muscle types of nAChRs
are located postsynaptically at the neuromuscular junc-
tions, where they mediate fast synaptic transmission of
electrical signals from motor neurons. Neuronal types of
nAChRs are expressed in the central and peripheral ner-
vous system and are distributed post-, pre-, and perisyn-
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aptically. The pore of activated channels is permeable to
Na� and K� and, for some neuronal subtypes, to Ca2�

(383, 384).
The role of acetylcholine as a putative autocrine factor

has been relatively well established in intermediate pitu-
itary functions. Acetylcholine is released from frog mela-
notrophs onto M1 receptors (385) and stimulates electri-
cal activity and �-MSH release (386, 387). Functional
nAChRs are described in porcine intermediate pituitary
cells at both the whole-cell and single-channel levels (388).
These channels are depolarizing, and their activation leads
to facilitation of Ca2� influx directly through the pore of
the channel and indirectly by activating Cav channels
(389). The possibility that nAChRs are cross-coupled to
the PLC signaling pathway has also been proposed (390),
whereas the role of these channels in secretion has not been
studied. Denef’s laboratory (391) also suggested that ace-
tylcholine acts as a paracrine factor in the anterior pitu-
itary. This group observed that immunoreactivity for
choline acetyltransferase, the enzyme catalyzing the bio-
synthesis of acetylcholine, was present in anterior pitu-
itary cells and that acetylcholine was released by high K�-
depolarized pituitary cells. They further showed that
acetylcholine stimulates secretion by corticotrophs and
the corticotroph cell line AtT-20 through activation of
nAChRs (4). The structure of nAChRs, their biophysical
and electrophysiological properties, and Ca2� signaling
function have not been studied in the anterior pituitary
cells.

2. 5-Hydroxytryptamine receptor (5-HT3R) channels
The neurotransmitter 5-HT is a native agonist for seven

receptors. Six of these are heteromeric GPCRs, whereas
the 5-HT3R operates as a receptor channel (392). The
5-HT3R exists as a pentamer of four TM subunits that
form a cationic-selective channel. Three 5-HT3 subunits
(5-HT3A, 5-HT3B, and 5-HT3C) have been cloned, but
only homomeric 5-HT3A and heteromeric 5-HT3A�3B

form functional receptors when expressed in heterologous
systems. A short form of the 5HT3A subunit was also iden-
tified, but this splice form does not differ physiologically
from the full-size channel. Homomeric and heteromeric
channels mediate a rapidly activating, desensitizing, in-
ward current that predominantly carries Na� and K�.
Some forms are also permeable to Ca2� (393). 5-HT3Rs
are expressed throughout the central and peripheral ner-
vous systems, where they mediate a variety of physiolog-
ical functions. The receptors are also involved in informa-
tion transfer in the gastrointestinal tract, and in the enteric
nervous system they regulate gut motility and peristalsis
(394). The hypothalamic actions of 5-HT and its recep-
tors, including the control of PRL, gonadotropin, CRH,
AVP, and oxytocin release, are well characterized (re-

viewed in Refs. 54 and 395). Inaddition,5-HT3Rsare likely
to be expressed in the fish pituitary and to play important
roles in signaling and secretion (396). It has also been sug-
gested that functional 5-HT3Rs are expressed in mammalian
pituitary cells in culture and L�T3 cell lines. The evidence
includes RT-PCR analysis and pharmacological studies on
basal and agonist-stimulated LH and ACTH release, but not
the electrophysiological characterization of 5-HT3R current
and its role in signaling (397–400).

3. GABA receptor channels
GABA acts as a neurotransmitter through three struc-

turally and pharmacologically distinct classes of recep-
tors: G protein-coupled GABAB receptors and ligand-
gated GABAA and GABAC chloride channels. There are
two GABAB subunits, and functional receptors are prob-
ably heterodimers; the specific agonist for these receptors
is baclofen (401). To date, 16 different GABAA subunits
(�1-6, �1-3, �1-3, �, �, �, and 	) have been cloned and
sequenced from the mammalian nervous system. Addi-
tional variants arise through alternative splicing (402).
The GABAA receptor is a pentameric assembly derived
from a combination of various subunits. The preferred
combination includes two �-, two �-, and one �-subunit.
However, the colocalization of these three types of sub-
units is not an absolute requirement for the formation of
functional channels. The great diversity of receptor sub-
units leads to profound differences in tissue distribution,
ontogeny, pharmacology, and regulation of GABAA re-
ceptors. These receptors are targets for many drugs in wide
clinical use, including benzodiazepines, barbiturates,
neurosteroids, ethanol, and general anesthetics, which
increase the conductance through the pore of the chan-
nels. A specific agonist is muscimol, and a specific
blocker is bicuculline (403, 404). The molecular com-
ponents of GABAC receptors are 
1-3 subunits, which
form functional channels without assembling with
GABAA-� and -�-subunits. These receptors are specif-
ically activated by (�)-cis-2-aminomethylcyclopropane
carboxylic acid (405).

GABAA/C channels are chloride ion channels, and the
nature of their actions depends on the [Cl�]i. In the ma-
jority of adult neurons, [Cl�]i is low and activation of
GABAA/C channels leads to hyperpolarization of the cell
membrane and silencing of electrical activity. In develop-
ing neurons, however, [Cl�]i is relatively high and GABA
channels are depolarizing, leading to facilitation of elec-
trical activity and VGCI. Chloride homeostasis in most
brain cells is controlled by two electrically neutral cation/
chloride cotransporters, called NKCC1 and KCC2. The
ubiquitously expressed NKCC1 derives energy from the
electrochemical gradient for Na� to take up Cl�, whereas
KCC2 uses the K� gradient to facilitate Cl� extrusion
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(406). The developmental switch from GABA excitation
to inhibition could be determined by down-regulation of
NKCC1 and up-regulation of KCC2 transporters (407).

All three GABA receptor subtypes are expressed in the
pituitary gland (408–410). High radioactivity was de-
tected in pituitary cells 3–6 min after injection of 14C-
GABA (411), and specific [3H]muscimol binding sites
were also identified in membranes from rat anterior pitu-
itary cells (408, 412). The RT-PCR analysis indicated the
presence of �1, �4, �1, �2, �3, and �2-subunits in a mixed
population of anterior pituitary cells (409, 412–414).
More recently, mRNA transcripts for �2, �3, �5, �6, �1,
�3, 	, �, �, and �-subunits were found in anterior pituitary
cells, and the expression of �3, �5, and �6 mRNAs was
somewhat lower. Immunocytochemical studies further
showed the expression of �1- and �1-subunit proteins in all
secretory anterior pituitary cells (414). Immunohistochemi-
cal labelingrevealed that frogmelanotrophs in situand incell
culture were intensely stained with �2, �3, �3, and �2/�3-
subunits (415). Thus, the whole repertoire of mRNAs
for GABAA receptor subunits is present in the pituitary
gland, providing the possibility for variable and cell
type-specific combinations of subunits into pentamers.

There have been contradictory reports about the nature
of GABA actions in pituitary cells. Earlier studies sug-
gested that GABA inhibits PRL release in vitro. It has also
been reported that muscimol inhibits PRL release in vitro
and that bicuculline and picrotoxin block the action of
GABA and muscimol, suggesting the presence of hyper-
polarizing GABAA receptors in these cells and their po-
tential inhibitory role in VGCI and secretion (for refer-
ences, see Ref. 414). Inhibitory effects of GABA on �-MSH
secretion from the intermediate lobe and on AVP and oxy-
tocin from the posterior pituitary were also reported by
several laboratories (for references, see Ref. 416). Con-
trary to these findings, GABA and muscimol were found
to stimulate, rather than inhibit, secretion of ACTH, GH,
LH, and TSH from pituitary cells in vitro (417–419). It has
also been shown that GABA increases [Ca2�]i in a major-
ity of the anterior pituitary cells, including lactotrophs,
gonadotrophs, and �T3-1 cells. This effect is mimicked by
muscimol, antagonized by picrotoxin, and abolished by
removal of extracellular Ca2� (414, 420, 421). In frog
melanotrophs, GABA also stimulates Ca2� influx and
�-MSH release (422). Augmentation of exocytosis and the
depolarizing effect of GABA at high [Cl�]i has also been
documented in melanotrophs from mouse pituitary tissue
slices (236) and frogs (284, 423). Stimulation of GABAC

receptors in somatotrophs also increases [Ca2�]i (424),
further supporting the view that GABA receptors in the
majority of pituitary cells are depolarizing, leading to
stimulation of VGCI.

Electrophysiological measurements provided more
conclusive evidence for the expression of GABAA chan-
nels. The GABA-induced activation of a chloride current
with pharmacological properties of GABAA receptors was
initially shown in bovine lactotrophs (425), frog mela-
notrophs (426), and neonatal rat anterior pituitary cells
(427). GABA-induced currents were also detected in pos-
terior pituitary nerve terminals (416, 428). It has also been
suggested that the activity of GABAA channels depends on
the status of sGC activity in frog melanotrophs (429). To
clarify whether GABA-induced current is depolarizing or
hyperpolarizing, it is essential to preserve [Cl�]i, which
was done in intermediate and anterior pituitary cells using
gramicidin-perforated patch clamp recordings. These ex-
periments showed that the reversal potential of GABA cur-
rent is positive to the resting membrane potential, indicating
that [Cl�]i in the majority of pituitary cells from adult ani-
mals is elevatedandthatactivationofGABAA channels leads
to Cl� efflux causing depolarization. GABA-induced depo-
larization of pituitary cells was associated with either an in-
crease in the frequency of APs in spontaneously firing cells or
a sustained depolarization (284, 414).

In accordance with these results, the expression of
NKCC1 in postpubertal anterior pituitary cells is high,
whereas mRNA expression for KCC2 (if present) is low
(414), and imaging studies suggested that [Cl�]i in lac-
totrophs is around 50 mM (231). In posterior pituitary
nerve endings, however, [Cl�]i was estimated to be around
20 mM, and the GABAA current is hyperpolarizing (416).
The contradiction in the field about the nature of GABA
actions in anterior pituitary cells might be explained in
part by the presence of GABAB receptors, because their
activation leads to inhibition of spontaneous electrical ac-
tivity and basal AC activity (402), and both Ca2� and
cAMP regulate exocytosis in these cells (343, 430–432).

Although the majority of cells in the anterior and in-
termediate lobes express GABA receptors and their in
vitro activation triggers substantial Cl� influx and alters
the pattern of electrical activity, Ca2� signaling, and hor-
mone secretion, the in vivo operation and physiological
relevance of this signaling pathway has not been clarified
(433). In search of a PRL inhibitory factor, Schally et al.
(434) isolated GABA from the hypothalamus. Subsequent
studies showed that GABA is released from tuberoinfun-
dibular and other hypothalamic regions, that concentra-
tions of GABA in portal blood are higher than in periph-
eral blood, and that electrical stimulation of the median
eminence induces a several-fold increase in the rate of
GABA release (435), which could indicate that GABA acts
in the pituitary as a hypothalamic neurohormone. How-
ever, it has also been reported that GABA is synthesized
and released from intermediate and anterior pituitary
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lobes (435–438), which could suggest that GABA acts as
a paracrine factor. At the present time, little information
exists about the mechanism of GABA release in the portal
blood and pituitary. It has been suggested that substance
P modifies hypothalamic GABA release (439) and that
injection of estradiol leads to a several-fold increase in the
intrapituitary GABA concentration (440).

4. Glycine receptor (GlyR) channels
GlyRs are pentameric proteins composed of three

�-subunits and two �-subunits. In contrast to other mem-
bers of this group of receptor channels, GlyRs do not have
a counterpart in the GPCR receptor family. There are four
isoforms of �-subunits, which have highly homologous
sequences but different pharmacological and functional
properties, and alternative splicing of �-subunits further
increases GlyR heterogeneity. The �-subunit contains the
ligand-binding site and is sufficient to form a functional
homomeric channel, whereas the �-subunit modulates the
pharmacological and conductance properties of the
GlyRs. There are many similarities between GABAA and
GlyRs, including ion selectivity, which arise from their
close and conservative evolutionary relationship. As with
GABAA/C receptors, the direction of the flux depends on
the electrochemical gradient for Cl�. In contrast to
GABAA/C receptors, GlyRs are not expressed in the ante-
rior pituitary. However, there are reports on the expres-
sion of these receptors in the nerve endings in posterior
pituitary cells and their activation by taurine, a GABA-like
amino acid that is released by pituicytes (441, 442).

B. Glutamate receptor channels
L-Glutamate is the major excitatory neurotransmitter

in the CNS, acting as an agonist for eight members of
GPCRs (443) and receptor channels, each encoded by 18
genes that assemble to form four major subtypes: AMPA
(�-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid); kainate; NMDA (N-methyl-D-aspartate); and � re-
ceptor channels. Molecular cloning has revealed several
subunits for each receptor group. Four AMPA receptor
genes (GluR1–GluR4) denote the AMPA-sensitive family,
whereas five kainate receptor genes (GluR5–GluR7, KA1,
and KA2) make up the kainate subclass. For NMDA-re-
ceptor channels, seven subunits (NR1, NR2A–NR2D,
NR3A, and NR3B) have been established. In addition,
two �-subunits exist, belonging to the GluR type, but the
function of this particular subunit is unknown. Finally, the
molecular diversity of NR1 and GluRs is further increased
by variants created by alternative splicing and RNA edit-
ing. In addition to the specific structure and pharmacol-
ogy, NMDA channels exhibit a different excitation be-
havior than the other channel types. These channels are

both ligand- and voltage-gated. Full activation of the
NMDA receptor requires application of two ligands, L-
glutamate and glycine. The NMDA receptors only become
fully activated by glutamate after their Mg2� block has
been relieved by membrane depolarization. Kainate and
AMPA-receptor subunits do not form mixed channel com-
plexes, but both types of receptors can be expressed in the
same neuron. Native AMPA receptors are either homo-
meric or heteromeric oligomers composed of these mul-
tiple subunits (444).

Glutamate has numerous well-established indirect ef-
fects on pituitary hormone secretion by modulating hy-
pothalamic functions (445). In addition, several reports
have suggested that glutamate directly affects cells of the
anterior and intermediate lobes. However, there are some
contradictions in these reports. Initially, it was reported
that glutamate stimulates PRL release in perifused pitu-
itary cells, and this effect is abolished by a selective non-
competitive NMDA receptor antagonist (446). Further
work in this field suggested a dual effect of glutamate on
PRL release, consisting of a stimulatory effect mediated
via receptor channels and an inhibitory effect via GPCRs
(447). Others reported inhibitory effects of kainate and
NMDA on PRL release in static cultures (448). A stimu-
latory effect of glutamate through non-NMDA receptors
on LH release was also reported (449), and kainate-2
mRNA was detected in embryonic rat pituitary tissue
(450). Double immunohistochemistry suggested that only
a fraction (4–11%) of all secretory anterior pituitary cells
express NMDA receptors (451). Single-cell Ca2� mea-
surements showed a glutamate-induced rise in [Ca2�]i in
TRH- and GHRH-responsive rat cells (452). In tilapia
PRL cells, glutamate also induced a rise in [Ca2�]i due to
cell depolarization and activation of Cav channels (453).
No data on the electrophysiological characterization of
glutamate receptor channels in anterior pituitary cells are
available. In contrast, the expression of these receptor
channels in cells from the intermediate lobe was demon-
strated by patch clamp recording of glutamate-induced
current, and pharmacological characterization of these re-
sponses was consistent with the presence of AMPA-type
glutamate channels in these cells (454). Single-cell secre-
tory data confirmed that activation of these channels is
sufficient to trigger �-MSH release (455), whereas ago-
nists specific for glutamate GPCRs were unable to trigger
release of this hormone (456).

C. Purinergic receptor channels
ATP is released by excitable and nonexcitable cells and

acts as an extracellular messenger for two families of pu-
rinergic receptors: seven-TM domain P2Y receptors
(P2YRs) and two-TM domain P2XR channels. The ago-
nist actions of ATP are terminated by several enzymes,
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which hydrolyze ATP to ADP, AMP, and adenosine. ADP
and adenosine also act as extracellular messengers; ADP
activates a few P2YRs but not P2XR, whereas adenosine
acts as an agonist for four G protein-coupled adenosine
receptors (Fig. 10). UTP (uridine-5�-triphosphate), UDP
(uridine-5�-diphosphate), and UDP glucose are also native
agonists for P2YRs. The purinergic signaling pathway is
operative in the hypothalamo-posterior pituitary sys-
tem as well as in the intermediate and anterior pituitary
lobes (457).

P2XRs comprise a family of ATP-gated cation chan-
nels, which are expressed in numerous excitable and non-
excitable cells and play important roles in a variety of
physiological processes. Seven mammalian P2XR sub-
units, termed P2X1–7, and several nonmammalian sub-
units have been identified. Each subunit is composed of
cytoplasmic N and C termini, two TM domains, and a
large extracellular domain; and three subunits are re-
quired for formation of a functional receptor. P2XRs dif-
fer with respect to their ligand-selectivity profiles, antag-
onist sensitivity, and cation selectivity. Their activation
leads to an increase in [Ca2�]i, with Ca2� influx occurring
through the pores of these channels and through Cav chan-
nels after the initial depolarization of cells by P2XR-gen-
erated currents. They can form ion permeable pores
through homo- and heteropolymerization. The P2X7R
also triggers other signaling pathways (458–460).

Single-cell Ca2� measurements were instrumental in
establishing the role of P2XRs in anterior pituitary cells.
These experiments reveal functional P2XRs in all secre-

tory anterior pituitary cell types and raise the possibility
that several subtypes of these channels are expressed in a
cell type-specific manner (reviewed in Ref. 461). However,
this method is of limited use for identifying the receptor
subtypes expressed because the rapidly desensitizing ho-
momeric and heteromeric P2XRs are not able to generate
global Ca2� signals (462). In more recent studies, molec-
ular biology techniques combined with electrophysiology
were used to better understand the structure of P2XRs
expressed in anterior pituitary cells and their downstream
signaling pathways. Quantitative RT-PCR analysis re-
vealed that secretory cells abundantly express P2X2R and
P2X4R, with less expression of other subunits. Western
blot analysis showed the expression of P2X2R, P2X4R,
and P2X7R at the protein level. Cloning experiments
showed that rat anterior pituitary cells express two func-
tional splice forms of the P2X2 subunit, termed P2X2a
and P2X2b (463), and that mouse pituitary cells express
three functional forms of the P2X2R subunit, termed
P2X2a, P2X2b, and P2X2e. The P2X2b and P2X2e sub-
units are missing 69 and 90 residues, respectively, in their
C termini (464). When expressed as homomeric channels,
three splice forms of P2X2R differ in the rate of receptor
desensitization; P2X2eR desensitizes most rapidly, at a
rate comparable to that observed in cells expressing
P2X1R and P2X3R, whereas the rate of P2X2bR desen-
sitization is faster than P2X2a but slower than P2X2e
receptors (464). Deletions in the C terminal of P2X2aR
also effectively reduced the peak amplitude and duration
of Ca2� signals, indicating a role of Arg371-Pro376 (P2X2R
numbering) in receptor desensitization (465, 466). The
physiological relevance of these splice forms is in the for-
mation of functional heteromers, which desensitize faster
than full-size receptors but slower than the homomeric
splice receptors. This in turn limits excessive ion influx but
does not terminate signaling during prolonged agonist
stimulation (467).

Functional P2X2Rs are expressed in gonadotrophs and
somatotrophs, but not in other pituitary cell types (463).
In gonadotrophs, their activation leads to firing of APs
along with modulation of the frequency of firing in spon-
taneously active cells, accompanied by elevation in [Ca2�]i

that reflects Ca2� influx through both P2X2R channel
pores and Cav channels (468). The ATP-induced rise in
[Ca2�]i is sufficient to trigger LH release (468, 469). ATP
also influences GnRH-induced current and membrane po-
tential oscillations in an extracellular Ca2�-dependent
manner. These IP3-dependent oscillations are facilitated,
slowed, or stopped depending on ATP concentrations and
the time of ATP application (468). Thus, P2X2R could
contribute to the pacemaking and modulation of GPCR-
controlled electrical activity (468). Mice deficient in

FIG. 10. ATP acts as an extracellular messenger in pituitary cells. The
extracellularly released ATP is hydrolyzed by two enzyme families,
ectonucleotide pyrophosphate/PDE and ectonucleoside triphosphate
diphosphohydrolase, generating ADP and AMP, whereas AMP is
efficiently hydrolyzed by the ecto-5�-nucleotidase family of enzymes,
generating adenosine. ATP is an agonist for two TM domain P2X
receptors (P2XRs) and 7TM domain P2YRs, whereas ADP activates a
few P2YRs but no P2XRs. Adenosine also acts as an agonist for four
GPCRs, called adenosine receptors (ARs). Rectangles indicate receptors
expressed in pituitary cells.
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P2X2R subunit are available and are fertile (470), but
changes in pituitary function in such mice have not yet
been studied.

The biophysical and pharmacological properties of re-
combinant rat P2X4R cloned from the pituitary gland
have also been characterized. This receptor desensitizes
with a rate comparable to that observed in cells expressing
P2X2bR. In contrast to the P2X2R, suramin, pyridoxal-
phosphate-6-azophenyl-2�,4�-disulfonic acid tetrasodium
salt (PPADS), and reactive blue 2 are not effective antag-
onists of P2X4R, but these receptors are sensitive to iver-
mectin, ahighmolecularweight lipophilic compoundused
as an antiparasitic agent in human and veterinary medi-
cine. Ivermectin increases sensitivity of P2X4R to ATP,
amplifies peak current amplitude in response to supra-
maximal agonist concentrations, and delays receptor de-
activation (471). These allosteric actions of ivermectin on
P2X4R were successfully used in structural and functional
characterization of recombinant receptors (471–473).

The PPADS insensitivity of P2XRs in TRH-responsive
cells suggests that lactotrophsand/or thyrotrophs fromthe
anterior lobe express functional P2X4Rs (474). This was
confirmed recently by electrophysiological characteriza-
tion of P2XR current in TRH-responsive cells. Activation
of these channels leads to stimulation of electrical activity
and promotion of voltage-gated and voltage-insensitive
Ca2� influx in these cells. In the presence of ivermectin, the
peak amplitude of the current increases, as well as the
sensitivity of the receptors to ATP, whereas the receptor
deactivation slows. The activation of these receptors
causes depolarization, which is sufficient to increase the
frequency of APs and to initiate spiking in quiescent cells,
as well as to facilitate Ca2� influx through Cav channels.
Calcium influx through the pore of P2X4Rs also contrib-
utes to ATP-induced Ca2� signaling. Ivermectin also en-
hances ATP-induced PRL release, indicating that these re-
ceptors are expressed in lactotrophs (475). Further studies
should clarify whether thyrotrophs also express these
channels and whether there is any change in the status of
electrical activity and Ca2� signaling in pituitary cells
from P2X7�/� animals, which are available (476).

The physiological sources of ATP required for activation
of purinergic receptors in the pituitary gland remain largely
uncharacterized. The magnocellular neurons of the hypo-
thalamus with nerve endings in posterior pituitary also con-
tainATP,andthespecificpatternofAPsoriginating fromthe
cell bodies of these neurons has been suggested to control the
release of this nucleotide (477). The extracellular ATP con-
centration in posterior pituitary can reach 4–40 �M, a con-
centration range sufficient to activate the majority of P2XRs
(478). In addition to its action on nerve terminals of vaso-

pressinergic neurons in the posterior pituitary, released ATP
probably acts on pituicytes (478, 479).

In the anterior pituitary, ATP probably acts as an au-
tocrine/paracrine factor. Normal and immortalized GH3

and �T3-1 pituitary cells release ATP at resting condi-
tions, and such basal ATP release is enhanced in cells
treated with ARL67156, an inhibitor of ectonucleotidases
(480). GnRH-induced stimulation of gonadotropin re-
lease is accompanied by elevation in basal ATP release,
suggesting that ATP is stored in the secretory vesicles of
these cells (469). This is consistent with an earlier study
showing Ca2�-dependent ATP release (247) and modu-
lation of ATP release by PRL secretagogues (481). How-
ever, we did not observe ATP release when PRL release
was evoked by depolarization of perifused pituitary cells
(480), and the amplitude of GnRH-induced ATP release in
perifused pituitary cells is too low to activate endogenous
P2XRs. In other tissues, ABC-binding cassette transport-
ers, pannexins, and P2X7R have been suggested to par-
ticipate in nonvesicular ATP release (482). Interestingly,
anterior pituitary cells express functional multidrug resis-
tance proteins (224, 332) and P2X7R (475, 483), which
could contribute to ATP release.

The action of ATP as an autocrine/paracrine factor is
critically dependent on its rapid metabolism by ectonucle-
otidases, which include members of the ectonucleotide
triphosphate diphosphohydrolase family of enzymes
(E-NTPDase) and ecto-5�-nucleotidase, among others.
Four of eight known E-NTPDases are expressed in the
plasma membrane. These enzymes not only hydrolyze ex-
tracellular ATP and/or ADP to AMP but also metabolize
other nucleotide tri- and diphosphates, including UTP and
UDP, whereas cAMP is hydrolyzed by the ecto-5-nucle-
otidase family of enzymes (484, 485). These enzymes are
also expressed on the plasma membrane of pituicytes and
neurosecretory posterior pituitary terminals (486). Extra-
cellularly applied ATP is rapidly hydrolyzed by the iso-
lated posterior pituitary accompanied by accumulation of
adenosine, suggesting that these enzymes provide a path-
way for the activation of adenosine receptors in this tissue
and termination of ATP-induced vasopressin release
(487). The mRNA transcripts for plasma membrane-lo-
cated E-NTPDases 1, 2, and 3 are also expressed in pitu-
itary tissues, cultured pituitary cells, and �T3-1, AtT-20,
and GH3 cell lines, and normal and immortalized pituitary
cells rapidly metabolize ATP (480). Ecto-5�-nucleotidases
(CD73),whichgenerate adenosine fromAMP,were found
by immunocytochemistry in a fraction of anterior pitu-
itary cells (364). Because anterior pituitary cells express
the ADP-activated P2Y1 receptor and several adenosine-
activated receptors, it is reasonable to suggest a role for
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ectonucleotideases in the sequential activation of puriner-
gic receptors in the anterior pituitary (Fig. 10).

VII. Role of GPCRs in the Regulation of
Electrical Activity

GPCRs are a very large and diverse superfamily of recep-
tors that help define cellular responsiveness to extracellu-
lar signals. They share a common structure of seven
�-helix TM domains with an extracellularly located N
terminus and an intracellularly located C terminus and are
coupled to heterotrimeric G proteins. These G proteins
have �- and ��-subunits, which function as transducers to
relay information to different signaling pathways, such as
the PLC and AC signaling pathways, which operate as
amplifiers by producing intracellular messengers. These
messengers carry information to intracellular sensors and
effectors. Downstream effectors produce one or more ac-
tions, including membrane depolarization/hyperpolariza-
tion, activation/inactivation of membrane Ca2� channels,
mobilization of Ca2� from the ER, and sensitization/
desensitization of the exocytotic machinery. The specific
action initiated by the hormone agonist is determined by

the nature of the GPCR and the cell type
(488, 489). In this section and the fol-
lowing section, we discuss the actions of
GPCRs linked to the Gq/11, Gs, and Gi/

o/z signaling pathways and their impact
on the electrical activity, cytosolic Ca2�

dynamics, and secretion from pituitary
cells. The focus in our review will be on
the role of G proteins, Ca2�, cyclic nu-
cleotides, PKC, and PKA in control of
channel activity, Ca2� signaling, and
secretion. These receptors have numer-
ous other functions, including activa-
tion of the MAPK cascade, which are
not discussed here because of their lim-
ited role in electrical signaling and cal-
cium mobilization.

A. Stimulation of electrical activity
by GPCRs

cAMP is a ubiquitous intracellular
messenger generated by the AC family
of enzymes that regulates numerous cel-
lular responses, including electrical ac-
tivity and VGCI. There are nine plasma
membrane isoforms of these enzymes,
each with two 6TM regions and two
cytosolic domains, C1 and C2, which
contain the catalytic region that con-
verts ATP into cAMP (Fig. 11). The in-

trinsic activity of these enzymes is up-regulated by GPCRs
linked to heterotrimeric Gs proteins and down-regulated
by GPCRs linked to heterotrimeric Gi/o/z proteins. There
are several cAMP signaling effectors: PKA, PDEs, CNG
and HCN channels, and the exchange proteins guanine
nucleotide exchange factors (GEFs) that activate small
GTP binding protein Rap1. PKA is composed of two reg-
ulatory subunits (R) and two catalytic subunits (C) (Fig.
11). Binding of cAMP to the R subunits enables the C
subunits to phosphorylate different substrates, including
the plasma membrane channels. A family of PKA-anchor-
ing proteins determines the cellular localization of PKA.
The cross talk between cAMP and Ca2� is important in the
control of cellular functions. In general, activation of re-
ceptors linked to Gs increases [Ca2�]i by up-regulating
electrical activity. In cells expressing HCN and/or CNG
channels, this occurs through their activation and the sub-
sequent depolarization of the plasma membrane and fa-
cilitation of Cav channel activity. PKA also phosphory-
lates numerous plasma membrane channels, including Cav

channels, leading to facilitation of excitability of cells.
Phosphorylation of other channels, such as Nav, down-

FIG. 11. Pituitary cells express GPCRs that engage the cAMP signaling pathway. Top left, A
small number of neurohormones act through GPCRs coupled to Gs heterotrimeric proteins,
and their �-subunit binds to AC, leading to stimulation of cAMP production. cAMP acts as an
intracellular messenger by directly activating HCN and CNG channels, and indirectly through
PKA. Binding of cAMP to PKA leads to dissociation of the catalytic (C) from regulatory (R)
subunits. The messenger function of cAMP is terminated by PDEs and by efflux of cAMP
mediated by cyclic nucleotide pumps (not shown). Top right, Coupling of several GPCRs
to Gi/o and/or Gz provide an effective mechanism for inhibition of adenylyl cyclase activity
by their �-subunits. In addition to inhibition of the cAMP signaling pathway, these
receptors also modulate electrical activity through �� dimers acting on Kir and Cav

channels (not shown).
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regulates excitability or changes excitability from Na� to
Ca2� spikes (2).

GPCRs linked to the Gs-signaling pathways are oper-
ative in endocrine pituitary cells. The Gs-signaling path-
way in corticotrophs is triggered by hypothalamic CRH
(490). Somatotrophs express two receptors coupled to the
Gs-signaling pathway, GHRH (491) and VIP/PACAP (47).
VIP/PACAP receptors are also present in mammalian mela-
notrophs (492), lactotrophs (54), and folliculostellate cells
(493). Some eicosanoids may also signal through this path-
way in pituitary cells (494). The lack of expression of typical
Gs-coupled receptors in other pituitary cell types does not
mean that the cAMP signaling pathway is not operative.
ThesecellsalsoexpressACs,andtheiractivitiesare regulated
by other mechanisms. This could include the cross-coupling
of other GPCRs to the Gs signaling pathway, as suggested by
stimulation of AC by GnRH receptors in other cell types
(495, 496). VGCI also affects cAMP signaling in pituitary
cells by modulating AC activity (218, 497). Activation of
Gs-linked GPCRs in pituitary cells stimulates electrical ac-
tivity and facilitates VGCI. The type of Ca2� response typ-
ically obtained through this pathway is a plateau elevation of
[Ca2�]i or an increase in the frequency and/or amplitude of
Ca2� transients. The cross talk between Ca2� and cAMP
also exists at effector levels, including the control of exocy-
tosis (see Section VII.B.4).

1. CRH-induced calcium influx in corticotrophs
CRH, also known as CRF, is the main regulator of

ACTH release in normal and immortalized corticotrophs.
It acts on CRH receptors known as CRF-R1 receptors cou-
pled to the Gs signaling pathway, leading to stimulation of
cAMP production (19, 490). One of the main functions of
CRH in corticotrophs is to modulate spontaneous electri-
cal activity and facilitate Ca2� influx; in the absence of
extracellular Ca2�, de novo production of cAMP is not
affected, but CRH-induced ACTH release is completely
blocked. This does not exclude the Ca2�-independent ef-
fects of the cAMP signaling pathway on exocytosis, but it
demonstrates that the modulatory role of this signaling
pathway could be manifested only in the presence of ele-
vated Ca2�. The relevance of this cation in cAMP effects
on secretion is also demonstrated in experiments with
AVP and CRH. AVP stimulates Ca2� mobilization from
the ER in corticotrophs, but alone it is not a very potent
secretagogue. However, in the presence of CRH, secretion
is greatly enhanced by AVP (498).

A key element in the control of spontaneous firing of
APs in pituitary cells, including corticotrophs, is control of
the resting membrane potential and slow membrane de-
polarization, called the pacemaking depolarization. CRH
changes the resting membrane potential and the rate of the
pacemaking depolarization, leading to an increase in the

firing rate of spontaneously active cells and causing silent
cells to become active (293, 320, 499). The slow mem-
brane depolarization is caused in large part by a reduction
in a background K� conductance mediated by a member
of the Kir channel family (294, 500). Depolarization alone
is not sufficient to induce spiking in quiescent cells (499),
and the firing frequency of cells depolarized by CRH is
higher than for corticotrophs depolarized to the same volt-
age level by blocking the Kir current. This indicates that a
small component of the depolarization might be mediated
by the reduction of another type of background K� con-
ductance or facilitation of an inward current (294). A
mathematical model of the corticotroph confirms that de-
polarization induced by blocking a background K� cur-
rent facilitates spiking but cannot by itself trigger AP firing
(501). On the other hand, facilitation of the L-type Cav

current is sufficient for the model to generate spikes or
bursts (501, 761). However, there is no evidence that CRH
receptor activation leads to phosphorylation of these
channels by PKA, as in other cell types. The inward current
is not generated by HCN channels, which are expressed in
AtT-20 cells, but are fully activated by the resting cAMP
levels (209). The background Na� conductance discov-
ered by Simasko and colleagues (80, 297), which is present
in all endocrine pituitary cells (224), could play a major
role in CRH- and GHRH-induced electrical activity and
secretion (discussed in Section VII.A.2).

The inhibition of Kir and associated depolarization and
increase in spike frequency last up to 15 min after removal
of CRH from the physiological solution, suggesting that
phosphorylation of Kir channels could account for this
memory (294). These effects of CRH and their time
courses are mimicked by application of forskolin, an ac-
tivator of AC, and by membrane-permeant analogs of
cAMP (294, 500). No CRH-induced depolarization is ob-
served in the presence of intracellular Rp-cAMPS, a
blocker of PKA (500), confirming that the effects of CRH
on the pacemaking depolarization are mediated through
cAMP activation of PKA. However, some effects of CRH
were resistant to the PKA inhibitor H-89, raising the pos-
sibility that CRH might act through an additional G pro-
tein pathway (499, 502).

Cav channels can be activated with sufficiently strong
pacemaking depolarization, and their opening produces
the upstroke of the AP spike and a robust Ca2� influx. It
appears that the main channel involved is the L-type Cav

channel, but P-type Cav channels also play a role in the
regulation of spike frequency, and another high-voltage-
activated and toxin-resistant Cav channel may as well
(293). Rapid PKA-mediated phosphorylation of L-type
Cav channels has not been studied but should not be ex-
cluded. However, cAMP stimulates the expression of the
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L-type Cav channels in AtT-20 cells at the mRNA and
protein levels, presumably through PKA (503). Cortico-
trophs also express T-type Cav channels, but their role in
CRH action has not been studied. The recovery of mem-
brane potential in corticotrophs depends on at least two
K� channels, the delayed rectifier and BK channels. In
AtT-20 cells, CRH inhibits BK channels through activa-
tion of PKA (188). Thus, whereas the intracellular signal-
ing pathway activated by CRH may be the same in corti-
cotrophs and AtT-20 cells, the PKA targeted ion channels
appear to be different.

2. GHRH-induced calcium influx in somatotrophs
The GHRH receptor is expressed predominantly in the

pituitary gland and is coupled to the Gs signaling pathway.
In rats, there are two splice forms of this receptor showing
similar sensitivity to GHRH, but only the short receptor
isoform stimulates cAMP production (491). In a fraction
of porcine pituitary cells, GHRH could also trigger Ca2�

mobilization in an IP3-dependent manner, which could
indicate the cross-coupling of GHRH receptors to the
Gq/11 signaling pathway (504). Like CRH in cortico-
trophs, GHRH facilitates electrical activity and Ca2� in-
flux through L-type Cav channels of silent or already active
somatotrophs (214, 291, 302, 505–509). Forskolin also
increases Ca2� influx in somatotrophs (510, 511), and
inhibition of PDEs increases the electrical activity of so-
matotrophs (291), indicating the relevance of cAMP in
GHRH action. An increase in electrical activity after
GHRH application is also observed in pituitary slices
(288). This response can be detected for up to 90 min after
removal of GHRH (505). Such long-lasting effects of Gs-
linked receptors on the electrical status of somatotrophs
suggests that the time course of the phosphorylation-de-
phosphorylation cycle, rather than the direct effect of
cAMP, could account for prolonged effects of GHRH on
electricalactivity in thesecells.Consistentwith this,although
somatotrophs and GH3 lactosomatotrophs also express
HCN channels (210, 211), these channels are unlikely to
contribute to the GHRH-stimulated electrical activity be-
cause basal AC activity is sufficient to fully activate them.

It is possible that GHRH decreases the intrinsic activity
of a Kir channel in somatotrophs, as CRF does in cortico-
trophs. This was shown in experiments with blockade of
these channels in spontaneously firing cells and model sim-
ulations (291). Several findings suggested that a back-
ground Na� conductance could mediate the action of
GHRH on electrical activity in these cells. First, extracel-
lular Na� is essential for GHRH-induced and cAMP-in-
duced GH release. Removal of Na� does not affect
GHRH-stimulated cAMP production, further indicating
that this messenger alone is not sufficient to trigger exo-
cytosis. Second, blockade of Nav channels by TTX does

not mimic the effects on GH release of replacing bath Na�

with organic cations. Finally, Li� can substitute for Na�

in GHRH actions (301, 512). Isolation of GHRH-stimu-
lated current revealed that the channel is permeable to
Na�, Li�, and K� but not to organic cations, and that the
stimulatory action of GHRH is mimicked by a cAMP an-
alog (302) and blocked by inhibition of PKA (513). The
Na�-dependent inward conductance involved in the
GHRH-induced depolarization could be the background
conductance that mediates spontaneous oscillations of
membrane potential. This conductance is inhibited by
large (10 mM) extracellular concentrations of Ca2�,
Mg2�, and Sr2� and is activated at low Ca2� levels (214).

It appears that the action of GHRH on electrical activ-
ity also includes other ion channels. In parallel to the ef-
fects of cAMP-PKA on cardiac Cav channels, GHRH was
shown to increase L- and T-type Ca2� conductances in
ovine somatotrophs and human adenoma GH cells (514–
516). A role for delayed rectifier and A-type K� conduc-
tances in GHRH-induced depolarization in ovine soma-
totrophs, human adenoma GH cells (514, 517), and
GH4C1 cells (143) has also been suggested. Although the
increase in the Cav currents was mediated through cAMP/
PKA (514, 516), the decrease in the K� currents was not
blocked by PKA inhibitors, but was abolished by PKC
inhibitors and mimicked by a PKC activator (143, 514,
517). The synthesized GH-releasing peptide GHRP-2 also
acts through the cAMP/PKA pathway to increase L- and
T-type currents (518). Other GH-releasing peptides that
have been synthesized also depolarize the somatotrophs
membrane, allowing Ca2� influx, but they may act
through different pathways (519).

3. VIP/PACAP-induced calcium influx in pituitary cells
The high degree of sequence homology between VIP and

PACAP would be consistent with the presence of a common
receptor for the two agonists. However, three distinct types
of receptors exist in vertebrates. The type I (PAC1) receptor
exists in six splice forms, a short form and five variants hav-
ing inserts in the third intracellular loop of the receptor. Two
of these variants are linked to activation of both AC and PLC
equipotently; two forms exhibit 10-fold preference for cou-
pling to the PLC signaling pathway; two forms have char-
acteristics intermediate between the two groups. Type II and
III (VPAC1 and VPAC2) receptors exhibit equal potency for
VIP and PACAP and signal exclusively through the AC path-
way. Pituitary cells express PAC1 and VPAC2 receptors; go-
nadotrophs express the PAC1 receptor linked to the PLC
signaling pathway; and somatotrophs, lactotrophs, and
melanotrophs express VPAC2 receptors coupled to the Gs

signaling pathway (47, 520).
PACAP activates Ca2� mobilization through the PLC/

IP3 pathway mediated by Gq/11 in both gonadotrophs and
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�T3-1 cells (521). In �T3-1 cells, PACAP also stimulates
cAMP production and facilitates extracellular Ca2� influx
through dihydropyridine-sensitive Cav channels, an effect
blocked by the PKA antagonist H-89 and mimicked by
forskolin and 8-Br-cAMP. This finding is consistent with
the expression of both PAC1 and VPAC3 receptors in
�T3-1 cells. A higher concentration of PACAP (�1 nM)
produces a pulse-decay-plateau response, the pulse being
mediated by IP3 and the plateau by cAMP/PKA, a response
similar to the TRH-evoked stimulation of the intracellular
Ca2� level in lactotrophs (47, 522).

PACAP stimulates cAMP production and �-MSH re-
lease from melanotrophs and ACTH release from AtT-20
cells (523). In melanotrophs, PACAP stimulates Ca2� in-
flux through L-type Cav channels but does not trigger
Ca2� mobilization from the ER. The rise in [Ca2�]i is
mimicked by activation of PKA and inhibited by blockade
of this enzyme. Electrophysiological experiments also re-
vealed that PACAP stimulation of melanotrophs causes an
inward nonselective cation current, which depolarizes the
cells and stimulates VGCI (492). In somatotrophs, PACAP
also stimulates Ca2� influx through Cav channels (524,
525). These responses are similar to the GHRH-evoked
Ca2� plateaus and transients. They are blocked by PKA
antagonists and mimicked by forskolin and by the cAMP
analog 8-Br-cAMP (526).

PACAP also causes extracellular Ca2� influx in lac-
totrophs (527). In GH3 cells, VIP evokes a modest Ca2�

influx via an increase in cAMP (528), and both VIP and
PACAP increase cAMP levels in GH4C1 cells (529). There
are also numerous reports of effects of VIP on PRL release
from dissociated pituitary cells (reviewed in Ref. 54).
There is another mechanism by which the cAMP signaling
pathway could contribute to the control of electrical ac-
tivity in lactotrophs. In vivo lactotrophs are tonically in-
hibited by dopamine, which decreases cAMP levels and
opens K� channels, decreasing [Ca2�]i to its basal level
(29, 51). The main stimulatory signal for PRL release is
generated by inhibition of dopamine secretion and results
in an increase in cAMP levels and stimulation of electrical
activity and Ca2� influx (530). Consistent with this,
cAMP acts as a potent modulator of electrical activity,
Ca2� influx, and PRL release in lactotrophs in vitro (218).

4. cAMP signaling pathway and secretion
Forskolin, an activator of AC, and cell-permeable

cAMP stimulate GH (531), PRL (218), LH (532, 533), and
ACTH release (534). In single lactotrophs, cAMP-induced
facilitation of exocytosis, measured by changes in the
plasma membrane capacitance, was also detected (430). In
these cells, forskolin increases the number of granule-to-
granule fusion events without altering the number of gran-
ule-to-plasma membrane fusion events (535). In single rat

melanotrophs, cAMP also stimulates the fusion of larger
granules with the plasma membrane (431). In general, fa-
cilitation of hormone release reflects dual actions of the
cAMP signaling pathway on exocytosis, indirectly by fa-
cilitating VGCI (Section VII.A.1–3) and directly on the
exocytotic pathway. In some cell types, the calcium-inde-
pendent effect of cAMP on exocytosis is mediated by PKA
(536). In neurons, PKA-dependent facilitation of synaptic
transmission includes recruitment of synaptic vesicles
from the reserve pool to the readily releasable pool of
vesicles (537) and phosphorylation of the secretory vesi-
cle-associated synapsin proteins (538). A more recent
study suggested that cAMP facilitates Ca2�-dependent
exocytosis in melanotrophs through both PKA and Epac2
(432). Further studies are needed to identify the PKA and
Epac2-sensitive steps in the exocytotic pathway in this and
other pituitary cell types.

B. Inhibition of electrical activity by GPCRs
GPCRs linked to the Gi/o/z-signaling pathways are also

operative in endocrine pituitary cells, and their activation
leads to inhibition of electrical activity and hormone se-
cretion. Somatostatin (539, 540) and dopamine (51, 541)
are two major hypothalamic factors that inhibit pituitary
hormone secretion via Gi/o/z-coupled receptors. Pituitary
cells also express several other GPCRs linked to this sig-
naling pathway, including receptors activated by adeno-
sine (542), ET-1 (543), GABA (544), melatonin (545),
neuropeptide Y (546), and 5-HT (25) (Fig. 11). Inhibition
of AC activity by these receptors represents one of the
mechanisms by which spontaneous electrical activity and
hormone secretion are inhibited. The �� dimer of these G
proteins also has prominent effects on electrical activity
and hormone secretion in a cAMP/PKA-independent
manner.

1. Somatostatin inhibits electrical activity, calcium influx,
and hormone secretion

Somatostatin or somatotropin release-inhibiting factor
was initially discovered in hypothalamic extracts and was
found to inhibit GH secretion from cultured anterior pi-
tuitaries. Subsequently, it was found that somatostatin
also inhibits TSH and PRL release from normal pituitary
cells, GH and PRL release from adenomatous glands in
humans and from GH4C1 cells, and ACTH release from
human and mouse ACTH-producing tumors. Somatosta-
tin was found in other CNS regions and in peripheral tis-
sues, including the pancreas, the gut, and the thyroid
gland. The actions of somatostatin are mediated by five
receptors, termed sst1, sst2, sst3, sst4, and sst5, all linked to
the Gi/o signaling pathway. The effector molecules include
AC, K� channels, Ca2� channels, Na�/H� exchanger, and
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cGMP-dependent protein kinase. Pituitary cells express
predominantly sst1, sst2, and sst5 receptors (539, 547).

In somatotrophs, somatostatin inhibits spontaneous
and GHRH-stimulated electrical activity, VGCI, and GH
secretion. In spontaneously firing somatotrophs and GH
cell lines, somatostatin hyperpolarizes the plasma mem-
brane, leading to inhibition of electrical activity and basal
VGCI (116, 291, 505, 508, 509, 548–551). Somatostatin
also inhibits basal and forskolin-stimulated [Ca2�]i in hu-
man TSH-secreting adenoma cells (552). Because soma-
tostatin inhibits cAMP production (553), it should antag-
onize the effects of GHRH mediated through cAMP/PKA.
Indeed, somatostatin reverts the stimulatory effects of
GHRH and cell permeable cAMP on VGCI (506, 508,
509) and on the background, TTX-independent Na� con-
ductance (554) in somatotrophs and tumoral GH-secret-
ing cell lines. In one study, a low concentration of soma-
tostatin only abolished the early phase of GHRH-induced
Ca2� influx, whereas at higher concentration it abolished
the early and late phases of the response, suggesting that
somatostatin operates on multiple targets (508).

Two channel families modulated by GHRH in soma-
totrophs (Kir and Cav) are also modulated by somatosta-
tin, but in the opposite direction (555); there is evidence
that somatostatin activates Kir3 channels (116, 552) and
inhibits Cav channels (549, 556–558). The latter is also
observed in ACTH-secreting AtT-20 cells (559). It appears
that the L-type Cav channels are negatively coupled to
somatostatin receptors (560, 561) and that withdrawal of
somatostatin augments this current in rat somatotrophs
(562) and cells from human somatotroph adenomas
(563). Whereas GHRH-stimulated and PKA-mediated
phosphorylation accounts for facilitation of Cav currents
in somatotrophs, somatostatin inhibits these channels in a
cAMP/PKA-independent manner (556, 559, 564). Con-
trol of activity of Kir and Cav channels by somatostatin is
not unique to pituitary cells, but was also observed in other
cell types expressing these receptors (540).

It has also been suggested that somatostatin stimulates
BK-type KCa channels through protein dephosphorylation
(557), as well as the A-type and delayed rectifier K� channels
(145, 549). Inhibition of the background Na� conductance
by somatostatin has also been postulated; the somatotroph
model of Tsaneva-Atanasova et al. (291) reproduces the ef-
fectof somatostatinonmembranepotentialand intracellular
Ca2� by decreasing the background Na�-dependent con-
ductance and increasing a Kir conductance. In contrast, ac-
tivation of BK channels might increase the duration of spon-
taneous electrical events and therefore may not have an
inhibitory effect on Ca2� influx (see Section IV.D).

The effects of somatostatin on ion channels and elec-
trical activity are antagonized by preincubation of the

cells with pertussis toxin, confirming that the soma-
tostatin receptor is coupled to the Gi/o family of G pro-
teins (558, 561, 565). There were numerous studies fo-
cused on the subtypes of G proteins involved in the
coupling of somatostatin receptors to channels. Treat-
ment of ovine somatotrophs with antibodies and antisera
to various G�-subunits has suggested that �o2 mediates
the reduction of Cav currents (566), whereas �i3 mediates
the increase in Kv currents (567). In GH3 cells, down-
regulation of Go�2�1�3 protein expression eliminates the
inhibitory effect of somatostatin on Cav channels (568). It
is reasonable to postulate that �� complexes released from
Gi and Go proteins mediate the action of somatostatin
receptors on Kir and Cav channels. In GH3 cells, �i2 spe-
cifically mediates inhibition of AC (569). The ability of
somatostatin to stimulate inositol phosphate turnover,
Ca2� mobilization, and GH secretion in a fraction of por-
cine somatotrophs could suggest that the G�� dimer of
Gi/o also stimulates PLC. However, somatostatin in this
subpopulation of somatotrophs also triggers elevation in
cAMP production (570), suggesting that further studies
are needed to clarify the mechanism of activation of these
pathways.

2. Dopamine modulation of calcium influx in lactotrophs
and melanotrophs

Among catecholamines, dopamine plays the major role
in the control of pituitary cell functions. It is secreted from
hypophyseal hypothalamic neurons and acts as a principal
inhibitory regulator of PRL release by lactotrophs (51, 54)
and �-MSH by melanotrophs (571). In low concentra-
tions, dopamine also stimulates PRL release (572). There
are five subtypes of dopamine receptors, called D1, D2, D3,
D4, and D5/D1b. By using the radioligand binding assay, it
was shown in the late 1970s that the dopamine D2 subtype
of receptors mediates the tonic inhibitory control of hy-
pothalamic dopamine on PRL release in these cells (541).
Later investigations showed that two subtypes of D2 re-
ceptors, termed D2S and D2L, are generated by alternative
splicing in lactotrophs and melanotrophs (571, 573, 574).
Lactotrophs express varying ratios of these two receptor
subtypes, depending on the level of gonadal steroids (575).
Consistent with these findings, the knockout D2 mice
showed chronic hyperprolactinemia, pituitary hyperpla-
sia, and a moderate decrease in �-MSH content (576).

The pituitary dopamine receptors are functionally as-
sociated with pertussis toxin-sensitive Gi/o proteins (577–
579). Dopamine-induced inhibition of PRL release is also
affected by pertussis toxin treatment (572, 578, 580). Two
intracellular messengers that play major roles in control-
ling the fusion of secretory vesicles with the plasma mem-
brane to release hormones in endocrine cells (581), cAMP
and Ca2�, are affected by activation of D2 receptors in
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pituitary cells. Early studies suggested that inhibition of
cAMP production contributes to inhibition of PRL release
(578, 580). However, the relevance of cAMP in dopamine
actions on PRL release was questioned by the finding that
dopamine inhibits PRL secretion in cells with activated
ACs by forskolin (582). We also observed that the dopa-
mine agonist-induced inhibition of basal release of pre-
stored PRL was preserved when cAMP levels were ele-
vated by forskolin treatment (583). These experiments
certainly do not exclude the modulatory role of cAMP/
PKA in Ca2�-controlled exocytosis, but suggest that con-
trol of Ca2� influx represents the major pathway by which
dopamine controls PRL release.

In lactotrophs, dopamine blocks spontaneous and
stimulated VGCI in a similar way to Ca2� channel block-
ers or removal of extracellular Ca2� (583–587). Dopa-
mine also hyperpolarizes the membrane and suppresses
APs and bursts, which explains the decrease in VGCI (583,
587, 588). A similar effect of dopamine was observed in
melanotrophs (589). The role of Kir channels in dopamine-
induced hyperpolarization has been suggested (114, 123,
589, 590). It has also been reported that dopamine in-
creases Kv conductance (588) and the BK-type KCa con-
ductance (183). Dopamine was also reported to inhibit
Cav channels in lactotrophs (591–593), a conclusion ques-
tioned by others (594). Inhibition of high voltage-acti-
vated Cav currents was also observed in melanotrophs
from neonatal rats (22, 589, 595).

In general, the action of dopamine on electrical activity
could be mediated through cAMP-dependent and -inde-
pendent mechanisms. Dopamine does decrease cAMP in
lactotrophs (583) and an elevation of the cAMP level in-
creases electrical activity and Ca2� influx in these cells
(218). However, only a minority of lactotrophs exhibits
decreased electrical activity when cAMP is reduced from
its basal level (583). Furthermore, whereas the effects of
dopamine on VGCI are pertussis toxin-sensitive, they per-
sist in cells with elevated cAMP (123, 583, 587, 588, 596,
597). Finally, the activation of voltage-independent K�

channels by dopamine is observed in excised outside-out
patch (596), demonstrating that no second messenger is
required to mediate this action. This suggests that cou-
pling between the G protein and Kir channels is mediated
by the �� dimer (123).

In physiological conditions in vivo, dopamine tonically
inhibits lactotrophs, and a transient release from such in-
hibition constitutes a stimulatory signal for PRL secretion
(530).Evenabrief removalofdopamine canpotentiate the
subsequent PRL-releasing action of TRH, presumably
through a cAMP/PKA increase that leads to a long-lasting
phosphorylation of Cav channels (530). In support of this
hypothesis, dopamine application has been shown to in-

hibit Cav currents after a short (1–10 min) and a prolonged
(over 24 h) application in GH4C1 cells transfected with D2

receptors. After such treatments, washout of dopamine for
10–40 min doubled Cav currents, and the current further
increased 24 h after dopamine removal (590). Withdrawal
of dopamine after a short application also evokes a rapid
rebound increase of basal PRL secretion above the level
observed before agonist application (598), and such re-
bound is blocked by preventing VGCI (599, 600). Given
that both rapidly and slowly inactivating Cav currents are
potentiated after a hyperpolarizing conditioning poten-
tial, this suggests that recruitment of inactivated channels
by dopamine-induced hyperpolarization contributes to
the rebound effect on PRL release.

It has also been reported that picomolar doses of do-
pamine (about 1000 times less than the inhibitory range of
concentration) can stimulate PRL release (601). This stim-
ulatory effect is mediated, at least in part, by a rapid in-
crease in [Ca2�]i, but not cAMP (572). There is evidence
that this stimulatory effect is mediated by D2 receptors
(572, 602) and/or the D5 receptor (603). There is also
contradictory evidence regarding the implication of the Gi

pathway in the stimulatory action of dopamine on PRL
release (572, 604). If it is assumed that the effects of a low
dose of dopamine encompass a subset of the effects of
inhibitory doses, then a possible mechanism is that dopa-
mine activates either BK or A-type K� channels. As dis-
cussed above, the BK channel can promote bursting and
increase the amplitude of Ca2� oscillations in pituitary
somatotrophs. Models of pituitary cells also show that
BK and A-type K� currents can promote bursting, due
to their fast voltage-dependent activation, which pre-
vents full-blown spikes and rapid membrane repolar-
ization (291, 313).

Two additional transduction mechanisms have also
been reported for D2 dopamine receptors in target tissues.
First, the D2 receptors can exert their actions indepen-
dently of G proteins by promoting the formation of a sig-
naling protein complex composed of �-arrestin, Akt, and
protein phosphatase-2A (605). In chromaffin cells, Akt-
induced phosphorylation of cysteine string protein plays a
role in late stages of exocytosis (606). Akt also regulates
the PRL promoter activity (607), whereas the contribution
of this signaling pathway to dopamine-controlled PRL re-
lease has not been observed (583). Second, dopamine D2S

and D2L receptors couple to the same extent to the per-
tussis toxin-sensitive Gi/o protein and to the pertussis tox-
in-insensitive Gz proteins in vitro (608) and in vivo (609).
Other subtypes of dopamine receptors also couple to Gz

proteins (608, 610). Indirect evidence has recently been
presented that D2 receptors in pituitary cells are also
linked to the Gz signaling pathway, and that such coupling
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provides an additional mechanism for inhibition of PRL
release downstream of VGCI (583).

Dopamine actions in lactotrophs depend also on the
gonadal steroid milieu. Estradiol decreases the expression
of D2 receptors (575) and the number of Gi/o immunore-
active lactotrophs (611) but does not affect the expression
ratio of the long and short D2 receptor subtypes, in con-
trast to progesterone and testosterone (575). Also, the
stimulatory and inhibitory actions of dopamine on PRL
release vary throughout the estrous cycle and in ovari-
ectomized animals vary with steroid replacement ther-
apy (611). The rebound PRL release after dopamine
withdrawal also appears to be steroid dependent (612).
Dopamine-induced activation of Kir channels was ob-
served in most lactotrophs from proestrous females, but
not in cells from estrous or diestrous rats (612), indi-
cating that effects of estradiol on dopamine response are
not limited to the control of expression of D2 receptors.
Furthermore, bath application of estradiol can quickly
reverse the inhibitory effect of dopamine on electrical
activity, indicating a nongenomic action of this steroid
hormone on electrical activity (613). Estradiol can also
affect the percentage of light and heavy fractions of lac-
totrophs, which respond specifically to dopamine and
TRH (50, 100, 325).

3. ET inhibition of VGCI in pituitary cells
The ET family of peptides, originally discovered for

their vasoconstrictive effects on vascular tissue, is com-
posed of three endogenous isoforms (ET-1, ET-2, and ET-
3), which are encoded by different genes (614, 615). The
peptides are differentially expressed in tissues of the pe-
riphery and CNS and have profound effects on neuroregu-
latory and endocrine functions, in addition to effects on
cardiovascular functions (616, 617). In mammals, there
are two plasma membrane ET receptor subtypes, ETA

(618) and ETB (619). These receptors are GPCRs that sig-
nal through variable G proteins, depending on the cell type
in which they are expressed (620). The ETA receptor is
selective for ET-1 and ET-2 over ET-3, whereas the ETB

receptor is activated equally by these peptides (621). The
ETC receptor cloned from Xenopus leavis dermal mela-
nophores is ET-3 specific (622); however, the mammalian
homolog for the ETC receptor does not exist. ET receptors
arise through divergent intron-containing genes, and
mRNAs arising from alternative splicing have been re-
ported (621). Some splice isoforms of rat ET receptors are
functional (623–625). The human ETA receptor gene has
also been proposed to give rise to several alternative splice
isoforms (626–628).

Functional ET receptors are expressed in all five major
secretory cell types (52, 629, 630), and ETs are produced
by pituitary cells (631), suggesting autocrine or paracrine

modes of action. Stimulation of these receptors in gona-
dotrophs leads to activation of the Gq/11 signaling path-
way accompanied with the oscillatory Ca2� release from
intracellular pools and gonadotropin secretion (245). The
stimulatory action of these receptors on Ca2� signaling
and secretion in gonadotrophs is transient due to their
rapid desensitization and internalization (37). In soma-
totrophs and lactotrophs, ETs also activate the Ca2�-mo-
bilization pathway and transiently stimulate GH and PRL
release. In contrast to gonadotrophs, the stimulatory effect
of ET is followed by inhibition of PRL and GH release
below the basal levels (48, 282, 632, 633). In lactotrophs,
the inhibitory phase lasts for several hours (52, 53), ar-
guing against rapid desensitization of these receptors.
Such a difference in the actions of ETs in gonadotrophs vs.
somatotrophs/lactotrophs would be consistent with the
expression of both subtypes of these receptors, but pitu-
itary cells express only ETA receptors (37, 634, 635),
which are most likely a combination of the full-size and
spliced forms of these receptors (628).

In general, activation of Ca2�-mobilizing receptors
leads to sustained Ca2� influx. In nonexcitable cells, Ca2�

influx occurs through Orai channels (see Section III.C.3),
and in excitable cells, Ca2�-mobilizing receptors fre-
quently facilitate VGCI. This is also the case with several
Ca2�-mobilizing agonists in pituitary cells, including
TRH and angiotensin II (282). In contrast, ET-1-induced
Ca2� mobilization in lactotrophs and somatotrophs is fol-
lowed by a return of [Ca2�]i levels to baseline for quiescent
cells, or to below control levels for spontaneously active
cells (282). Such sustained inhibition of VGCI is not af-
fected by raising intracellular cAMP (115), ruling out
down-regulation of the cAMP/PKA pathway as the mech-
anism for ET-1-induced inhibition of Ca2� influx.

The sustained inhibitory action of ET-1 on [Ca2�]i lev-
els is replaced by stimulation of Ca2� influx through Cav

channels when the cells are pretreated with pertussis toxin,
suggesting that activation of the Gi/o pathway inhibits
Ca2� influx. Also, ET-1 inhibits spontaneous and Bay K
8644 (an activator of L-type Cav channels) stimulated
Ca2� transients, but it does not inhibit Ca2� influx stim-
ulated by high K�, suggesting that the inhibition is not
mediated by directly closing Cav channels. Rather, ET-1
increases a cesium-sensitive Kir current in both soma-
totrophs and lactotrophs (48, 115). In parallel to soma-
tostatin and dopamine actions, facilitation of Kir currents
by ET-1 hyperpolarizes the membrane, suppressing elec-
trical activity and the resulting Ca2� transients. Physio-
logically, the suppression of VGCI is sufficient to block
secretion. In cells in which the Gi/o signaling pathway is
blocked, ET-1 still inhibits AC activity and PRL release,
indicating that there is cross-coupling of ETA receptors to
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the Gz signaling pathway, with �z inhibiting cAMP pro-
duction and the �� dimer acting directly on the release
machinery, desensitizing the Ca2�-secretion coupling
(281). The physiological significance of inhibition of PRL
release downstream of VGCI is not clear at the present
time.

ET-1 has also been reported to activate BK channels in
lactotrophs (183). As discussed previously, activation of
all BK channels may not have an inhibitory effect on Ca2�

influx (291), so BK channel activation may not be a pre-
dominant contributor to the inhibition of VGCI by ET-1.
Acute application of dopamine also activated the same
channels, but 48-h treatment with dopamine resulted in
inhibition of BK channels by ET-1 (183). Interestingly,
dopamine exposure for 48 h also reversed the inhibition of
PRL release by ET-1, replacing it with a modest stimula-
tion (632). Because lactotrophs are normally exposed to
dopamine, the inhibitory signaling pathway may be un-
coupled from the ETA receptor in vivo. Thus, whereas
tonically inhibiting PRL secretion, dopamine could also
change the nature of the ET signal from inhibitory to ex-
citatory. When the release of hypothalamic dopamine is
impaired, ETA receptors might recouple to the same in-
hibitory pathways coupled to D2 receptors, and thus ETs
might replace dopamine as the primary inhibiting factor.

4. Other pituitary receptors linked to the Gi/o

signaling pathway
Cloning of 5-HT receptors led to the recognition of

several types of 5-HT-activated GPCRs. All 5-HT1 recep-
tors are negatively coupled to AC via Gi/o, whereas 5-HT4,
5-HT6, and 5-HT7 receptors stimulate AC through Gs

(636). In addition to dopamine D2 receptors, porcine pi-
tuitary melanotrophs also express 5-HT1A and 5-HT1C

receptors, and their activation leads to inhibition of L-type
Cav channels (637). Inhibition of L-type and Q-type Cav

channels mediated by 5-HT also occurs in rat mela-
notrophs (25). In both cell types, inhibition of Cav currents
was abolished in cells treated with pertussis toxin, indi-
cating the coupling of 5-HT receptors to the Gi/o signaling
pathway. There are contradictory conclusions about di-
rect actions of 5-HT on PRL release (638, 639).

Adenosine is a potent inhibitor of �-MSH release from
frog melanotrophs (640). The structure of these receptors
has not been identified, but pharmacological, electrophys-
iological, and secretory data indicate the expression of
adenosine receptors of the A1 subtype, which is negatively
coupled to the AC signaling pathway through pertussis
toxin-sensitive G proteins (461). Two reports have also
indicated the operation of adenosine receptors in pituitary
lactotrophs (641, 642), but further studies are required to
clarify their structure, coupling, and effects (stimulatory
or inhibitory) on PRL secretion. GH3 and GH4C1 cell lines

also express A1 receptors, and their activation causes in-
hibition of PRL and GH secretion (643, 644). Electro-
physiological experiments revealed that adenosine inhib-
its electrical activity-driven Ca2� transients in GH cell
lines (645). In frog melanotrophs, adenosine also inhibits
spontaneous electrical activity (646), presumably reflect-
ing the inhibitory action on Cav channels (647), facilita-
tion of A-type Kv channels (151), and/or potentiation of
delayed rectifier K� channels (150).

GABAB receptors are GABA- and baclofen-sensitive Gi/o-
linked receptors, and their activation induces late hyper-
polarization, attenuation of Cav currents, facilitation of
Kir3 channels, and inhibition of AC activity (648). Pitu-
itary melanotrophs express all three subtypes of these re-
ceptors [GABAB(1a), GABAB(1b), and GABAB(2)], and func-
tional receptors were identified in postnatal and adult
melanotrophs (649). Activation of these receptors leads to
inhibition of AC activity (423) and spontaneous Ca2� os-
cillations (650), and inhibition in the Ca2�-dependent
basal �-MSH release (328). These receptors are also ex-
pressed in anterior pituitary cells and contribute to the
control of PRL and gonadotropin secretion in an age-de-
pendent manner (544, 651, 652). In female rats that re-
ceived estradiol implants for 5 wk, pituitary GABAB re-
ceptor mRNA was significantly decreased compared with
proestrous rats, and the baclofen-induced decrease in
[Ca2�]i in pituitary cells was abolished (652). No details
about the effects of these receptors on the electrical activity
of anterior pituitary cells have been reported.

Pituitary cells from neonatal animals express the func-
tional MT1 subtype of melatonin receptors that signal
through pertussis toxin-sensitive G proteins. Their acti-
vation by melatonin leads to a decrease in cAMP produc-
tion and PKA activity and attenuation of GnRH-induced
gonadotropin secretion (545). Single-cell Ca2� and elec-
trophysiological recordings revealed that the reduction in
gonadotropin release results from melatonin-induced in-
hibition of both components of GnRH-induced Ca2� sig-
naling in gonadotrophs, Ca2� influx through Cav chan-
nels, and IP3-mediated Ca2� release from intracellular
stores (653–655). Inhibition of Ca2� influx by melatonin
results in a delay of GnRH-induced Ca2� signaling. On the
other hand, attenuation in GnRH-induced Ca2� release
affects the amplitude of the Ca2� signals. The potent in-
hibition of GnRH-induced Ca2� signaling and gonado-
tropin secretion by melatonin provides an effective mech-
anism to protect premature initiation of pubertal changes
that are dependent on gonadotropin plasma levels. During
development, the tonic inhibitory effects of melatonin on
GnRH action gradually attenuate, due to a decline in ex-
pression of functional MT1 receptors and changes in the
GnRH receptor signaling pathways (656–658). In adult
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animals, melatonin does not affect pituitary functions di-
rectly, whereas the coupling between melatonin release
and hypothalamic functions, including GnRH release, are
preserved and are critically important in synchronizing
the external photoperiods and reproductive functions
through mechanisms that are not well characterized (545).

Neuropeptide Y is a 36-amino acid peptide mainly lo-
calized in the nervous system that exerts its biological ac-
tions through five receptors, called Y1 to Y5 (659). Pitu-
itary lactotrophs, somatotrophs, and gonadotrophs
probably express the Y1 receptor subtype, and the expres-
sion is regulated by estrogens in a cell-specific manner (660).
In gonadotrophs, neuropeptide Y inhibits GnRH-induced
Ca2� signaling and LH release in a pertussis toxin-sensitive
manner (661). The effects of neuropeptide Y on electrical
activity in anterior pituitary cells have not been studied.
Neuropeptide Y also inhibits spontaneous Ca2� transients
and the accompanied �-MSH release in melanotrophs
(662). Electrophysiological experiments revealed that
neuropeptide Y inhibits spontaneous electrical activity
and Cav currents in these cells (663).

Galanin is produced by pituitary cells and acts as a
paracrine factor (4). Pituitary cells express the GalR2 re-
ceptor subtype (664–666). In general, this receptor cou-
ples to the Gq/11 signaling pathway (667). However, the
cloned receptor also couples to the Gi/o signaling pathway
(668). The coupling of GalR2 receptors in pituitary cells
has not been studied. Based on observations that galanin
stimulates PRL release (669) and inhibits gonadotropin
secretion (670), it is reasonable to suggest differential cou-
pling of these receptors in pituitary cells. At the present
time, there is no information about the effects of galanin
on electrical activity and Ca2� signaling in these cells.

VIII. Calcium-Mobilizing Receptors and
Electrical Activity

GPCRs linked to the Gq/11 signaling pathway are activated
by agonists in all anterior pituitary cell types and include:
acetylcholine M1 and M3 receptors, angiotensin receptor
AT1b, ATP-activated P2Y1 and P2Y2 receptors, ETAR,
galanin receptor GalR2, ghrelin receptor GHS-R1a,
GnRH receptor, serotonin 5-HT2A and 5-HT2B recep-
tors, substance P receptor NK1, TRH receptor, AVP/oxy-
tocin V1b and OT receptors, and VIP/PACAP receptor
PAC1b (Fig. 12). In gonadotrophs, this signaling pathway
is activated by GnRH (33, 671), which is the main agonist
for these cells, as well as by ETs (52, 245), PACAP (36),
substance P (39, 672), and AVP/oxytocin (38, 673). In
thyrotrophs, the Gq/11 signaling pathway is activated by
TRH, the main agonist for these cells (242, 671), and ETs
(617). Lactotrophs express numerous Ca2�-mobilizing re-

ceptors, activated by: acetylcholine (54), angiotensin II
(244), ATP (474), ETs (52, 53), oxytocin (674), 5-HT
(54), substance P (672, 675), TRH (242), and galanin
(676–678). Mammalian melanotrophs express musca-
rinic receptors (679), and frog melanotrophs express
Ca2�-mobilizing receptors for TRH and neuropeptide Y
(26), in addition to muscarinic receptors (27). In cortico-
trophs, the Ca2�-mobilizing pathway is activated by AVP
(176, 680, 681), norepinephrine (682), and potentially by
5-HT (398). Somatotrophs express Ca2�-mobilizing gh-
relin (46) and ETA (48) receptors. Several Ca2�-mobiliz-
ing receptor tyrosine kinases are also expressed in pitu-
itary cells (683–689), but their effects on Ca2� signaling
and electrical activity have not been studied in pituitary
cells.

The activated Gq/11 protein leads to phosphoinositide
hydrolysis and the production of IP3 and DAG (690). IP3

binds to IP3Rs in the ER membrane and along with Ca2�

is required for their activation. Activation binding sites for
both IP3 and Ca2� are on the cytoplasmic side of the mem-
brane. As stated in Section III.C.1, there are three closely

FIG. 12. Expression of Ca2�-mobilizing GPCRs in endocrine pituitary
cells. Top rectangle, Ca2�-mobilizing GPCRs expressed in mammalian
pituitary cells. Activation of these receptors by hypothalamic or
intrapituitary hormones leads to dissociation of heterotrimeric G
proteins, and their �-subunit (and in some cases ��-subunits)
stimulates PLC. This enzyme serves as an amplifier by producing two
intracellular messengers: IP3 and DAG. IP3 binds to its receptors in the
ER and evokes Ca2� release, called Ca2� mobilization. During
sustained agonist occupancy, Ca2� mobilization is accompanied by
Ca2� flux into the cell.
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related subtypes of the mammalian IP3R, and the func-
tional receptor forms a tetramer (691). It appears likely
that each subunit must be bound by IP3 and Ca2� for
activation of the receptor (692). Once activated, the IP3R
functions as a Ca2� channel, allowing Ca2� to flow down
its concentration gradient from the ER into the cytosol.
The Ca2� flux can be terminated by inactivation of the
receptor, which occurs through binding of Ca2� to an
inactivation site on each subunit on the cytoplasmic side of
the receptor. Thus, activation of one branch of the Gq/11

pathway leads to Ca2� mobilization from the ER store.
The other branch follows the production of DAG, which
together with Ca2� activates PKC (693).

A. The dynamics of Ca2� release
The ER is the primary storehouse for Ca2� in most cells,

including pituitary cells, with a resting Ca2� concentra-
tion ([Ca2�]ER) of a few hundred micromolar (694, 695).
This is in contrast to the resting level of [Ca2�]i, which is
approximately 0.1 �M. The high [Ca2�]ER is maintained
by SERCA pumps. Efflux of Ca2� from the ER is through
passive leakage and through IP3Rs and/or RyRs (696).
Because of the large concentration difference, the activa-
tion of IP3Rs by a Gq/11 agonist results in a large and
sudden increase in [Ca2�]i. After this initial Ca2� pulse,
one of two behaviors is typically observed, depending on
the cell type and in some cases on agonist. One behavior
involves oscillations, whereas the other does not. In lac-
totrophs, somatotrophs, thyrotrophs, and cells from the
GH cell lines, the pulse is typically followed by a slow
decline to a plateau in [Ca2�]i, although some cells may
only have a pulse or a plateau, and in a fraction of cells
oscillations are observed (242, 282, 697, 698). PRL se-
cretion from lactotrophs is increased during both the
[Ca2�]i pulse and the subsequent decay and plateau phases
(282). In mammalian gonadotrophs, the pulse is typically
followed by large [Ca2�]i oscillations (172, 173, 245, 521,
699). Fish gonadotrophs also show an oscillatory Ca2�

response to application of GnRH (700). However, �T3-1
(255) and L�T2 (42) mice gonadotrophs show nonoscilla-
tory amplitude-modulated Ca2� signals in response to
GnRH application. Corticotrophs respond to norepineph-
rine with extracellular Ca2�-independent Ca2� oscillations
(682). In contrast, stimulation of these cells with AVP results
in the pulse-decay-plateau type of response (176, 680).

1. Pulse-decay-plateau Ca2� release
The pulse-decay-plateau Ca2� response requires only

that the IP3Rs open and remain open during agonist ap-
plication. That is, the IP3R is passive. Such response is
illustrated with a mathematical model (701) in Fig. 13.
The top panel shows [Ca2�]i in response to agonist acti-

vation of the Gq/11 pathway and subsequent production of
IP3. The bottom panel shows [Ca2�]ER, a quantity that is
difficult to measure experimentally. The initial rapid in-
crease in [Ca2�]i is followed by a slow decline, reflecting
the removal of Ca2� from the cell by plasma membrane
ATPase pumps and a Na�-dependent Ca2� efflux. The
decline in [Ca2�]i is mirrored by a decline in [Ca2�]ER,
although [Ca2�]ER is much larger. As [Ca2�]ER declines to
a sufficiently low level, a Ca2� entry pathway is activated,
bringing additional Ca2� into the cell and producing an
elevated plateau in [Ca2�]i that is evident near the end of
the agonist application. When the agonist is removed,
[Ca2�]i initially declines to a subbasal level and slowly
climbs back to a basal level. This drop and slow rise are due
to the increased Ca2� flux into the ER that occurs as
[Ca2�]ER slowly returns to its basal level.

Notice a relatively rapid depletion of the ER Ca2� store
in the presence of agonist in Fig. 13. In cells bathed in
Ca2�-deficient medium or with blocked VGCI, [Ca2�]i

drops to basal levels within a few minutes, indicating that
sustained Ca2� signaling by Ca2�-mobilizing GPCRs is
critically dependent on Ca2� influx. This is well illustrated
in TRH-stimulated lactotrophs in cells bathed in Ca2�-
deficient medium and by cells stimulated with ET (a Ca2�-
mobilizing agonist that inhibits VGCI; see Section
VII.B.3) in the presence of Ca2� (281, 282).

Although the [Ca2�]ER of pituitary cells is not typically
measured, Fig. 13 suggests that the time course of
[Ca2�]ER during agonist application is reflected in the
[Ca2�]i time course. That is, the rate of decline in [Ca2�]i

after the initial peak is determined largely by the time dy-
namics of [Ca2�]ER. If the decline of [Ca2�]ER is more

FIG. 13. Model simulation of the pulse-decay-plateau Ca2�

response to activation of the Gq/11 pathway. A, Activation of the
pathway results in production of IP3, which binds to IP3Rs and
releases Ca2� from the ER into the cytosol. This results in a rapid
rise in [Ca2�]i and subsequent decay to an elevated plateau. In this
and all other modeling figures, the IP3 concentration is constant
during simulated application. B, Partial depletion of the ER Ca2�

store due to release of Ca2� through IP3R. The slow [Ca2�]ER decay
underlies the slow decay of [Ca2�]i. This model and others
used in the article can be downloaded as freeware from
www.math.fsu.edu/�bertram/software/pituitary.
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rapid, then so too will be the decline in [Ca2�]i. If factors
such as the total IP3R conductance activated by agonist or
the Ca2� leakage rate are larger in one cell than a second
cell, then the decline in [Ca2�]ER and [Ca2�]i will be more
rapid in the first cell. In contrast, if the SERCA pumping
rate is larger in one cell than another, then the decline in
[Ca2�]ER and [Ca2�]i will be slower in the first cell. Thus,
the decline in the readily measured [Ca2�]i is an assay for
the typically unmeasured [Ca2�]ER (701–703) that could
also be used in further work with pituitary cells.

The Ca2� response to a Gq/11-activating agonist can
have a large impact on the plasma membrane potential.
The pulse of Ca2� that follows agonist application acti-
vates SK type KCa channels in the plasma membrane in rat
somatotrophs, lactotrophs, corticotrophs, and GH3 cells
(171, 680, 704). The KCa current hyperpolarizes the mem-
brane, terminating any spontaneous electrical activity that
was present before agonist application (228, 282). Some
time after the initial Ca2� pulse, the membrane typically
depolarizes, due to the modulation of a still-unidentified
current, presumably the down-regulation of an M (153) or
an erg current (155, 158, 161). This depolarization acti-
vates Cav channels, further depolarizing the cell and ini-
tiating electrical activity such as spiking or bursting (282).
This electrical activity would then be reflected in the
[Ca2�]i time course as small oscillations on top of the
plateau in Fig. 13A and would contribute to the plateau.
In studies done in the absence of extracellular Ca2�, the
[Ca2�]i declines to below its basal level even while the
agonist (TRH) is present (698). In this case, neither ca-
pacitative Ca2� entry nor Cav currents provide the Ca2�

influx required for the [Ca2�]i plateau or small oscillations
after the initial surge in [Ca2�]i.

Thus, VGCI represents the major pathway for the pla-
teau Ca2� response during the sustained agonist stimula-
tion and for recovery of the ER calcium pool after removal
of agonist, but other pathways could also be operative.
Although there is some evidence supporting the presence
of store-operated Ca2� entry in pituitary cells (272, 698),
the data are inconclusive. In other cell types, it is also well
established that Ca2�-mobilizing receptors can activate
the TRP family of channels, which conduct Ca2� and also
depolarize the cells, leading to facilitation of VCGI (219).
Further studies are needed to clarify whether this pathway is
activated by Ca2�-mobilizing receptors in pituitary cells.

Sustained activation of Ca2�-mobilizing GPCRs also
causes changes in the gating properties of plasma mem-
brane channels. In GH3 cells, the Ca2� released from the
ER initially inactivates a Cav current, but this phase is
followed by stimulation of the Cav current, which can
contribute to the plateau (705). Both Gi (�2 and �3) and
PKC are required for this TRH-induced stimulation of a

Cav current (706). In thyrotrophs and lactotrophs, a re-
turn to tonic spiking at higher frequency was accompanied
with lower spike amplitude in the presence of TRH due to
inhibition of L-type Cav channels (707).

2. IP3R-mediated Ca2� oscillations
Unlike the spontaneous Ca2� oscillations that often oc-

cur in pituitary cells, those induced by GnRH in gonado-
trophs or norepinephrine in corticotrophs persist when
the bath Ca2� is removed as well as in cells bathed in the
presence of Ca2� but clamped at potentials that silence
Ca2� influx through Cav channels (283, 682). This illus-
trates that the oscillation is intrinsic to the Ca2� handling
properties within the cell. There are differences in the os-
cillatory Ca2� mobilization between these two cell types.
In gonadotrophs, the oscillatory Ca2� release is activated
not only by GnRH but also by ET-1, PACAP, and AVP
(172, 173, 245, 521, 699). In contrast, baseline Ca2� os-
cillations are triggered by �-adrenergic stimulation of cor-
ticotrophs but not AVP application (682). Furthermore,
the frequency of Ca2� oscillations in gonadotrophs is de-
termined by agonist concentration and varies between
three and 20 pulses per minute (253, 708), whereas nor-
epinephrine generates Ca2� oscillations with a frequency
of about one per minute (682).

In gonadotrophs, oscillations in IP3 are not required to
generate oscillatory Ca2� release as documented by injec-
tion of nonmetabolized IP3 analogs. Furthermore, the con-
centration of IP3 underlines the frequency of Ca2� spiking
(249). The [Ca2�]i influences IP3-dependent Ca2� release
in these cells. The rapid stimulatory effect of Ca2� on
IP3-depenent Ca2� release in gonadotrophs is nicely dem-
onstrated by phase resetting of GnRH-induced oscilla-
tions by a brief pulse of Ca2� entry (250). The inhibitory
effect of high [Ca2�]i on GnRH-induced Ca2� oscillations
is also shown (251). Finally, inhibition of SERCA pumps
causes a transition from the oscillatory to the nonoscilla-
tory mode of Ca2� release in GnRH-stimulated gonado-
trophs (709, 710). At the present time, it is unknown
whether nonoscillatory elevation in intracellular IP3 levels
could generate Ca2� oscillations in corticotrophs.

3. Mathematical models of IP3-induced Ca2� oscillations
A series of mathematical models were developed to help

understand the mechanism for Gq/11 agonist-induced
Ca2� oscillations in gonadotrophs and how these depend
on Ca2� flux across the plasma membrane and between
the cytosol and the ER (252, 711–714). These models all
assume that the key player in the Ca2� oscillations is an
active IP3R (called class 1 models in Ref. 715). These mod-
els also assume no role for mitochondria in the oscilla-
tions, which is contrary to some data (but the models can
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easily be adapted, as discussed in Section VIII.A.4). For
simplicity, we use models described in Ref. 716 to illus-
trate the mechanism for Ca2� oscillations generated by an
active IP3R.

There are two essential ingredients to agonist-induced
Ca2� oscillations mediated by an active IP3R. One is a
Ca2� concentration difference between the cytosol and
ER, which is maintained by SERCA pumps through ATP
hydrolysis. The other is an IP3R that is rapidly coactivated
by IP3 and cytosolic Ca2� and more slowly inactivated by
cytosolic Ca2�. In the equilibrium state, this latter feature
leads to a bell-shaped dependence on the [Ca2�]i (717,
718). More importantly for Ca2� oscillations, there is a
substantial time scale difference between Ca2� activation
and Ca2� inactivation of the IP3R. The former provides
positive feedback and is responsible for the upstroke of
each Ca2� spike. The latter provides delayed negative
feedback and is responsible for the downstroke. This com-
bination of rapid positive feedback and delayed negative
feedback is similar to what occurs during the production
of APs, where the source of the feedback is the membrane
potential acting through Nav and Kv channels. This anal-
ogy led to a significant simplification in a model of the
IP3R dynamics and facilitates understanding of the oscil-
lation mechanism (713).

We illustrate the basic components of the Ca2� oscil-
lations with a closed-cell model, neglecting any flux of
Ca2� across the plasma membrane (intracellular Ca2� is
conserved). This allows us to focus solely on the IP3R-
mediated dynamics. Figure 14A shows a closed-cell model
simulation of Ca2� oscillations that occur only when IP3

is present. The variable h (dashed curve) is the fraction of

IP3Rs not inactivated; h � 1 means that no IP3Rs are in-
activated. At the beginning of the simulation, the Gq/11

pathway has not been activated, so IP3 is below the thresh-
old level needed for activation of IP3Rs. In this unstimu-
lated case, h is approximately 1 and [Ca2�]i is low and
steady. When IP3 is present at a critical level, the system
produces a periodic train of Ca2� spikes. The upstroke of
each spike is driven by fast Ca2� activation of IP3Rs, and
during this time the variable h declines as some of the IP3Rs
become inactivated. As h declines, so too does the total
flux through the population of IP3Rs, resulting in a re-
duction in the net Ca2� flux out of the ER. Eventually, the
net flux becomes negative because the flux into the ER
through SERCA pumps exceeds the efflux through IP3Rs.
This produces a decline in [Ca2�]i, which is the down-
stroke of the Ca2� spike. The cytosolic Ca2� level then
returns to a low level, allowing the IP3Rs to slowly recover
from inactivation. This deinactivation process is reflected
in Fig. 14A as a slow increase in h after each spike. When
the receptors recover sufficiently, a new spike is initiated,
and the process repeats as long as IP3 is present. The spik-
ing in [Ca2�]i would be reflected in small-amplitude os-
cillations in the (much larger) [Ca2�]ER, as has been mea-
sured in gonadotrophs (719). The production of each
Ca2� spike depends critically on the time scale difference
between activation (fast) and inactivation (slow). If the
inactivation is made too fast in the model, no oscillations
are produced. Also, the period of the Ca2� oscillations is
determined by the time required for the IP3Rs to recover
from inactivation. Thus, the time scale for the inactivation
process determines whether or not oscillations are pro-
duced and the period of the oscillations.

Although IP3R-mediated Ca2� oscillations can be gen-
erated in a closed cell, in actual cells there is influx of Ca2�

through Cav and other channels, as well as efflux of Ca2�

through plasma membrane pumps. The effect that this
Ca2� flux has on IP3R-mediated oscillations is illustrated
in Fig. 14B. In this figure, produced by an open-cell model,
there is a constant Ca2� flux into the cell and efflux that
depends on [Ca2�]i (efflux is greater when [Ca2�]i is
greater). When the Gq/11 pathway is activated (Fig. 14B,
gray bar), the Ca2� oscillations start and, after an initial
large spike, continue with a constant amplitude and fre-
quency. However, when Ca2� influx is stopped (Jin � 0),
simulating the removal of extracellular Ca2�, the oscilla-
tion amplitude and frequency get progressively smaller. If
continued further in time, the oscillations would terminate
altogether. The reason for this behavior is that each Ca2�

spike transfers Ca2� from the ER to the cytosol, from
where some fraction is pumped out of the cell. When this
is accompanied by Ca2� influx through plasma membrane
channels (Jin � 0), the ER refills between spikes, so at the

FIG. 14. Model simulation of one mechanism for Ca2� oscillations
that can be produced by Gq/11 activation. A, Oscillations are due to the
fast activation and slow inactivation of IP3Rs. The variable “h” is the
fraction of receptors that are not inactivated. B, Ca2� oscillations
persist as long as there is sufficient Ca2� flux into the cell. When influx
is eliminated (Jin � 0), the oscillation amplitude and frequency decline,
and eventually oscillations cease.
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start of the next spike the driving force will be the same as
it was for the prior spike. However, when the influx
through the plasma membrane is eliminated (Jin � 0),
there is a progressive loss of Ca2� from the cell, and there-
fore the ER does not refill completely between spikes. For
this reason, the driving force is smaller for each subsequent
spike, resulting in a slow decline in the spike amplitude.
Also, because of the progressive decline in the driving
force, the fraction of IP3Rs that must recover from inac-
tivation for the start of a new spike gets progressively
larger. That is, h must rise to progressively larger values to
trigger spikes, so the time between spikes increases (fre-
quency decreases). These behaviors, a slow decline in spike
amplitude and spike frequency, are observed in GnRH-
stimulated gonadotrophs in a Ca2�-deficient medium
(252, 289).

Although an active IP3R provides a good explanation
for agonist-induced Ca2� oscillations in gonadotrophs
(and other cells in which similar oscillations are pro-
duced), Ca2� oscillations may also be produced through
the stimulatory feedback of Ca2� onto PLC (720), which
produces IP3, or onto 3-kinase (721), which converts IP3

to IP4. With this mechanism (class 2 models) (715), oscil-
lation in the IP3 concentration is a key element, unlike the
case described above where oscillations in Ca2� are pro-
duced for a constant IP3 concentration (class 1 models).
These two classes of models for Gq/11 agonist-induced os-
cillations have been recognized for many years (722, 723).
It is difficult to determine from inspection only which
mechanism is responsible for oscillations in a given cell,
and there is evidence that the oscillation class is deter-
mined by the type of GPCR activated (724). Consistent
with this, norepinephrine generates Ca2� oscillations in cor-
ticotrophs, whereas AVP does not. The slow frequency of
Ca2� oscillations in corticotrophs may suggest that these os-
cillations were mediated by oscillatory IP3 production.

4. Role of mitochondria in IP3-induced Ca2� release
Another player in the production of depolarization-

and agonist-induced Ca2� transients in pituitary cells is
the mitochondrial Ca2� store. Calcium is transported into
mitochondria through Ca2� uniporters, which are pow-
ered by the membrane potential across the inner mem-
brane. Calcium is transported out of mitochondria pri-
marily by Na�/Ca2� exchangers (725). It has been
demonstrated that these actions impact the cytosolic Ca2�

time course in neurons (726–728). In corticotrophs, the
rate of Ca2� clearance after depolarization-induced Ca2�

influx is dramatically slowed by mitochondrial uncou-
plers or inhibitors of the mitochondrial uniporter. This in
turn enhances the exocytotic response (729). In gonado-
trophs, early work by Hille’s group (719) revealed that
Ca2� released from the ER is partly taken up by the ER and

partly pumped into other intracellular compartments or
out of the cells. Subsequent studies by the same group
showed that collapsing the mitochondrial inner mem-
brane potential with the protonophore carbonyl cyanide
m-chlorophenylhydrazone, a manipulation that inhibits
Ca2� uptake into mitochondria, slowed or inhibited
GnRH-induced cytosolic Ca2� oscillations (730, 731).

Although these data demonstrate that mitochondrial
Ca2� filtering plays a role in the generation of agonist-
induced Ca2� oscillations, they do not allow one to de-
termine whether this role is active or passive. That is, it is
not evident whether the oscillations in mitochondrial
Ca2� content are required for the production of cytosolic
oscillations (mitochondrial Ca2� is an active player), or
whether cytosolic oscillations would persist if the mito-
chondrial Ca2� level could be clamped at its mean level in
the stimulated cell (mitochondrial Ca2� is a passive
player). Although oscillations in mitochondrial Ca2� con-
centration have been measured in gonadotrophs (730), it
is not known whether these oscillations are required for
the generation of cytosolic Ca2� oscillations. In a math-
ematical modeling study, a Ca2� oscillation model was
modified so that oscillations were produced only if a mi-
tochondrial Ca2� store was present (732). However, the
mitochondrial store played a passive role because [Ca2�]i

oscillations were produced even when the mitochondrial
Ca2� concentration was clamped at its mean stimulated
value (R. Bertram, unpublished observation).

5. Coupled membrane and IP3-mediated oscillations
In two studies of GnRH-stimulated rat gonadotrophs,

the membrane was voltage clamped, and the frequency of
the oscillations in Ca2� concentration was measured (269,
283). This procedure allows one to separate the IP3R-me-
diated oscillation from the intrinsic membrane oscillation
discussed in Section III. It also provides a means to control
the rate of Ca2� influx by adjusting the holding potential
of the cell. When the holding potential is low (hyperpo-
larized), few voltage-dependent Ca2� channels are open,
and the Ca2� current is small. For larger (depolarized)
holding potentials, many Ca2� channels are open, yielding
a larger Ca2� current.

Besides demonstrating that Ca2� oscillations persist in
the absence of membrane potential oscillations, the study
demonstrated that oscillations died out if the holding po-
tential was not sufficiently depolarized. This could be ex-
plained by a gradual depletion of the ER due to insufficient
replenishment of Ca2�. In other words, redistribution of
Ca2� between ER and mitochondrial pools is not suffi-
cient to prevent the depletion of the intracellular Ca2� in
oscillating cells. However, in cells clamped at �60 mV,
GnRH-induced Ca2� oscillations last for 6–15 min, much
longer than Ca2� signals in voltage-clamped cells respond-
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ing to activation of Ca2�-mobilizing receptors with a
pulse-decay-plateau Ca2� release. This indicates that de-
pletion of the intracellular Ca2� takes longer in cells with
oscillatory Ca2� release (283). As stated above, two Ca2�-
handling mechanisms are operative in GnRH-stimulated
gonadotrophs: redistribution of Ca2� within ER and mi-
tochondrial pools, and a Na�-dependent Ca2� efflux fol-
lowed by Ca2� influx. Thus, it is reasonable to suggest that
GnRH-induced baseline Ca2� oscillation makes gonado-
trophs less dependent on Ca2� influx, in contrast to ago-
nist stimulated lactotrophs and somatotrophs. Consistent
with this, our work with neonatal gonadotrophs showed
that redistribution of Ca2� within the cells dominates in
GnRH-stimulated cells exhibiting baseline Ca2� oscilla-
tions, whereas removal of Ca2� from the cells dominates
in GnRH-stimulated cells showing a prolonged Ca2�

spike, similar to those observed in agonist-stimulated lac-
totrophs and somatotrophs (256).

Experiments with cells voltage-clamped at different po-
tentials also showed that the Ca2� spike frequency in-
creased with increases in the holding potential (for poten-
tials between �60 and �20 mV). The interpretation of
this, reproduced with our model, is that the greater Ca2�

influx provided by increased membrane depolarization
fills the ER to higher levels, increasing the driving force for
the Ca2� spikes so that h does not have to rise as high to
initiate a new spike. Thus, spikes are produced at shorter
time intervals (269, 283).

From the discussion above, it is also evident that Ca2�

oscillations produced by agonist-stimulated gonado-
trophs only require Ca2� flux across the plasma mem-
brane to keep the ER-Ca2� store replenished; no patterned
electrical activity is required. This is unlike other endo-
crine cells, where Ca2� oscillations are due to bursting
electrical activity (70, 184, 291, 293, 294, 733). However,
stimulated gonadotrophs do produce electrical bursting,
due to the bidirectional interactions between the plasma
membrane and the ER (173, 289, 711, 734). Ion channels
in the plasma membrane bring Ca2� into the cell during
each spike, which replenishes the ER and thereby provides
coupling from the membrane to the ER.

Coupling from the ER to the plasma membrane is me-
diated through Ca2�-activated SK channels (70, 72, 172,
173, 176). In mouse gonadotrophs, BK channels also con-
tribute to the hyperpolarization of the plasma membrane
(174). As discussed in Section VIII.A.1, this bidirectional
coupling is also present in thyrotrophs and lactotrophs,
but in agonist-activated gonadotrophs there are intrinsic
activity oscillations in both the plasma membrane and the
ER. Furthermore, after the hyperpolarization, gonado-
trophs do not return to the tonic spiking state that typically
characterizes the unstimulated cell, but instead they ex-

hibit a bursting pattern consisting of tall electrical spikes
clustered into episodes. This bursting behavior is illus-
trated in Fig. 15 using a simple mathematical model from
Ref. 716; a more detailed model can be found in Ref. 711.
The key feature is the antiphasic pattern of electrical ac-
tivity and Ca2� spikes. This is due to the inhibitory action
of each Ca2� spike on the plasma membrane; each Ca2�

spike activates a Ca2�-activated K� current, which termi-
nates electrical spiking. The electrical spiking resumes
once [Ca2�]i returns to a low level after the Ca2� spike.
Thus, the Ca2� oscillator periodically interrupts the
plasma membrane oscillator, producing a bursting pattern
of electrical activity. Thus, the electrical activity and se-
cretion are out of phase; the former serves to refill the ER,
which provides the periodic Ca2� pulse needed to evoke
secretion.However, suchapatternofGnRH-inducedelec-
trical activity still does not protect the L-type Cav channels
from Ca2�-dependent inactivation, resulting in smaller
amplitude of this current (735).

B. Calcium mobilization and secretion
The release of neurotransmitter from neuronal syn-

apses occurs when Ca2� that enters through channels in
the plasma membrane binds to nearby release sites. This
secretion is rapid (less than 1 msec), and the speed of exo-
cytosis is critical for neuronal functions. Thus, it is the
localized high-concentration Ca2� nanodomains that gate
release (346, 736), not the bulk cytosolic Ca2�. This al-
lows single APs to evoke transmitter release, although the
change in the mean [Ca2�]i is small. In contrast, secretion
in pituitary cells is slow. Initially, it was postulated that
one of three reasons could underlie such slow secretion in
endocrine cells: that Cav channels and secretory vesicles
are not molecularly colocalized; that the exocytotic ma-
chinery is intrinsically slower; or that secretory vesicles are

FIG. 15. Model simulation of coupled IP3R and membrane oscillations.
A, Bursting electrical oscillations are produced due to periodic
hyperpolarizations that result from the activation of Ca2�-activated K�

(KCa) current. B, IP3R-mediated oscillations in [Ca2�]i periodically
activate KCa current so that each peak of [Ca2�]i produces a silent
phase of the burst.
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not in close proximity to the plasma membrane to form the
fusion pore (342).

As discussed in Section IV.E.3, spontaneous electrical
activity in corticotrophs, gonadotrophs, and thyrotrophs
does not trigger prominent secretion. In these cells, facil-
itation of VGCI by Bay K 8644, an L-type Ca2� channel
activator, and high K�-induced depolarization of cells
generates large amplitude Ca2� signals and stimulates
ACTH, LH, PRL, and GH secretion (345, 737). In mela-
notrophs, lactotrophs, and somatotrophs, spontaneous
electrical activity is sufficient to activate the exocytotic
pathway, but in these cells spontaneous APs generate
large-amplitude global Ca2� signals. Single-cell record-
ings showed that pituitary cells start secreting at submi-
cromolar [Ca2�]i (738) and therefore have a high Ca2�

affinity (342). This indicates that in pituitary cells secre-
tory vesicles are not colocalized with Cav channels and
that global Ca2� signals are needed to initiate fusion of
vesicles with the plasma membrane.

Consistent with this view, activation of Ca2�-mobiliz-
ing receptors in all endocrine pituitary cell types generates
global Ca2� signals and stimulates secretion. It appears
that the pattern of Ca2� mobilization (pulse-decay-pla-
teau response vs. baseline Ca2� oscillations) is not critical
for activation of the exocytotic pathway, as is shown in
experiments with rat corticotrophs in which both AVP
(the pulse-decay-plateau response) (176) and norepineph-
rine (baseline oscillations) elicit secretion (682). Also, in
L�T2 gonadotrophs, GnRH induces Ca2� oscillations
and hormone secretion, as monitored by measurements of
plasma membrane capacitance (42). In rat gonadotrophs,
the frequency of the oscillations and level of secretion are
dependent on the GnRH level, so there is frequency coding
in the Ca2� response. Furthermore, activation of the exo-
cytotic pathway in GnRH-stimulated gonadotrophs has
nothing to do with the bursting electrical pattern exhibited
by stimulated cells because secretion occurs during the
Ca2� pulses, when the plasma membrane is hyperpolar-
ized (739, 740). These and other data indicate that two fac-
tors contribute to the effective coupling of Ca2�-mobilizing
receptors to secretion in endocrine pituitary cells. First,
Ca2�-mobilizing receptors in pituitary cells generate high
amplitude global Ca2� signals. Second, in corticotrophs
and gonadotrophs, the majority of the secretion is from
release sites colocalized with IP3R in the ER (739). In cor-
ticotrophs, both intracellular Ca2� release and VGCI gen-
erate a spatial Ca2� gradient, such that the local [Ca2�]i

near the exocytotic sites is about 3-fold higher than the
mean [Ca2�]i (741). Thus, the plume of high Ca2� con-
centration that forms near a single IP3R or a cluster of
IP3Rs gates exocytosis. This hypothesis could also account
for the finding that Ca2� evokes exocytosis from mela-

notrophs more effectively when it is released from the ER
than when it is introduced through a recording pipette
(742). Also, in pancreatic acinar cells, both exocytosis and
Ca2� release from the ER through IP3Rs occur at the apical
pole of the cell, suggesting some degree of colocalization
of release sites and IP3Rs (743).

Ca2�-mobilizing receptors trigger not only Ca2� sig-
naling but also several other intracellular signaling path-
ways, which also contribute to the effectiveness of stim-
ulus secretion coupling. One of the major signaling
molecules contributing to the control of exocytosis during
activation of Ca2�-mobilizing receptors is DAG. In asso-
ciation with Ca2�, DAG activates PKC, which has been
shown to have several effects on gonadotrophs. In cells
stimulated by GnRH, activation of PKC by application of
phorbol 12-myristate 13-acetate (PMA) slowed down the
Ca2� oscillations and enhanced the SK current (175).
These two effects appear to be independent because when
unstimulated cells were loaded with IP3, the PMA had no
effect on the frequency of Ca2� oscillations, yet still en-
hanced the SK current induced by the Ca2� oscillations.
This suggests that PKC directly enhances SK current and
also has an effect on PLC. Another study showed that
PMA-activated PKC reduces Ca2� influx in response to
depolarization in gonadotrophs (241). This same study
also found that depolarization-mediated secretion was en-
hanced by PKC, despite the reduction in Ca2� influx. It is
thus apparent that PKC has an action downstream of Ca2�

entry that amplifies secretion.
In chromaffin cells (744) and hippocampal neurons

(745), the activation of PKC by phorbol esters or DAG
increases the size of the readily releasable pool of vesicles
by increasing the rate at which the pool is refilled. To see
whether this was the case in gonadotrophs, flash photol-
ysis was used to uncage Ca2�, and both the membrane
capacitance and the intracellular Ca2� level were mea-
sured (746). With these measurements, the Ca2� depen-
dence of exocytosis was established, in both control cells
and those in the presence of PMA. There was a substantial
left shift of the response curve when PMA was present, but
no significant change in the calculated size of the readily
releasable pool. Thus, it appears that PKC enhances se-
cretion from gonadotrophs by sensitizing the secretory
machinery to Ca2� (746). This is not totally at odds with
the actions of PKC on chromaffin cells and hippocampal
neurons because the fact that the readily releasable pool is
unchanged by PMA in the face of increased secretion sug-
gests that the rate of refilling of the pool is enhanced by the
PMA, as it is in chromaffin cells and hippocampal neu-
rons. The sensitizing actions of PKC in gonadotrophs
could account for the finding that secretion is greater when
[Ca2�]i is elevated by application of GnRH rather than by
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pipette or through photolysis of caged Ca2� (739) because
GnRH would activate PKC via DAG. In lactotrophs, PMA
increases both granule-to-granule and granule-to-plasma
membrane fusion events, which could account for poten-
tiation of secretion by the PKC-dependent pathway (535).

Activation of GnRH receptors in gonadotrophs also
leads to stimulation of phospholipase D (747, 748) in a
PKC-dependent manner (748). This enzyme stimulates
production of phosphatidic acid, which subsequently can
be dephosphorylated to DAG by phosphatidate phospho-
hydrolase to sustain activation of PKC. In chromaffin
cells, phosphatidic acid participates in the control of exo-
cytosis (749). Also, in GT1 cells, the phospholipase D sig-
naling pathway contributes to GnRH release (750). Fur-
ther studies are needed to clarify the relevance of this
signaling pathway in secretion from endocrine pituitary
cells. One of the mechanisms could be activation of stim-
ulus-transcription coupling by the phospholipase D sig-
naling pathway (751) and facilitation of de novo forma-
tion of secretory vesicles. The sustained GnRH-stimulated
and VGCI-dependent LH release is completely blocked by
wortmannin at concentrations that inhibit phosphatidyl-
inositol 4-kinase, an enzyme that participates in inositol
phosphate metabolism (752), suggesting a potential role
of PIP2 in VGCI-dependent gonadotropin secretion. The
steroid background also has a profound effect both on
stimulus-induced Ca2� mobilization and on Ca2�-sensi-
tivity of exocytosis (42, 753–756).

IX. Summary

The introduction of patch clamp techniques (757) was
critical in the electrophysiological characterization of nu-
merous voltage-gated Na�, Ca2�, and K� channels in en-
docrine pituitary cells and their roles in spontaneous elec-
trical activity, as well as in the characterization of receptor
channels expressed in pituitary cells. GPCR-controlled
electrical activity in single pituitary cells was also exten-
sively studiedusingpatchclamptechniques.Thediscovery
of fluorescent dyes that are suitable for intracellular single-
cell recordings, such as Indo-1 and Fura-2 (758), helped
with the study of both the AP-driven rise in [Ca2�]i and the
IP3-driven Ca2� release from ER in pituitary cells. Si-
multaneous measurements of currents and [Ca2�]i or
membrane potential and [Ca2�]i in pituitary cells were
important in characterizing the relationship between spon-
taneous and receptor-controlled electrical activity and Ca2�

signaling, as well as synchronization between Ca2� mobili-
zation and electrical activity. The discovery of fluorescent
dyes for measurements of single-cell exocytosis (759) also
complemented patch clamp capacitative measurements in
studies on Ca2�-dependent hormone secretion (760).

These techniques helped to establish that voltage-gated
channels provide a basic signaling system for individual
pituitary cells. Like neurons, endocrine pituitary cells ex-
press numerous voltage-gated Na�, K�, and Ca2�-con-
ducting channels, as well as cation-conducting cyclic nu-
cleotide-modulated and TRP channels. In contrast to
neurons, propagation of APs within endocrine pituitary
cells is unlikely to occur, and the main function of APs in
pituitary cells is to provide a driving force for Ca2� influx
through Cav channels. It is now well established that in
three of the six endocrine pituitary cells—lactotrophs, so-
matotrophs, and melanotrophs—spontaneous electrical
activity is sufficient to trigger hormone release in the ab-
sence of any stimulus. In gonadotrophs, thyrotrophs, and
corticotrophs, spontaneous electrical activity is probably
not coupled to secretion, at least in a majority of cells in
vitro. It is reasonable to conclude that spontaneous elec-
trical activity maintains these cells in a responsive state
with [Ca2�]i near the threshold level. It is also interesting
to note that this division of cells into two groups is not
consistent with the embryonic development of endocrine
cells (Fig. 1). The pattern of electrical activity (single spikes
vs. pseudo-plateau bursting) and the frequency of firing
determine the AP secretion coupling in single cells. The
channels participating in spike depolarization and repo-
larization are relatively well characterized, whereas fur-
ther work is needed to identify channels responsible for the
pacemaking activity.

The status of the electrical signaling system in pituitary
cells in vivo is critically dependent on the release of stim-
ulating and inhibiting neurohormones from the hypothal-
amus. These agonists act on Gs-and Gi/o-coupled receptors
expressed in pituitary cells (Fig. 16). Not accidentally, the
inhibitory Gi/o/z-coupled receptors are expressed predom-
inantly in cells in which spontaneous electrical activity is
sufficient to trigger hormone secretion; gonadotrophs ex-
press melatonin receptors, but only during embryonic and
neonatal life. It has also been established that inhibition of
spontaneous electrical activity, not inhibition of AC ac-
tivity, accounts for down-regulation of basal PRL, GH,
and �-MSH release. Solid evidence was obtained to sup-
port the concept that GPCRs inhibit electrical activity by
inhibiting Cav channels and/or stimulating Kir channels. In
contrast, activation of Gs-coupled receptors leads to stim-
ulation of electrical activity. Figure 16 shows that the Gs

signaling pathway plays a major role in only two cell types:
somatotrophs and corticotrophs. This signaling system
changes the pattern of electrical activity by facilitating un-
identified Na�-conducting channels and by facilitating
Cav conductance, both in a PKA-dependent manner. The
relevance of potential phosphorylation of TTX-sensitive
Na� channels and cAMP-dependent activation of HCN
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channels to the pattern of electrical activity is minimal in
cultured cells but may play an important role in intact
tissue.

Within the pituitary, there are three additional families
of channels contributing to signaling: gap junction chan-
nels, receptor channels, and intracellular Ca2� release
channels. The role of gap junction coupling is well estab-
lished in folliculostellate cells, but further work is needed
to clarify their relevance in communication among secre-
tory cell types. The potential relevance of these proteins
forming hemichannels is also awaiting clarification. At
least three types of receptor channels are expressed by
pituitary cells: nAChRs, GABAA, and P2XRs. In contrast
to brain cells, where GABAA channels are inhibitory, in

pituitary cells they stimulate electrical activity, as do
nAChRs and P2XRs. GABAA channels are common to all
endocrine cells, as are P2XRs, but there is a cell type-
specific expression of P2XR subtypes of these channels
among pituitary cells. It appears that nAChRs are specific
for POMC-producing melanotrophs and corticotrophs.
From the electrophysiological point of view, these chan-
nels are relatively well characterized. Further work in this
field should be focused on physiological conditions under
which acetylcholine, GABA, and ATP are released.

All pituitary cells have an additional system to control
intracellular calcium, composed of the calcium-conduct-
ing channels expressed in the ER membrane. Endocrine
pituitary cells express at least 15 subtypes of Gq/11-coupled

FIG. 16. GPCR-modulated channel activity in pituitary cells. GPCRs expressed in pituitary cells regulate numerous voltage-gated channels through
intracellular messengers. Top panel shows agonists that activate GPCRs in mammalian cells. Red letters indicate the principal regulators of pituitary
functions, and black letters indicate agonists that modulate pituitary cell function. Note that only somatotrophs utilize all three signaling pathways
and that lactotroph function is regulated by numerous Gi and Gq/11-coupled receptors. Melatonin receptors are present only in neonatal pituitary
gonadotrophs. Bottom panel shows channels expressed in pituitary cells in which gating is affected by an intracellular messenger. The nature of
Nab current is unknown at the present time, as well as the Na�-conducting channel that is phosphorylated by PKA. It has also not been clarified
whether inhibition of erg and M current accounts for agonist-induced depolarization of cells and sustained stimulation. The operation of the
STIM/Orai pathway in pituitary cells has not been established.
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GPCRs (Fig. 16) as well as several receptor tyrosine ki-
nases, whose activation leads to mobilization of intracel-
lular Ca2� in an IP3-dependent manner. Ca2� mobiliza-
tion provides an additional security system for these cells
to control hormone secretion, which is a calcium-depen-
dent process. The pattern of Ca2� release signaling is cell
type specific, but not receptor type specific. Gonadotrophs
have the most sophisticated Ca2� mobilization pathway;
they release Ca2� in an oscillatory manner in response to
activation of any of the Ca2�-mobilizing receptors ex-
pressed in these cells, as well as in response to injection of
IP3, with a frequency of spiking determined by IP3 con-
centrations. Norepinephrine-stimulated corticotrophs
also release Ca2� in an oscillatory manner, but at lower
frequency. In all other pituitary cell types, Ca2�-mobiliz-
ing receptors trigger Ca2� release in a nonoscillatory man-
ner, raising the question of why the sister cells respond
differently to activation of the Gq/11 pathway.

From the physiological point of view, electrically driven
Ca2� signals in somatotrophs, lactotrophs, and mela-
notrophs resemble the signaling pathway of neuronal
cells, requiring high Ca2� in extracellular medium and
APs as a driving force for Ca2� influx and secretion. In
these cells, Ca2� mobilization is a supplementary pathway
to VGCI to up-regulate secretion, and oscillations in
[Ca2�]i are achieved by periodic activation of Cav chan-
nels. The Ca2� release pathway provides only a transient
source for nonoscillatory elevation in [Ca2�]i due to the
continuous opening of the IP3Rs in the presence of agonist,
and Ca2� influx through Cav channels is critical for sus-
tained Ca2� signaling. It is unlikely that capacitative Ca2�

entry is the major driving force for sustained Ca2� influx.
Further studies are needed to identify channels involved in
sustained depolarization in these cells, including TRP
channels that could be activated by Ca2�-mobilizing re-
ceptors. GH cell lines behave similarly, suggesting that
from the Ca2� signaling point of view they are good cell
models.

Gonadotrophs, on the other hand, resemble skeletal
muscle cells, relying on Ca2� mobilization for a prolonged
period and with VGCI controlling the “excitability” of the
ER membrane during receptor activation. In these cells,
oscillations in [Ca2�]i are generated by periodic activation
of IP3Rs during continuous stimulation of Ca2�-mobiliz-
ing receptors due to bidirectional actions of cytosolic Ca2�

on the gating of these channels. Conservation of intracel-
lular Ca2� is achieved by its redistribution between ER
and mitochondria. In contrast to skeletal muscle cells,
there is a “leak” of Ca2� from the cells, and VGCI is
temporally separated from Ca2� mobilization by periodic
activation of SK channels. The Ca2� signaling properties
of gonadotrophs are not preserved in �T3-1 and L�T3

cells, indicating their limited use in the characterization of
Ca2�-dependent cellular processes. Corticotrophs are
likely to have both plasma membrane- and ER-dependent
oscillators operative, but further work is needed to clarify
the mechanisms controlling these oscillators. Finally, the
characterization of Ca2� signaling pathways in thyro-
trophs still is in a preliminary stage.
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452. Villalobos C, Núñez L, Garcia-Sancho J 1996 Functional
glutamate receptors in a subpopulation of anterior pitu-
itary cells. FASEB J 10:654–660

453. Bellinger FP, Fox BK, Chan WY, Davis LK, Andres MA,
Hirano T, Grau EG, Cooke IM 2006 Ionotropic glutamate
receptor activation increases intracellular calcium in pro-
lactin-releasing cells of the adenohypophysis. Am J Physiol
Endocrinol Metab 291:E1188–E1196

454. Poisbeau P, Jo YH, Feltz P, Schlichter R 1996 Electrophys-
iological characterization of non-NMDA glutamate recep-
tors on cultured intermediate lobe cells of the rat pituitary.
Neuroendocrinology 64:162–168

455. Kreft M, Blaganje M, Grilc S, Rupnik M, Zorec R 2006
Glutamate stimulation increases hormone release in rat
melanotrophs. Neurosci Lett 404:299–302

456. Pampillo M, Scimonelli T, Duvilanski BH, Celis ME,
Seilicovich A, Lasaga M 2002 The activation of metabo-
tropic glutamate receptors differentially affects GABA and
�-melanocyte stimulating hormone release from the hypo-

thalamus and the posterior pituitary of male rats. Neurosci
Lett 327:95–98

457. Stojilkovic SS 2009 Purinergic regulation of hypothalamopi-
tuitary functions. Trends Endocrinol Metab 20:460–468

458. North RA 2002 Molecular physiology of P2X receptors.
Physiol Rev 82:1013–1067

459. Khakh BS, North RA 2006 P2X receptors as cell-surface
ATP sensors in health and disease. Nature 442:527–532

460. Surprenant A, North RA 2009 Signaling at purinergic P2X
receptors. Annu Rev Physiol 71:333–359

461. Stojilkovic SS, Koshimizu T 2001 Signaling by extracellu-
lar nucleotides in anterior pituitary cells. Trends Endocri-
nol Metab 12:218–225

462. He ML, Zemkova H, Koshimizu TA, Tomic M, Stojilkovic
SS 2003 Intracellular calcium measurements as a method in
studies on activity of purinergic P2X receptor channels. Am J
Physiol Cell Physiol 285:C467–C479

463. Koshimizu T, Tomic M, Van Goor F, Stojilkovic SS 1998
Functional role of alternative splicing in pituitary P2X2
receptor-channel activation and desensitization. Mol En-
docrinol 12:901–913

464. Koshimizu TA, Kretschmannova K, He ML, Ueno S,
Tanoue A, Yanagihara N, Stojilkovic SS, Tsujimoto G
2006 Carboxyl-terminal splicing enhances physical inter-
actions between the cytoplasmic tails of purinergic P2X
receptors. Mol Pharmacol 69:1588–1598

465. Koshimizu T, Tomic M, Koshimizu M, Stojilkovic SS 1998
Identification of amino acid residues contributing to de-
sensitization of the P2X2 receptor channel. J Biol Chem
273:12853–12857

466. Koshimizu T, Koshimizu M, Stojilkovic SS 1999 Contri-
butions of the C-terminal domain to the control of P2X
receptor desensitization. J Biol Chem 274:37651–37657

467. Koshimizu TA, Van Goor F, Tomic M, Wong AO, Tanoue
A, Tsujimoto G, Stojilkovic SS 2000 Characterization of
calcium signaling by purinergic receptor-channels ex-
pressed in excitable cells. Mol Pharmacol 58:936–945

468. Zemkova H, Balik A, Jiang Y, Kretschmannova K,
Stojilkovic SS 2006 Roles of purinergic P2X receptors as
pacemaking channels and modulators of calcium-mobilizing
pathway in pituitary gonadotrophs. Mol Endocrinol
20:1423–1436

469. Tomic M, Jobin RM, Vergara LA, Stojilkovic SS 1996
Expression of purinergic receptor channels and their role in
calcium signaling and hormone release in pituitary gona-
dotrophs. Integration of P2 channels in plasma membrane-
and endoplasmic reticulum-derived calcium oscillations.
J Biol Chem 271:21200–21208

470. Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP,
Spyer KM, Burnstock G 2003 Pivotal role of nucleotide
P2X2 receptor subunit of the ATP-gated ion channel me-
diating ventilatory responses to hypoxia. J Neurosci 23:
11315–11321

471. Zemkova H, Yan Z, Liang Z, Jelinkova I, Tomic M,
Stojilkovic SS 2007 Role of aromatic and charged ectodo-
main residues in the P2X(4) receptor functions. J Neuro-
chem 102:1139–1150

472. Jelínkova I, Vávra V, Jindrichova M, Obsil T, Zemkova
HW, Zemkova H, Stojilkovic SS 2008 Identification of
P2X(4) receptor transmembrane residues contributing to
channel gating and interaction with ivermectin. Pflugers
Arch 456:939–950

906 Stojilkovic et al. Channels in the Pituitary Gland Endocrine Reviews, December 2010, 31(6):845–915



473. Jindrichova M, Vavra V, Obsil T, Stojilkovic SS, Zemkova
H 2009 Functional relevance of aromatic residues in the
first transmembrane domain of P2X receptors. J Neuro-
chem 109:923–934

474. He ML, Gonzalez-Iglesias AE, Stojilkovic SS 2003 Role of
nucleotide P2 receptors in calcium signaling and prolactin
release in pituitary lactotrophs. J Biol Chem 278:46270–
46277

475. Zemkova H, Kucka M, Li S, Gonzalez-Iglesias AE, Tomic
M, Stojilkovic SS 2010 Characterization of purinergic
P2X4 receptor channels expressed in anterior pituitary
cells. Am J Physiol Endocrinol Metab 298:E644–E651

476. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K,
Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S,
Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda
H, Kamiya A, Ando J 2006 Impaired flow-dependent con-
trol of vascular tone and remodeling in P2X4-deficient
mice. Nat Med 12:133–137

477. Troadec JD, Thirion S 2002 Multifaceted purinergic reg-
ulation of stimulus-secretion coupling in the neurohypoph-
ysis. Neuro Endocrinol Lett 23:273–280

478. Troadec JD, Thirion S, Nicaise G, Lemos JR, Dayanithi G
1998 ATP-evoked increases in [Ca2�]i and peptide release
from rat isolated neurohypophysial terminals via a P2X2
purinoceptor. J Physiol 511:89–103

479. Knott TK, Marrero HG, Custer EE, Lemos JR 2008 En-
dogenous ATP potentiates only vasopressin secretion from
neurohypophysial terminals. J Cell Physiol 217:155–161

480. He ML, Gonzalez-Iglesias AE, Tomic M, Stojilkovic SS
2005 Release and extracellular metabolism of ATP by ecto-
nucleotidase eNTPDase 1–3 in hypothalamic and pituitary
cells. Purinergic Signal 1:135–144
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681. Link H, Dayanithi G, Föhr KJ, Gratzl M 1992 Oxytocin at
physiological concentrations evokes adrenocorticotropin
(ACTH) release from corticotrophs by increasing intracel-
lular free calcium mobilized mainly from intracellular
stores. Oxytocin displays synergistic or additive effects on
ACTH-releasing factor or arginine vasopressin-induced
ACTH secretion, respectively. Endocrinology 130:2183–
2191

682. Tse A, Tse FW 1998 �-Adrenergic stimulation of cytosolic
Ca2� oscillations and exocytosis in identified rat cortico-
trophs. J Physiol 512:385–393

683. Armstrong J, Childs GV 1997 Changes in expression of
epidermal growth factor receptors by anterior pituitary
cells during the estrous cycle: cyclic expression by gona-
dotropes. Endocrinology 138:1903–1908

684. Jabbour HN, Boddy SC, Lincoln GA 1997 Pattern and
localisation of expression of vascular endothelial growth
factor and its receptor flt-1 in the ovine pituitary gland:
expression is independent of hypothalamic control. Mol
Cell Endocrinol 134:91–100
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