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Heterogeneity is at the core of biological systems. The presence of

heterogeneity might be an important feature (1–3) but, from an

experimental point of view, it makes it harder to understand the

system. Within an organism, there are many different cell types

and, within each cell type, there is considerable variation (4). In

addition, there are multiple sources of heterogeneity, such as sto-

chastic gene expression (5), different cellular stages (6) and varia-

tion in channel ⁄ receptor modulation ⁄ expression (7).

Modelling approaches to heterogeneity have traditionally focused

on two main goals. One aims to construct models that can repro-

duce all behaviours observed in the experimental data (8, 9),

whereas the other is concerned with understanding how the

observed heterogeneity may contribute to the overall performance

of a system (10, 11). Our approach is to use mathematical model-

ling to uncover the source of the heterogeneity.

We look at the responses of anterior pituitary lactotrophs to a

Ca2+ mobilising agonist as a case study. It is widely recognised

that these cells are very heterogeneous (12–17). Such variability is

expressed in terms of electrical activity (18, 19), Ca2+ signalling

(17, 18, 20, 21), hormone secretion (18, 22) and responsiveness to

regulatory hormones (18, 23–25). Specifically, we look at the cyto-

solic Ca2+ response to thyrotrophin-releasing hormone (TRH). This

neurohormone mobilises Ca2+ from the endoplasmic reticulum

(ER) via activation of the Gq signalling pathway (26). The intracel-

lular Ca2+ response consists of an initial spike and a subsequent

plateau phase (26). The spike phase corresponds to rapid Ca2+

mobilisation from the ER, causing a transient increase of Ca2+ in

the cytosol that is followed by a decay in the cytosolic Ca2+ con-

centration. The plateau phase is characterised by Ca2+ influx

through voltage-dependent and -independent Ca2+ channels (27).

To facilitate the analysis, we focus solely on heterogeneity in the

spike phase, by applying TRH in the absence of extracellular Ca2+

to remove the plateau. First, we show that the spike response is

very heterogeneous across the cell population, although the

response of each cell is self-consistent during the course of the

experiment. We then use a mathematical model of the spike

response combined with sensitivity analysis to examine the source

of heterogeneity.
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Cell responses are commonly heterogeneous, even within a subpopulation. In the present study,

we investigate the source of heterogeneity in the Ca2+ response of anterior pituitary lactotrophs

to a Ca2+ mobilisation agonist, thyrotrophin-releasing hormone. This response is characterised

by a sharp increase of cytosolic Ca2+ concentration as a result of mobilisation of Ca2+ from

intracellular stores, followed by a decrease to an elevated plateau level that results from Ca2+

influx. We focus on heterogeneity of the evoked Ca2+ spike under extracellular Ca2+ free condi-

tions. We introduce a method that uses the information provided by a mathematical model to

characterise the source of heterogeneity. This method compares scatter plots of features of the

Ca2+ response obtained experimentally with those made from the mathematical model. The

model scatter plots reflect random variation of parameters over different ranges, and matching

the experimental and model scatter plots allows us to predict which parameters are most vari-

able. We find that a large degree of variation in Ca2+ efflux is a likely key contributor to the

heterogeneity of Ca2+ responses to thyrotrophin-releasing hormone in lactotrophs. This tech-

nique is applicable to any situation in which the heterogeneous biological response is described

by a mathematical model.
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Sensitivity analysis is often used to study the robustness of a

model to variation in parameter values. That is, a parameter in the

model is varied and the effect on the output is monitored.

Although very useful in the analysis of the model, this type of

manipulation is rarely possible in an experimental context. Instead,

in the present study, we use the heterogeneity in the Ca2+ response

to TRH to identify relationships between the observables of the

response, and then compare these relationships with those obtained

from a population of model cells with different degrees of variation

in each parameter. The comparison between experimental and

model data is enhanced by the results of the sensitivity analysis,

which provides us with a framework to interpret these relation-

ships. This approach can be extended to study other features of

cells or cellular networks provided that a mathematical model exists

for the system.

Materials and methods

Cell dispersion and lactotroph enrichment

Pituitary cell dispersion was conducted using papain ⁄ DNAse enzymatic

digestion as previously described (28), pooling pituitary glands from several

adult Sprague-Dawley pro-oestrus female rats. Anterior pituitary lactotrophs

were enriched using a previously described protocol (29). Briefly, a Percoll-

bovine serum albumin (0.3%) discontinuous density gradient was made by

sequentially adding 2-ml layers of Percoll at densities of 70%, 60%, 50%

and 35% (from bottom to top) to a 15-ml Falcon tube. Freshly dispersed

anterior pituitary cells were placed on top of this gradient. After 30 min of

centrifugation at 1500 g at room temperature, the cells at the interface

between the 50% and the 35% layers were washed in medium 199 and

centrifuged for 10 min at 600 g, resuspended, counted, plated on 1.5 glass

bottom dishes (250 000 per dish), and cultured for 1 day in medium 199

with 10% foetal bovine serum. Viability of cells, determined by trypan blue

exclusion, was always ‡ 95%. All cells in the lactotroph-enriched culture

that responded to TRH were considered to be lactotrophs (28, 30).

Calcium imaging

During each of the experiments (n = 12), the field of view contained an

average of 20 cells. The cells were rinsed once with HEPES-buffered saline

(HBS) and then incubated in HBS containing 2 lM of fura-2-AM (Molecular

Probes, Carlsbad, CA, USA) for 45 min at room temperature. The cells were

then rinsed three times with HBS, placed on the stage of an inverted micro-

scope and continuously perfused with HBS at room temperature. TRH

(10)7
M) was bath applied for periods of 1 min. Pairs of images were

acquired every 2 s with a 12 bit charge-coupled device camera set to 8 · 8

binning, controlled by TI WORKBENCH software developed by T. Inoue (Waseda

University, Tokyo). The software also controlled the alternating illumination

of the cells with 340- and 380-nm light beams. [Ca2+]i is expressed as the

ratio of the intensity of the light emitted by cells after stimulation with 340

and 380 nm light (F340 ⁄ F380). We assumed that the ratio R = F340 ⁄ F380 was

sufficiently far from the saturation portion of its curve to consider [Ca2+]i to

be a linear function of R.

Data analysis

The data consist of time series of Ca2+ fluorescence imaging. For each cell’s

time series, we first subtracted the average Ca2+ level so that each response

had a baseline Ca2+ level of zero and then we computed three measures:

the peak, the decay rate and the area under the curve. The decay rate was

computed by fitting an exponential decay function to each time series. The

analysis was performed in Matlab (The Mathworks, Natick, MA, USA). The

code used for the analysis is available elsewhere (http://www.math.fsu.edu/

~bertram/software/pituitary).

Two-compartment model

We use a two-compartment model (31) that describes the dynamics of cal-

cium concentration in the cytosol and in the ER (Fig. 1).

This model contains the essential elements for Ca2+ dynamics in pituitary

cells. The concentration of Ca2+ in the cytosol is a function of Ca2+ flux

across the plasma membrane (Jmem) and the ER membrane (Jer). The differ-

ential equation for the concentration of free cytosolic Ca2+ (Ca) is:

dCa

dt
¼ fc Jmem � Jerð Þ ð1Þ

where fc is the fraction of free cytosolic Ca2+, and:

Jmem ¼ Jin � Jout: ð2Þ

To replicate the experimental conditions, we set the rate of Ca2+ influx to

zero (i.e. Jin = 0) but we retain Jin temporarily during the development of

the reduced model. The Ca2+ efflux (Jout) results from the combined action

of plasma membrane Ca2+-ATPase pumps and Na+-Ca2+ exchangers. Previ-

ous findings suggest that the exchangers play a minor role (32), so we do

not include them in the model. The plasma membrane Ca2+ pump rate is

assumed to be linear:

Jout ¼ kpmcaCa ð3Þ

where kpmca is the constant pump rate.

The concentration of Ca2+ in the ER (Cer) is a function of Ca2+ flux

through the ER membrane and is described by:

dCer

dt
¼ fervJer ð4Þ

TRH

ER

Cer(0)
pIP3

pleak

kserca

kpmca

Ca2+

Jin

Fig. 1. Representation of the simplified model of Ca2+ dynamics. Each Ca2+

flux is represented by an arrow with the corresponding parameter name.

Parameter values and definitions are provided in Table 1. ER, endoplasmic

reticulum; TRH, thyrotrophin-releasing hormone.
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where fer is the fraction of free Ca2+ in the ER, and v is the ratio of the

cytosolic to the ER volume (vc ⁄ ver).We model the flux through the ER mem-

brane as:

Jer ¼ Jserca � Jip3 � Jleak: ð5Þ

Here, Jserca describes the flux through sarco ⁄ endoplasmic reticulum Ca2+-

ATPase pumps (SERCA), whereas Jleak and Jip3 describe the flux from the ER

into the cytosol as a result of leakage and inositol trisphosphate (IP3) recep-

tor ⁄ channel permeability. These are described by:

Jserca ¼ ksercaCa ð6Þ

Jleak ¼ pleak Cer � Cað Þ ð7Þ

Jip3 ¼ pip3 Cer � Cað Þ ð8Þ

where kserca represents the SERCA pumps rate (we assume a linear pump

flux), and pleak and pip3 are the flux rates through leakage and IP3 channels,

respectively. All parameter values are listed in Table 1. The differential equa-

tions were solved numerically (Fig. 2) using the Runge–Kutta fourth order

method in XPPAUT (33).

Model reduction

Here, we use the rapid equilibrium approximation to simplify the model and

obtain formulae for some features of interest. This technique makes use of

the fact that, if two variables change on very different time scales, the fas-

ter one can be approximated by its equilibrium value. In our model, this is

the case for the cytosolic Ca2+ concentration, which changes much faster

than the ER Ca2+ concentration (34). The rapid equilibrium approximation is

obtained by setting Eqn (1) to zero and solving for the (quasi-equilibrium)

Ca2+ concentration (Caeq):

Caeq ¼
Jin þ pleak þ pip3

� �
Cer

kpmca þ kserca þ pleak þ pip3
: ð9Þ

By substituting Caeq for Ca in Eqn (4), we obtain:

dCer

dt
¼ ferv xJin � 1� xð Þ pleak þ pip3

� �
Cer

� �
ð10Þ

with:

x ¼ kserca þ pleak þ pip3

kpmca þ kserca þ pleak þ pip3
: ð11Þ

Equation (10) is a differential equation that we can solve analytically pro-

vided that Jin is constant or piecewise constant, obtaining:

Cer ¼ Cerð0Þ �
k1

k2

� �
e�k2t þ k1

k2
ð12Þ

where Cer(0) is the initial concentration of Ca2+ in the ER. In our analysis,

this would correspond to the point in time when TRH is applied. In addition:

k1 = fermxJin, and

k2 ¼
fervkpmca pleak þ pip3

� �
kpmca þ kserca þ pleak þ pip3

: ð13Þ

The reduced model is thus composed of Eqns (9,12). To simulate the TRH

response, we switch the value of pip3 from zero to a positive value, instan-

taneously activating the IP3 channels and producing a cytosolic Ca2+ spike

that then decays to its baseline concentration. The TRH response is thus

reduced to an exponential decay from the peak Ca2+ value (Fig. 2).

Using the reduced model, we can derive analytical expressions for the

same features that we measure from the experimental data: the peak of the

Ca2+ response, the rate of decay and the area under the curve (Fig. 2). The

peak of the Ca2+ response is computed from Eqn (9), increasing the IP3

channel flux rate from 0 to pip3:

Peak ¼
Jin þ pleak þ pip3

� �
Cerð0Þ

kpmca þ kserca þ pleak þ pip3
: ð14Þ

The peak increases with an increase of the IP3 channel flux rate (pip3),

the concentration of Ca2+ in the ER at the time of agonist application

[Cer(0)], the Ca2+ leakage rate (pleak) and the amount of Ca2+ influx (Jin). The

rate of decay k2 is defined in Eqn (13) and is a function of several parame-

ters. A quick investigation reveals that the decay rate increases with pip3,

pleak and the rate of Ca2+ extrusion from the cytosol through the plasma

membrane calcium pumps (kpmca). Finally, we compute the area under the

response curve, as the integral of Eqn (9) assuming no Ca2+ influx (Jin = 0),

taken from the peak until Ca2+ returns to its baseline concentration, which

simplifies to:

Area ¼ Cerð0Þ
fermkpmca

: ð15Þ

Equation (15) reveals that the area is equal to the peak ⁄ decay rate,

which is proportional to the concentration of [Ca2+]ER at the time of agonist

application and inversely proportional to the rate of Ca2+ extrusion via

Table 1. Default Parameter Values.

Parameter Value Definition Units

fc 0.01 Fraction of free cytosolic calcium

fer 0.01 Fraction of free ER calcium

N 30 Ratio of cytosol to ER volume

pleak 0.0002 Leakage from ER into the cytosol ms)1

pip3 0.004 Rate of IP3 channels flux ms)1

Cer(0) 132 Initial concentration of calcium in the ER lM

kpmca 0.15 Plasma membrane pump rate ms)1

kserca 0.3 SERCA pump rate ms)1

ER, endoplasmic reticulum; IP3, inositol trisphosphate; SERCA, sarco ⁄ endo-

plasmic reticulum Ca2+-ATPase pump.
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Fig. 2. Comparison of the two-compartment (solid line) and the reduced

(dashed line) model. The features measured in the model and experimental

data (peak, decay rate and area) are also illustrated.
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plasma membrane Ca2+ pumps. It is interesting that the area does not

depend on the IP3 channel flux, although both the height of the peak and

the decay rate do (Eqns 13,14). A larger Jip3 increases the peak and produces

a compensatory increase in the decay rate, so that the area is unchanged.

The reduced model, Eqns (9,12), overestimates the peak response to a simu-

lated application of TRH (Fig. 2). However, it retains the relationships

between peak, decay rate, and area that are needed for comparisons with

experimental data.

Results

Between-cell variation is larger than within-cell variation

The present study investigates the heterogeneity in the lactotroph

response to TRH. First, we show that changes in cellular behaviour

that emerge during the time course of the experiments do not con-

tribute to heterogeneity. We recorded Ca2+ responses to a 1-min

challenge of TRH (100 nM). Consecutive TRH applications were given

30 min apart to allow ER stores to replenish between applications

(35). Each challenge of TRH was applied in the absence of extracel-

lular Ca2+ (removed 5 min before and added back 5 min after TRH

treatment), to prevent Ca2+ influx into the cell during the stimula-

tion. This removes one potential factor in the response hetero-

geneity. Figure 3(A) shows thirteen Ca2+ traces from individual

lactotrophs responding to the same application, exhibiting consider-

able variability. By contrast, Fig. 3(B--E) shows traces from four dif-

ferent cells subjected to two consecutive TRH applications. In each

cell, the response to the second TRH application was very similar to

that of the first application. Thus, during the time course of our

observations, there is heterogeneity in the TRH response between

cells, although with uniformity of response within single cells to

multiple TRH applications. This also shows that the observed heter-

ogeneity is not a result of measurement noise.

Single parameter sensitivity analysis

Between any two cells, there are many potential differences that

could result in the heterogeneity of the Ca2+ response. Our goal is

to determine where this variation is more likely to be found. For

example, is variation in the rate of Ca2+ flux through SERCA a more

likely source of measurable heterogeneity than variation in the flux

through plasma membrane pumps or G-protein coupled receptor

activities?
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Fig. 3. Heterogeneity of the Ca2+ response to thyrotrophin-releasing hormone (TRH) in pituitary lactotrophs. In all panels, the x-axis shows time in seconds,

and the y-axis shows the Ca2+ fluorescence ratio (F340 ⁄ F380). (A) Thirteen individual Ca2+ traces from the same experiment. Extensive variation exists in the

peak, area, latency of response and decay rate. (B–E) Examples of single cell Ca2+ traces from the same experiment showing very similar responses to two suc-

cessive challenges of TRH, 30 min apart.
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Analysis of a mathematical model can help us address this ques-

tion. The model described in the Materials and methods contains

several parameters that represent factors such as SERCA or plasma

membrane pump rates. One can study how variation in these

parameter values affects a simulated response to TRH. This is the

goal of sensitivity analysis, which determines how sensitive a model

output is to changes in parameter values. Because we derived ana-

lytical expressions for the features we want to measure, we would

not need to implement sensitivity analysis in the standard way (the

formula for each feature could be plotted as a function of each

parameter). We do it here to show the procedure that one would

use in the more typical case where analytical expressions for the

features cannot be obtained. We quantify the effects of parameter

changes using the relative change (RC) in model output (y) given a

change (Dp) in the parameter value (p):

RCðpÞ ¼ y pþ Dpð Þ � y pð Þ
y pð Þ ; ð16Þ

where Dp is the absolute change (positive or negative) in the

default value of p. The relative change in p is then a = Dp ⁄ p. For

example, if a = 0.1 and RC(p) = 0.5 then a 10% increase in the

parameter corresponds to a 50% increase in model output. We sim-

ulate the TRH application with the model, and use the free cytosolic

Ca2+ concentration (the Ca variable) time course to determine the

peak, the decay rate and the area under the curve. Each of these

features is used, separately, in Eqn (16) to calculate the sensitivity

of the feature to changes in the various model parameters. In our

simulations, we changed the value of each parameter considered by

as much as 70% of its default value.

We start by looking at the effects of changing the concentration

of Ca2+ in the ER ([Ca2+]ER) at the time of the simulated TRH appli-

cation, Cer(0) (Fig. 4A). By increasing this parameter, we observe a

positive linear effect on the peak and on the area (overlapping

symbols), whereas there is no effect on the decay rate. Thus,

increasing the initial [Ca2+]ER results in an increase of the peak and

the area of the response. This happens because there is more Ca2+

available for release through the IP3 channels, increasing the peak

of the response. Because the decay rate is unchanged, the area is

increased as a result of the increase in the peak.

We next examine the effects of changing the parameter that

describes the efficacy of the IP3 pathway (pip3), determining the

magnitude of the Ca2+ flux through activated IP3 channels subse-

quent to agonist binding to the TRH receptor. Variation in this

parameter reflects the multiple events involved in the Gq signal-

ling pathway, from the extent of receptor occupancy and cou-

pling, to the number of IP3 receptors present on the ER

membrane. Figure 4(B) shows that increasing pip3 increases both

the peak and the decay rate (overlapping symbols), whereas there

is no effect on the area. Thus, the increase in the peak is exactly

compensated by the increased decay rate, keeping the area con-

stant. It is interesting that, although an increase in either Cer(0)

or pip3 increases the capacity for a robust response to stimulation,

their effect on the three features are quite different. This reflects

the fact that increasing Cer(0) increases the driving force for the
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response, whereas increasing pip3 increases the permeability of the

release pathway.

The effects of changing the SERCA pump rate are considered

next (kserca, Fig. 4C). Increasing this parameter decreases the peak

and the decay rate (overlapping symbols), although it has no effect

on the area. We observed the same property with changes in pip3,

where variations in the peak and decay rate exactly compensate so

that there is no change in the area.

Changes in the rate of cytosolic Ca2+ extrusion are shown in

Fig. 4(D). A change in this parameter (kpmca) affects all of the fea-

tures nonlinearly. An increase in kpmca reduces the peak and the

area but increases the decay rate. This happens because, by increas-

ing kpmca, we increase the rate at which Ca2+ is extruded from the

cytosol, which in turn blunts the TRH response and accelerates the

return of Ca2+ to the basal level.

It is clear that the different parameters have different effects on

each of the features. For example, kserca and kpmca have opposite

effects on the decay rate but similar effects on the peak, whereas

pip3 and kserca have opposite effects on peak and decay rate but no

effects on the area. A summary of the effects of each parameter

on the measured features from the model output is presented in

Table 2.

Feature scatter plots

Using sensitivity analysis helps us to gain insight into a biological

system, although it suffers from an inconvenient caveat: it cannot

be directly applied experimentally. That is, we can change a param-

eter in the model by a desired amount and observe the effect that

it has on the output but we can rarely do the same in an actual

experiment. We can, however, use the information gained from

sensitivity analysis in a different way.

First, we construct scatter plots of the measured features from

experimental data. The results from one experiment are shown in

Fig. 5. One can, for example, construct a plot of all the peaks

against all the decay rates, or all the peaks against all the areas,

and so forth. In the example shown, there is no correlation between

decay rate and peak (Fig. 5A), a strong positive correlation between

area and peak (Fig. 5B) and a negative correlation between decay

rate and area (Fig. 5C). In these scatter plots, we standardise the

data; thus, for example, a peak of two corresponds to a peak that

is two standard deviations from the mean of the experiment [i.e.

(x–lx) ⁄ rx = 2].

Now, using the model, we can construct a plot similar to the

scatter plot made with experimental data by varying one or more

parameters. We can then compare the plots resulting from the

experimental data to those obtained from the simulations to gain

insight into which parameter(s) is most likely responsible for the

response variability in the cell population.

We begin by examining model scatter plots obtained by changing

one parameter at a time (Fig. 6, arrows indicate direction of param-

eter increase). Figure 6 is constructed using the same model results

as Fig. 4 but plotted in a different way. Figure 6(A) shows the scat-

ter plot between the decay rate and the peak. Changes in kserca and

pip3 both result in a positive correlation between peak and decay

rate. That is, variations (positive or negative) in either parameter

produce points on a curve with positive slope in the decay rate-

peak plane. This is clear from inspection of the expressions for

decay rate (Eqn 13) and peak (Eqn 14). The kserca (or pip3) parameter

appears in the same position in each equation; thus, changing this

parameter will affect these two features in a similar way. Changes

in kpmca result in a negative correlation between peak and decay

rate. This happens because in the expressions for these two fea-

tures kpmca appears in the numerator of one (Eqn 13) and in the

denominator of the other (Eqn 14), so an increase in one corre-

sponds to a decrease of the other. Changes in Cer(0) have no effect

on the decay rate but have a large effect on the peak because

Cer(0) only appears in the numerator of the peak equation (Eqn 14).

Taken together, these observations indicate that in the decay rate-

peak feature space variations in different parameters produce very

different patterns; some patterns have positive slope, some have

Table 2. Summary of the Effects of Model Parameters on the Features.

Parameter Peak Decay rate Area

Cer(0) + 0 +

pip3 + + 0

kserÊ ) ) 0

kpmca ) + )

A plus (minus) sign indicates that an increase (decrease) in parameter value

results in an increase in the feature; a zero indicates that changing the

parameter value has no effect on the feature.
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negative slope, and some are vertical. Importantly, the pattern is a

reflection of the parameter that is varied.

Next, we examine the scatter plot between peak and area

(Fig. 6B). In this case, changing pip3 and kserca affects the value of

the peak but not the area (because neither of these parameters

appears in Eqn 15). Changes in Cer(0), or in kpmca, result in a posi-

tive correlation between area and peak, although with different

slopes (both parameters appear in Eqns 14 and 15). In the area-

peak feature space, no parameter introduces a negative correlation,

so we should always expect either no correlation or a positive cor-

relation between these two features.

The scatter plot between area and decay rate (Fig. 6C) reveals

that changes in pip3 and kserca affect the decay rate but not the

area. Conversely, changes in Cer(0) affect the area but not the

decay rate. Finally, changing kpmca results in a negative correlation

between area and decay rate because changes in this parameter

affect the decay rate more than the peak, resulting in higher peaks

having faster decays and consequently smaller areas. As a result,

one should expect either no correlation or a negative correlation

between these features.

In summary, variations in the different model parameters pro-

duce distinct patterns in the different slices (scatter plots) through

feature space. The relationships (positive, negative or zero) of the

scatter plot curves can be determined from the sensitivity analysis

(Fig. 4) or, if available, from the analytical expressions for the dif-

ferent features.

Multiple parameter variation

Here, we investigate the correlation patterns of the model feature

scatter plots obtained by changing multiple parameters simulta-

neously, using the single parameter scatter plots to aid with the

interpretation. We started by using equal variation in all the param-

eters. For each parameter, we selected a random value from a
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uniform distribution that spans �50% of its default value. The

results show a positive correlation in the decay rate against peak

(Fig. 7A), and area against peak feature scatter plots (Fig. 7B). No

correlation is found between decay rate and area (Fig. 7C). The sin-

gle parameter correlation patterns in Fig. 6 help our understanding

of how these multiple parameters correlations originate. The posi-

tive correlation between decay rate and peak (Fig. 7A) arises

because changes in both kserca and pip3 give positive correlations,

whereas only variation in kpmca results in a negative correlation

(Fig. 6A). The positive correlation between area and peak (Fig. 7B)

arises because variation of all parameters gives either a positive

correlation or no correlation (Fig. 6B). The absence of a correlation

between area and decay rate (Fig. 7C) suggests that the influence

of kpmca variation (which would create a negative correlation) is

dominated by the influence of variation in the other parameters

(which results in no correlation) (Fig. 6C).

The feature scatter plots obtained from the model (Fig. 7A--C),

however, are not in good agreement with the corresponding scatter

plots obtained from the experimental data (Fig. 5). In both cases,

there is a positive correlation between peak and area, although the

experimental scatter plots show no correlation between decay rate

and peak, and a negative correlation between area and decay rate.

Analysis of the one parameter scatter plots (Fig. 6) suggests that

increasing the variation in kpmca relative to the variation of other

parameters should remove the correlation between decay rate and

peak and, at the same time, introduce a negative correlation

between area and decay rate, as shown in Fig. 5.

Thus, we tested unequal variation in a different set of simula-

tions. Parameters kserca, pip3 and Cer(0) were chosen from a uniform

distribution that spans �25% of the default parameter value.

Parameter kpmca was chosen from a wider uniform distribution

spanning �50% of the default parameter value. The results of

these simulations (Fig. 7D–F) show a good qualitative agreement

with the experimental data. That is, in both model and experimental

scatter plots, there was no correlation Fig. 7(D), a positive correla-

tion in Fig. 7(E), and a negative correlation in Fig. 7(F).

Is a larger variation in kpmca the only way to reproduce the

correlation patterns, or can other combinations of parameters

be found to achieve this? To check this, we used 10% or 50%

variation of each parameter. Since there are four parameters

[kpmca, kserca, pip3 and Cer(0)], there are sixteen possible combinations

of small ⁄ large parameter variations.

In the first two combinations, all parameters are drawn from dis-

tributions with the same variation. We denote these as HHHH and

LLLL, for high and low variation, respectively. The next sets of com-

binations consist of one of the four parameters being drawn from

the high variation distribution and all the others from the low vari-

ation distribution (HLLL, LHLL, etc.). Next, we draw two parameters

from the high distribution and two from the low distribution.

Finally, three are drawn from the high distribution and one from

the low distribution.

We present the results of these simulations using yet one more

scatter plot, this time between two correlation values. We plotted

together experimental data (Fig. 8, black triangles) and simulation
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results (Fig. 8, squares and circles). The value of the correlation

between decay rate and peak is on the horizontal axis, whereas the

value of the correlation between area and decay rate is plotted on

the vertical axis. Plotted this way, we see that the correlation pairs

measured from the data lie almost on a line with positive slope.

This line connects positive correlations on the horizontal axis and

small negative correlations on the vertical axis with negative corre-

lations on the horizontal axis and larger negative correlations on

the vertical axis.

We distinguished between two categories in the simulations.

First, there are simulations in which at least kpmca was chosen from

a high distribution (HLLL, HHLL, HHHL, etc.). These are the grey

squares in Fig. 8. The open circles represent all other combinations

(LLLL, LLLH, LLHH, etc.).

Comparison of model with experimental correlations shows that

the agreement is best when Cer(0), kpmca and another parameter

have high variation. The points that most closely match the experi-

mental results correspond to the HLLH, HHLH and HLHH combina-

tions, all of which have a larger variation in kpmca and Cer(0). Thus,

the analysis suggests that the most likely highly variable physical

quantities in the lactotroph population used in these experiments

are the plasma membrane pump rate and the level of Ca2+ concen-

tration in the ER at the time of agonist application.

Discussion

The goal of the present study was to evaluate the likely source of

heterogeneity in the cytosolic Ca2+ response to Ca2+ mobilisation.

We described a method that combines scatter plots from

experimental data with those made with a mathematical model.

This allows the prediction of the primary source of heterogeneity.

We illustrated the technique using the cytosolic Ca2+ response of

pituitary lactotrophs to TRH challenge as a case study. From each

Ca2+ trace, we extracted three features: the peak, the decay rate

and the area under the curve. We found that kpmca is one parame-

ter that must vary across cells more than other parameters. This

suggests that the Ca2+ extrusion pathway varies extensively among

cells. Previous findings suggested that TRH may modulate the activ-

ity of the plasma membrane Ca2+ ATPase pump (36), which might

contribute to the observed kpmca heterogeneity.

We also found that variability in the Ca2+ concentration in the

ER is likely a key element of heterogeneity in the response to

TRH. This variability of [Ca2+]ER might be explained by the fact

that cells that exhibit high degree of spontaneous activity would

tend to have a higher ER Ca2+ level as a result of Ca2+ influx

during electrical activity, as opposed to silent cells, which may

have low ER Ca2+ level. The absence of dopamine inhibition in

our in vitro conditions may increase the level of spontaneous

activity (12, 19), which would allow the expression of the variabil-

ity in the ER Ca2+ level.

In previous studies (17, 37), pituitary lactotrophs were challenged

over a range of concentrations of TRH, essentially performing a

sensitivity analysis. It was found that the peak of the Ca2+ response

increases, up to a maximum, whereas, at the same time, the spike

duration decreases. This relation between peak and spike duration

corresponds to a positive correlation between peak and decay rate

using the method we describe. Although this relationship is present

in the single parameter sensitivity analysis of pip3 (Fig. 6A), it does

not appear in the peak versus decay rate scatter plot of the experi-

mental data (Fig. 5A) or in the model scatter plot with non-uniform

parameter variation (Fig. 7D). This apparent discrepancy is a result

of the very large variation in Ca2+ mobilisation imposed by the

range of TRH concentrations in (17, 37). This would be much larger

than the natural variation occurring within a population of cells all

exposed to the same dose of TRH. Thus, when looking at the results

within a single dose of TRH, the positive correlation between peak

and decay rate predicted by single parameter sensitivity analysis

can be masked by variations in other parameters. This illustrates

that, even when single parameter sensitivity analysis can be

achieved experimentally, its results reveal little about the intrinsic

heterogeneity within the cells.

In the data from different cells, all the parameters are varied at

the same time, producing the observed variability. One way that

mathematical models are sometimes adapted to such heteroge-

neous data is to adjust parameters so that the model output

matches the mean of the experimental data. Another approach is

to use a range of parameter values so that the distribution of

model output matches the distribution of the experimental data.

We use neither of these approaches; instead, we look at the quali-

tative relationships between features and determine which parame-

ters must vary the most to reproduce these qualitative relations.

We did so by drawing parameter values from a uniform distribu-

tion. Other distributions could be used, although the basic proce-

dure would be the same. We assumed that the parameters of the
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model were uncorrelated. That is, the biological components that

the parameters represent are independent of each other. This may

not be the case. For example, the expression levels of plasma mem-

brane and SERCA pumps could be linked, so that cells would

express high or low levels of both. To our knowledge, there are no

data describing these linkages.

The model we used was simplified to derive analytical expres-

sions, improving our understanding of the dynamics involved in the

Ca2+ response to TRH. More complete mathematical models could

be used, at the expense of more parameters. For example, one

could incorporate a detailed description of all the intracellular

events that take place from the binding of TRH to the opening of

the IP3 receptors. These events include G-protein subunit dissocia-

tion, phospholipase C activation, IP3 formation and binding to

receptors, and the gating of IP3 receptor-channels as a function of

Ca2+ and IP3 concentrations. However, the results obtained so far

suggest that variations in the Gq ⁄ IP3 pathway are not the main

source of heterogeneity, otherwise the data would exhibit a positive

correlation between peak and decay rate. Extensions of the model

can be used to allow extracellular Ca2+ flux during agonist applica-

tion, or consider other features such as the response latency.

Extensions of this technique include other experiments and not only

a more complex model. As a follow-up to our findings, one could

challenge the lactotrophs with other stimulators. For example, one

could briefly challenge the cells with potassium chloride. This would

depolarise the membrane and open voltage-dependent Ca2+ chan-

nels, causing an increase in cytosolic Ca2+ that does not involve

mobilisation from internal stores. In this way, one can produce a

similar Ca2+ spike with a decaying phase that depends on a differ-

ent set of parameters, but still includes kpmca. This would allow the

variability results from the TRH application to be tested against

those from an independent source.

Finally, extensions may be considered to other biological systems.

Relevant features (e.g. peak, decay rate and area) that are system

specific must be identified first.

For example, pituitary gonadotrophs typically produce an oscilla-

tory Ca2+ response to gonadotrophin-releasing hormone (38). If the

agonist is applied in the absence of extracellular Ca2+, the oscilla-

tions die out over time (38). Features that could be examined in

this response are the oscillation period and amplitude and, if the

experiment is performed in the absence of extracellular Ca2+, the

number of oscillations produced. Although the features differ from

those in the present study, the approach used to investigate likely

sources of heterogeneity would be the same.
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