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Abstract
The standard protocol for studying the spiking properties of single neurons is the application of current steps while monitor-
ing the voltage response. Although this is informative, the jump in applied current is artificial. A more physiological input is 
where the applied current is ramped up, reflecting chemosensory input. Unsurprisingly, neurons can respond differently to 
the two protocols, since ion channel activation and inactivation are affected differently. Understanding the effects of current 
ramps, and changes in their slopes, is facilitated by mathematical models. However, techniques for analyzing current ramps 
are under-developed. In this article, we demonstrate how current ramps can be analyzed in single neuron models. The primary 
issue is the presence of gating variables that activate on slow time scales and are therefore far from equilibrium throughout 
the ramp. The use of an appropriate fast-slow analysis technique allows one to fully understand the neural response to ramps 
of different slopes. This study is motivated by data from olfactory bulb dopamine neurons, where both fast ramp (tens of 
milliseconds) and slow ramp (tens of seconds) protocols are used to understand the spiking profiles of the cells. The slow 
ramps generate experimental bifurcation diagrams with the applied current as a bifurcation parameter, thereby establishing 
asymptotic spiking activity patterns. The faster ramps elicit purely transient behavior that is of relevance to most physiologi-
cal inputs, which are short in duration. The two protocols together provide a broader understanding of the neuron’s spiking 
profile and the role that slowly activating ion channels can play.

Keywords  Multiscale system · Single cell · Fast-slow analysis

1  Introduction

In the brain, information is coded in the spiking patterns of 
populations of neurons. Input to a neuron from other neurons 
summates to drive the output of the postsynaptic cell. To a 
first approximation, this summed input can be thought of as 
an input current ramp, with the slope of the ramp determined 
by the degree of synchronicity of firing of the presynap-
tic neurons. Typically, however, the protocol for analyzing 
the spiking behavior of a neuron in vitro is application of a 
series of depolarizing current steps (Korshunov et al., 2020; 
Lübke et al., 1998; Ross et al., 2019). One then quantifies 
such things as the rheobase (the size of the smallest cur-
rent step that elicits an action potential), the mean spike 
frequency, frequency modulation, and amplitude modula-
tion. Neurons can behave as single spikers (no more than 
one action potential produced during current steps of any 
magnitude), phasic spikers (transient spiking is followed by 
a depolarized rest state), or tonic spikers (action potentials 
continue throughout the current step), among other types. 
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Often, these studies make use of pharmacological agents 
that block specific types of ion channels or families of ion 
channels. In some studies, computer simulations are per-
formed to capture these behaviors and provide insight into 
the contribution that different ion channel types make to 
the response profile (Carroll et al., 2018; Daou et al., 2013; 
Golomb et al., 2006).

Although the standard current clamp protocol provides 
very useful information, the rapid change in applied cur-
rent followed by a sustained level in the current step are 
inherently artificial. An alternate approach is to apply rapid 
depolarizing current ramps, which are closer to physiologi-
cal input signals; a sniff of duration ~ 100 ms encodes the 
information needed to discriminate odors (Cury & Uchida, 
2010). We used this approach recently in a study of spiking 
properties of dopamine (DA) neurons of the olfactory bulb 
(OB) (Korshunov et al., 2020). Data obtained with this ramp 
protocol helped to distinguish two types of DA neurons, and 
provided features of the neurons which were not obtainable 
from the current step protocol. However, the ramp protocol 
raises new questions. How can one understand the response 
of a neuron to a time-dependent ramp input? If the peak 
current is the same but the ramp slope is changed, what 
differences should be expected in the voltage response? Do 
the results from slow current ramps (tens of seconds) tell 
us anything about what is to be expected from much faster, 
and more physiological, ramps (tens of milliseconds)? As 
is often the case in neuroscience, the answers to these and 
related questions are hard to come by, but can be facilitated 
by the use of a mathematical model neuron. Computer sim-
ulations with such a model can replicate behaviors of the 
actual neurons and, with parameter exploration, can shed 
light on how the different ion channels affect the response. 
However, a more systematic, and insightful, approach is 
to use bifurcation analysis (Sherman, 2011). Such a study 
summarizes the behavior of the model neuron over a range 
of parameter values, identifying critical parameter values 
where there is a qualitative change in behavior. The aim of 
the present study is to demonstrate how bifurcation analysis 
can be applied to a model neuron subjected to depolarizing 
fast or slow current ramps. This analysis explains the spiking 
pattern produced by the current ramp, and why spiking starts 
and stops at specific values of the applied current during 
ramps of varying slopes. That is, it explains why the neuron 
does what it does during the ramp.

The challenge to analyzing the effects of current ramps, 
even in mathematical models where all elements of the 
system are known, is the multi-timescale nature of the 
gating variables. When slow ramps are applied, all the 
gating variables are in a quasi-equilibrium state, so the 
system dynamics can be studied by creating a bifurcation 
diagram with the applied current (Iapp) as the bifurcation 
parameter. This provides summary information on the 

asymptotic spiking dynamics of the neuron. However, 
with fast ramps of applied current, some gating variables 
remain far from equilibrium throughout the duration of 
the ramp. This is in contrast to the faster gating variables, 
such as the Na+ channel activation/inactivation variables 
and the activation variable for the delayed rectifying K+ 
channel, which adjust to the changing applied current 
much more rapidly and are therefore at quasi-asymptotic 
states. Because of the presence of the slow gating vari-
ables, the neural dynamics may be quite different from the 
asymptotic dynamics, and a standard bifurcation analysis 
is therefore potentially misleading.

We demonstrate how a decomposition of the system 
into fast and slow subsystems, and separate analyses of 
each, can be used to analyze the response to fast cur-
rent ramps. Although the model we employ is generic in 
nature, and not meant to be an accurate representation of 
any particular neuron, we provide data showing that it cap-
tures behaviors seen in actual DA neurons. We also dem-
onstrate the very different properties exhibited by these 
DA neurons in response to fast vs. slow ramps and how 
these different behaviors can be understood in terms of the 
underlying system dynamics through an analysis of the 
generic model. The approach used here can be employed in 
higher-dimensional models, including those with several 
slow gating variables, though the analysis becomes more 
difficult. Such higher-dimensional fast-slow analyses have 
recently been performed in other applications (Desroches 
et al., 2012; Harvey et al., 2011), including other models 
of excitable cells (Desroches et al., 2012; Hasan et al., 
2018; Kimrey et al., 2020b; Rubin & Wechselberger, 2007; 
Vo et al., 2013).

2 � Methods

2.1 � Animals

Transgenic hTH-GFP Sprague Dawley rats (Iacovitti et al., 
2014)– ages spanning postnatal days 10 to 21 – were used 
for all experiments (Taconic Biosciences, United States). 
All neurons expressing the enzyme tyrosine hydroxylase 
(TH) also express green fluorescent protein (GFP), and are 
targeted for electrical recordings. In particular, DA neu-
rons of the OB are used in this study. Rats were housed 
in a controlled, 12-h light and dark cycle environment, 
where they received ad libitum access to food and water. 
All experiments were carried out in accordance with the 
National Institutes of Health Guide for the Care and Use of 
Laboratory Animals ( 8th edition), and were approved by the 
Florida State University Institutional Animal Care and Use 
Committee.
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2.2 � Olfactory bulb (OB) dissection

Horizontal OB slices were dissected from rats and used for 
subsequent electrophysiology recordings from DA neurons. 
Rats were first anesthetized via isoflurane (Henry Schein 
Animal Health, Dublin, OH, United States), then promptly 
decapitated. Their brains were dissected in ice-cold, oxy-
genated (95% O2/5% CO2) sucrose artificial cerebrospinal 
fluid (sucrose ACSF). The makeup of the sucrose ACSF 
is as follows (in mM): 83 NaCl, 2.5 KCl, 26.2 NaHCO2 , 1 
NaH2PO4 , 0.5 CaCl2 , 3.3 MgCl2 , 22 glucose, and 72 sucrose. 
Once extracted, we used a Vibratome (St. Louis, MO, United 
States) to Sect. 300 µm horizontal OB slices in ice-cold, oxy-
genated sucrose ACSF. Slices were then incubated in 35 °C, 
oxygenated ACSF for at least 30 min. The makeup of ACSF 
is as follows (in mM): 125 NaCl, 2.5 KCl, 25 NaHCO2 , 1.25 
NaH2PO4 , 2 CaCl2 , 1 MgCl2 , and 25 glucose. The slices 
were then stored in room temperature until use. Slices were 
transferred to a recording chamber for all electrophysiology 
recordings.

2.3 � Electrophysiology

A total of 25 rats were used for these experiments (two rats 
used per electrophysiology recording experiment). Neurons 
were recorded via whole-cell electrophysiology, exclusively 
in current-clamp mode. Recordings were acquired and 
analyzed with the Multiclamp 700B amplifier (Molecular 
Devices, Axon Instrument, San Jose, CA, United States), 
ITC-18 digitizer (Instrutech, Longmount, CO, United 
States), and the AxographX software (John Clements). OB 
slices and neurons were visualized via the Leica DMLFS 
fluorescent microscope (Leica Microsystems, Wetzlar, Ger-
many) and the Hitachi HV-D30 camera (B&H, NY, United 
States).

Recording electrodes were pulled from borosilicate glass 
(World Precision Instruments, Sarasota, FL, United States), 
with a final tip resistance of 4–6 MΩ. The makeup of the 
intracellular recording solution is as follows (in mM): 125 
KMeSO4 , 0.025 CaCl2 , 2 MgCl2 , 1 EGTA, 2 Na2ATP , 0.5 
NaGTP, and 10 HEPES. OB slices were constantly perfused 
with oxygenated ACSF at the rate of ~ 1 ml/minute. A total 
of 26 OB neurons were used for this study.

We used a combination of step and ramp current-clamp 
protocols of different durations and amplitudes to analyze 
the transient and asymptotic properties of the DA neurons. 
The step protocols used included incremental injections of 
10 pA (from -10 to 80 pA), 25 pA (from -25 to 200 pA), or 
50 pA (from -50 to 400 pA) steps, which had the durations 
of either 300 or 500 ms. In ramp protocols, current stimuli 
gradually increased to their maximum value for a specified 
amount of time. For these experiments on transient activity, 
we used ramps of 0.167, 0.25, 6, and 12 pA/ms (100 pA over 

600 ms, 100 pA over 400 ms, 300 pA over 50 ms or 600 pA 
over 100 ms, and 600 pA over 50 ms, respectively) slopes to 
record the transient activity of neurons. To record the asymp-
totic activity of neurons, ramps with much smaller slopes and 
longer durations were used. For these experiments, we used 
ramps with slopes of 0.00125, 0.0025, and 0.0033 pA/ms 
(75 pA over 60 s, 150 pA over 60 s, and 100 pA over 30 s, 
respectively).

2.4 � The mathematical model

We employed a simple Hodgkin-Huxley-based single-
compartment neuron model, modified from (Dovzhenok & 
Kuznetsov, 2012). There are four voltage-gated ionic currents: 
a delayed-rectifying K+ current (IK), a Na+ current (INa), a 
slowly-activating K+ current (IKS), and a leak current (IL). The 
currents are determined largely by four gating variables: a fast 
K+ channel activation variable (n), a slow K+ channel activa-
tion variable (z), a Na+ channel activation variable (m), and a 
Na+ channel inactivation variable (h). Since Na+ channel acti-
vation is much faster than other gating processes, we employ 
the quasi-equilibrium approximation in which m is replaced by 
its steady state function, m∞(V) . Since the Na+ channel inac-
tivation variable is approximately linearly related to the fast 
K+ channel activation variable, we replace h with this linear 
function of n. The equations for ionic currents are then

There are nonlinear differential equations for the three var-
iables V, n, and z, as shown below. The applied current, 
Iapp, is either a depolarizing step function (9) or a linearly 
increasing ramp current (10).

(1)IK = gKn
4
(

V − VK

)

(2)INa = gNam∞
3h
(

V − VNa

)

(3)IKS = gKSz
(

V − VK

)

(4)IL = gL
(

V − VL

)

(5)h = 0.1 − 0.5(n − 0.8)

(6)
dV

dt
= −

1

C

(

IK + INa + IKS + IL − Iapp
)

(7)
dn

dt
=

n∞ − n

�n

(8)
dz

dt
=

z∞ − z

�z
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where X > 0 in Eq. (9) is the size of the current step (in pA) 
and T in Eq. (10) is the time since the initiation of the ramp 
(in ms). The equilibrium functions for the gating variables, 
and the V-dependent time constant �n are:

The activation variable z changes much more slowly than 
the variables V and n due to its large time constant (50 ms 
versus < 6 ms for the other activation variable, n). Because 
of this, during a burst of spikes the z variable slowly accu-
mulates, and slowly falls afterwards (shown later).

Model parameters are listed in Table 1, and the differ-
ential equations were solved numerically using XPPAUT 
(available at www.​math.​pit.​edu/​~bard/​xpp/​xpp.​html) using 
the Dormand-Prince solver. The XPPAUT code can be 
downloaded as freeware from www.​math.​fsu.​edu/​~bertr​am/​
softw​are/​neuron.

3 � Results

3.1 � The slowly‑activating K+ conductance can 
determine whether a neuron is a single spiker 
or a tonic spiker

The experimental voltage traces shown in Fig. 1 illustrate 
the two characteristic behaviors observed in in vitro record-
ings of DA neurons in response to a step of depolarizing 
current: the cell may respond with a single action potential 
or spike (referred to as single spikers, Fig. 1A,B) or with a 
train of spikes (referred to as tonic spikers, Fig. 1C,D). With 
small depolarizing current steps, neither type of cell reliably 
produces an action potential. With sufficiently large steps, 
single spikers typically respond with a single spike, regard-
less of the size of the step. Tonic spikers typically produce 
a continuous train of spikes, but may enter depolarization 

(9)Iapp = X

(10)Iapp = slope T

(11)m∞ =
1

1 + e
−(V−vmh)

sm

(12)n∞ =
1

1 + e
−(V−vnh)

sn

(13)z∞ =
1

1 + e
−(V−vz)

sz

(14)�n = �n0 + �n1e
−(V−�n)

2

sn�

block with sufficiently large input. These are the defining 
behaviors of the two types of neurons that were character-
ized previously in the OB DA neurons (Korshunov et al., 
2020). Since such current steps are artificial, we examined 
how the two types of neurons responded to current ramps, 
in which the applied current was increased linearly from 0 to 
some ending value. The ramp protocol was then parameter-
ized by the slope of the ramp. The single spiker shown in 
Fig. 1 responded to a current ramp with a single spike when 
the ramp slope was large (12 pA/ms, Fig. 2A), and with a 
small voltage deflection, but not a full-blown spike, when the 
ramp slope was small (0.25 pA/ms, Fig. 2B). In several other 
cells of this type, single spikes were produced at both ramp 
slopes. The difference in the response of the tonic spikers 
to current ramps of small or large slopes was typically more 
dramatic, and this is reflected in the example of Fig. 2C, D. 
When the ramp slope was large, the neuron responded with 
a spike and two small-amplitude spikes as it approached 
depolarization block (Fig. 2C). When the slope was small, 
more spikes were invariably produced, often followed by 
depolarization block (Fig. 2D). Although only representative 
examples are shown here, their behaviors are characteristic 
of the population of OB DA neurons studied, as described 
in (Korshunov et al., 2020). These behaviors motivated us 
to understand the effects of current ramps on single spikers 
and tonic spikers from a mathematical perspective, using a 
generic neural model for the analysis. Why do single spik-
ers remain single spikers when stimulated with a current 

Table 1   Model Parameters

Parameter Value

C 1 p F
�z 50 ms
gK 40 nS
gNa 120 nS
gL 0.3 nS
gKS 110 nS

(single spiker)
5 nS
(tonic spiker)

VK −77 mV
VNa 55 mV
VL −44.4 mV
vmh −40 mV
vnh −53 mV
vz −45 mV
sm 9 mV
sn 15 mV
sz 10 mV
sn� 50 mV2

�n0 1.1 ms
�n1 4.7 ms
�n −53 mV

http://www.math.pit.edu/~bard/xpp/xpp.html
http://www.math.fsu.edu/~bertram/software/neuron
http://www.math.fsu.edu/~bertram/software/neuron
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ramp? Why do tonic spikers produce fewer spikes when 
the ramp slope is greater? Why does the cell stop spiking 
when it does, and is this different depending on the slope 
of the current ramp? These are the experimental questions 
we wished to answer. The mathematical focus of the study 
was to determine an effective way to analyze the dynamics 
underlying application of ramped input in a model neuron 
consisting of both fast and slow gating variables. The model 
we employed has the minimal set of components needed to 
achieve these goals.

To differentiate between the two different types of neu-
rons, we changed a single parameter in the model: the con-
ductance of the slowly-activated K+ current ( gKS ). We found 
that single spiker behavior was achieved with large values of 
gKS , while tonic behavior was produced with small values of 
gKS . This is illustrated in Fig. 3. When depolarizing current 
steps of 150 pA or 250 pA were simulated (Fig. 3A), the 
model cell responded with a single spike when gKS = 110 
nS (Fig. 3B). In contrast, when the same input steps were 
applied to the model neuron with gKS = 5 nS, tonic spiking 
was produced (Fig. 3C). Biophysically, when the conduct-
ance of the slowly activated K+ current is large, the hyperpo-
larizing K+ current reaches a sufficiently large value after the 
first spike to prevent the membrane potential from reaching 
spike threshold, so a second spike is not produced.

The model also captures the overall behavior observed in 
experiments in response to a ramped applied current. For a 
single spiker (i.e., a model cell with gKS = 110 nS), when 
given a ramp of applied current with a large slope (Fig. 3D, 
black), a single spike is produced (Fig. 3E, black). When 
the current ramp has a smaller slope (Fig. 3D, green), the 
model cell does not spike at all (Fig. 3E, green). Model tonic 
spiking neurons produce a train of spikes followed by depo-
larization block when ramps of applied current are simulated 
with large slopes and small slopes. However, the number of 
spikes produced during the large-slope ramps is less that the 
number produced during the small-slope ramps (Fig. 3F). 
Thus, these model neurons capture the basic spiking behav-
ior for single and tonic spikers.

3.2 � Bifurcation analysis shows agreement 
between the asymptotic dynamics of the model 
and the experimental data

Before examining the basis of the transient response to cur-
rent ramps, we investigated the simpler case of the asymp-
totic, or long-term, spiking properties of the neurons. The 
asymptotic dynamics of the model neuron can be illustrated 
through the use of a bifurcation diagram, treating the applied 
current, Iapp , as a bifurcation parameter. The bifurcation 

Fig. 1   Patch clamp recordings 
demonstrating the two char-
acteristic behaviors observed 
in DA neurons in response to 
a step of depolarizing current. 
A, B Single spiking response 
to steps of depolarizing current 
(60 and 80 pA, respectively). C, 
D Tonic spiking responses to 
depolarizing current steps (25 
and 50 pA, respectively) 60 pA

25 pA

80 pA

A B

C D
1000 ms
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diagram for the model single spiker is shown in Fig. 4A. In 
this case, there is a stable equilibrium for all values of Iapp 
(red curve), indicating lack of a tonic spiking interval so that 
any spikes produced during short steps or ramps reflect tran-
sient properties of the cells. In contrast, for the model tonic 
spiker, there is an interval of applied current values where 
the equilibrium is unstable and there is a branch of stable 
periodic solutions (Fig. 4B). This interval is delimited by a 
subcritical Hopf bifurcation on the left and a supercritical 
Hopf bifurcation on the right. For each value of Iapp between 
the Hopf bifurcations, the model neuron responds with tonic 
spiking (green curves indicate minimum and maximum val-
ues of V during oscillations).

Do DA neurons exhibit similar asymptotic dynamics in 
vitro? To check, we applied slowly ramped current at a rate 
of 0.0025 pA/ms over a duration of 60 s (Fig. 4C), and at a 
rate of 0.00333 pA/ms over the duration of 30 s (Fig. 4D). 
These ramps are much slower than the ramps of Fig. 2. For 
a single spiker, the experimental bifurcation diagram shows 
a curve of resting states, becoming more depolarized as the 
applied current is increased (Fig. 4C). As with the model 
bifurcation diagram for the single spiker, there is no spik-
ing interval. In contrast, for a tonic spiker, the bifurcation 
diagram exhibits a large spiking interval between roughly 

Iapp = 20 pA and 60 pA (Fig. 4D). For any of these applied 
current values, the neuron produces tonic spiking.

3.3 � Towards an understanding of transient 
dynamics using bifurcation analysis of the fast 
subsystem

The bifurcation analysis performed in Fig. 4 is informative, 
since it tells in a succinct manner the values of the input cur-
rent at which stationary or tonic spiking behavior occurs in 
the model or biological neuron. Unfortunately, it says little 
to nothing about what to expect during fast current ramps. 
For example, the single spiker bifurcation diagrams predict 
no spiking, yet in both the model and biological cells, single 
spikes often occurred during fast ramps. The experimental 
bifurcation diagram for the tonic spiker predicts that tonic 
spiking should occur for Iapp up to ~ 57 pA. The spiking 
that occurs for the ramp with the small slope in Fig. 2D 
terminates at a similar value (~ 70 pA), but these are sig-
nificantly different from the termination point with the large 
slope ramp in Fig. 2C (~ 473 pA).The experimental bifurca-
tion diagram for the tonic spiker predicts that tonic spiking 
should occur for Iapp up to ~ 57 pA, but in the fast ramps the 
spiking stopped at significantly lower values (~ 473 pA for 

Fig. 2   Patch clamp record-
ings of DA neurons and their 
typical responses to current 
ramps. Neurons that respond 
to current steps with a single 
spike, i.e., the single spikers, 
respond to current ramps with 
a single spike A, B. Neurons 
that respond to current steps 
with continuous spiking, i.e., 
the tonic spikers, respond quite 
differently to current ramps. 
The number of spikes produced 
is less during a ramp with large 
slope C than to a ramp with 
small slope D 
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the ramp with large slope, Fig. 2C, and ~ 70 pA for the ramp 
with small slope, Fig. 2D). Similarly, in the model, the spik-
ing branch of the bifurcation diagram terminates at an Iapp 
value (the right Hopf bifurcation is at 743 pA in Fig. 4B) 
that is different from that of the tonic spikers with the fast 
ramps. Indeed, the value of Iapp at which spiking stops is 
different in the fast ramp with large slope (736 pA) than that 
in the fast ramp with small slope (761 pA, Fig. 3F), and this 
cannot be explained by the asymptotic bifurcation diagram 
of Fig. 4B.

Although bifurcation analysis of the asymptotic dynamics 
clearly fails to describe the transient dynamics that occur 
during fast current ramps, might it be possible to adapt bifur-
cation analysis to capture transient dynamics in the model 
where the time courses of all variables are known? The chal-
lenge to doing this is that variables that change on slow time 
scales don’t reach equilibrium over the timescale of the fast 
ramp, so if one assumes that an equilibrium is reached (as 
in the asymptotic bifurcation analysis) the results will be 
misleading, as we have seen. To account for the dynamics 
of the slow variables, it is therefore necessary to determine a 
functional relationship between the value of each slow vari-
able and the applied current. In our model, there is only one 
variable that changes on such a slow time scale for this to 

be a concern, the activation variable for the slowly activated 
K+ channels ( z ). In what follows, we derive such a relation. 
Once done, bifurcation analysis of the fast subsystem of var-
iables (V and n) can be performed, using Iapp as a bifurcation 
parameter with z slaved to Iapp through the derived relation.

The response of z to ramps of applied current is shown 
in Fig. 5, for both the single spiker (Fig. 5A) and the tonic 
spiker (Fig. 5B). The variable increases due to the rise in 
V induced by the current ramp, but in neither case is there 
evidence of action potentials, since z changes slowly and the 
effects of fast fluctuations in voltage are averaged out. In the 
case of the tonic spiker, there is a noticeable change in the 
positive slope in z when the model cell stops spiking and 
enters depolarization block.

The time course of z during the fast ramps looks approxi-
mately linear, which motivated us to apply a linear regres-
sion on each of the traces (Fig. 6) and thereby establish an 
approximate affine relationship between z and Iapp . In the 
regression equation,

�0 was fixed to be the initial z value prior to the start of the  
ramp. The slope of the linear approximation, �1 , was estimated  

(15)z = �1Iapp + �0

Fig. 3   Simulations of model neurons in response to current steps and 
ramps. A Current steps of two different sizes, offset in time for clar-
ity. B Model single spikers ( gKS = 110 nS) produce a single spike in 
response to each current step. C Model tonic spikers ( gKS = 5 nS) 
respond to current pulses with a train of action potentials. D Current 
ramps with slope of 26 pA/ms (black) and 6.5 pA/ms (green). Val-

ues of the maximum applied current and ramp duration where cho-
sen arbitrarily, but the maximum current value is the same for both 
ramps. E A single spiker responds to the ramps with either a single 
spike or no spike at all. F A tonic spiking neuron produces fewer 
spikes during a large-slope ramp than during a small-slope ramp, as 
seen in experiments (Fig. 2)
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using a subset of values of the Iapp ramp ( Iapp ∈ [0, 1000] pA)  
and produced a linear fit with an R2 > 0.95 . Values of �1 for 
both types of neurons and for both ramp slopes are provided 
in Table 2.

The fit to the z time course of the single spiker is shown 
in Fig. 6B for a large-slope ramp and Fig. 6E for a small-
slope ramp (time course in black, regression line in red) 
and the fit to the tonic spiker is shown in Fig. 6C during a 
large-slope ramp and in Fig. 6F during a small-slope ramp. 
All fits appear to be quite good, at least over the range of 
Iapp values examined (up to 1000 pA). Since the values of 
Iapp where spiking starts and stops are less than 1000 pA, 

and these are the most important features, the regression fits 
should be satisfactory.

An increase in the duration (decrease in slope) of the 
applied current ramp resulted in a larger value of �1 for both 
single spiking and tonic spiking neurons (Table 2). This rela-
tionship is plotted in Fig. 7 for both types of neurons. Also 
shown in the figure are Michaelis–Menten fits to the points, 
using (16) where D is duration, A is the maximum value of 
�1 , k is the duration when the half maximum value of �1 is 
achieved, and both A and k are estimated with an R2 > 0.95, 
as reported in the figure caption. Now, using this newly deter-
mined relationship, z can be expressed in terms of its initial 

Fig. 4   Asymptotic dynamics of 
model and biological neurons. 
A A bifurcation diagram of the 
model single spiker indicates 
that there is a single stable 
equilibrium at all current val-
ues. The neuron becomes more 
depolarized with greater applied 
current, but there are no current 
values that elicit tonic spiking. 
B In the model tonic spiker, 
there is a large range of current 
values for which a stable peri-
odic, or tonic spiking, behavior 
is produced. C An experimental 
bifurcation diagram produced 
using a slow ramp of depolar-
izing current. A single spiker 
exhibits a stable resting voltage 
for the full range of applied 
current. D The experimental 
bifurcation diagram for a tonic 
spiking neuron exhibits a range 
of applied current for which 
tonic spiking occurs
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Fig. 5   The response of the 
activation variable for the 
slowly activated K+ channels 
( z ) during large-slope (black, 
50 ms duration) and small-slope 
(green, 200 ms duration) current 
ramps. A In the model single 
spiker, z increases slowly during 
the current ramps. B There is a 
similar slow increase in z in the 
model tonic spiker, but there is 
now a change in slope when the 
model neuron enters depolariza-
tion block
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value prior to the current ramp, the duration of the current 
ramp, and Iapp as it changes during the ramp. With this rela-
tionship, the differential equation for z (8) can be removed and 
replaced by

(16)z =
(

A ⋅ D

k + D

)

Iapp + �0

3.4 � Using fast‑subsystem bifurcation analysis 
to understand spiking behavior in response 
to fast ramps of applied current

With the functional relationship between z and Iapp described 
through (16) for fast ramps with arbitrary slopes (with 
durations up to 300 ms), it is now possible to analyze the 
dynamics of the model neuron using bifurcation analysis of 
the system (6), (7), and (16). In particular, we can now use 
bifurcation analysis to understand why each type of neuron 
responds the way that it does to ramps with different slopes. 
Figure 8 shows how the membrane voltage of a model single 
spiker changes in response to the applied current if given a 
large-slope ramp (50 ms duration, Fig. 8A), or a ramp with 
small slope (200 ms duration, Fig. 8B). In both cases, there 
is a branch of stable stationary solutions with no periodic 
branch, indicating a lack of tonic spiking at any point along 
the current ramp. The single spike that occurs for some large 
ramp slopes (e.g., Fig. 3E) is not captured by the bifurcation 
diagram since it is not an asymptotic behavior of the fast 
V–n subsystem, which is what the bifurcation diagram of 
Fig. 8 reflects. That is, it is a product of a very fast change 
in V during a spike upstroke and a slower change in n that is 
responsible for the downstroke. In the bifurcation diagram, 
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Fig. 6   Linear regression analysis was used to establish the linear 
dependence of z on the applied current. This relationship was fit over 
the duration of the ramp up to Iapp = 1000 pA. A, D Range of fit over 
large-slope and small-slope current ramps, respectively, is indicated 
by the red dashed lines. B, E The activation variable (black) for a 
model single spiker had an almost-linear dependence on applied cur-
rent during the large-slope and small-slope ramps, respectively. C, F 

The z activation variable for the model tonic spikers also exhibited an 
almost-linear dependence on applied current during large-slope and 
small-slope ramps, respectively. For each linear regression estima-
tion, �0 from Eq. (15) was fixed to be the initial z value prior to the 
start of the ramp and the estimation of the time course by the linear 
regression estimate has an R2 > 0.95

Table 2   Linear Regression Slope ( �1 ) for Ramp Duration
Total Ramp 
Duration

Single Spiker  �1 Value Tonic Spiker  �1 Value

25 ms 1.335 × 10−4 pA−1 1.877 × 10−4 pA−1

50 ms 1.96 × 10−4 pA−1 3.185 × 10−4 pA−1

75 ms 2.226 × 10−4 pA−1 4.196 × 10−4 pA−1

100 ms 2.405 × 10−4 pA−1 4.989 × 10−4 pA−1

125 ms 2.535 × 10−4 pA−1 5.619 × 10−4 pA−1

150 ms 2.632 × 10−4 pA−1 6.125 × 10−4 pA−1

175 ms 2.707 × 10−4 pA−1 6.537 × 10−4 pA−1

200 ms 2.766 × 10−4 pA−1 6.876 × 10−4 pA−1

225 ms 2.814 × 10−4 pA−1 7.157 × 10−4 pA−1

250 ms 2.854 × 10−4 pA−1 7.393 × 10−4 pA−1

275 ms 2.887 × 10−4 pA−1 7.593 × 10−4 pA−1
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both V and n are at equilibrium states. As a comparison with 
the bifurcation diagram of the full 3-dimensional system 
during a slow ramp of applied current we superimpose the 
bifurcation diagram from Fig. 4A as dashed curves. Notice 
that the curve for the slow ramp is below that of the fast 
ramp, since in this case the z variable is at an equilibrium 
value that is larger than its value during the fast ramp. Since 
this is the activation variable for a hyperpolarizing current, 
it brings the voltage to a lower value.

The bifurcation diagram for the model tonic spiker is 
more interesting. For both a large-slope ramp (Fig. 9A) and 
a small-slope ramp (Fig. 9B), there is a branch of periodic 

solutions, reflecting tonic spiking. The periodic branch is 
born at a subcritical Hopf bifurcation and terminates at a 
supercritical Hopf bifurcation. The value of Iapp at which 
the supercritical Hopf bifurcation occurs ( Iapp = 666 pA) is 
approximately the same for both ramps. Therefore, differ-
ences in the size of the spiking interval does not explain 
why large-slope current ramps elicit fewer spikes than do the 
small-slope ramps. Neither is it explained by differences in 
frequency response over the range of applied currents, which 
is similar for the two ramps (Fig. 9C, D). In both cases, 
the spike frequency increases with increasing Iapp , peaking 
at ~ 1.2 mHz for both ramps. Instead, the difference in spik-
ing behavior between large-slope and small-slope ramps 
comes from the amount of time spent within the spiking 
interval. For a large-slope ramp, Iapp changes rapidly, so the 
system is swept through the spiking interval quickly, elicit-
ing only a few spikes. This is illustrated by the long arrows 
in Fig. 9A. For the small-slope ramp, Iapp changes more 
slowly, so progression through the spiking interval takes 
longer, eliciting more spikes (illustrated with short arrows 
in Fig. 9B). Thus, the fast-slow analysis explains one of the 
key findings of both the model and the biological neuron.

Because both the ramp duration and the applied current  
appear in Eq.  (16) for the slow variable z, it is possi- 
ble to determine how the tonic spiking interval varies with 
the duration of the ramp (or its inverse, the ramp slope).  
This is done through the construction of a two-parameter 
bifurcation diagram, in which the two Hopf bifurcations 
initiating and terminating the periodic tonic spiking branch 
are continued in ramp duration D (Fig. 10A). The leftmost 
blue curve in Fig. 10A is nearly vertical, which indicates 
that the subcritical Hopf bifurcation that initiates the spik-
ing interval is almost independent of the ramp duration (or 
slope). This is an intuitive result, since the spiking starts 
shortly after the beginning of a current ramp, regardless of 
the ramp slope. The termination point does vary with ramp 
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Fig. 8   Bifurcation analyses of 
the model single spiker neuron 
( gKS = 110 nS ) to fast ramps 
of applied current are shown 
with a solid red curve in (A) 
and (B). Equations (6), (7), and 
(16) were used. Dashed curves 
are from the bifurcation analysis 
of Fig. 4A, corresponding to a 
slow ramp of Iapp . A Response 
to a large-slope (50 ms dura-
tion) ramp shows no spiking 
interval. B Response to a small-
slope (200 ms duration) ramp 
is similar
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duration, taking on larger values at longer durations (and 
smaller ramp slopes). This indicates that the neuron goes 
to a state of depolarization block at larger applied current 
values when the current ramp is slower. This is true because 
at slower ramp speeds the z activation variable achieves 
larger values at each value of the applied current (closer 
to its equilibrium level), and the resulting hyperpolarizing 
current works to prevent depolarization block. Overall, the 
region of tonic spiking for this type of neuron is large, ensur-
ing that ramps of a wide range of slopes will elicit spikes in 
these model neurons. The ramp durations used in previous 
figures are shown as dashed horizontal lines; the bottom line 
was referred to as a “large-slope ramp”, while the top line 
was referred to as a “small-slope ramp”.

Although the analysis of Fig. 8 for single spikers did 
not show a spiking interval, such an interval does exist 
for shorter ramp durations. As shown in Fig.  10A (red 
curve), there is a small region of the two-parameter plane 
in which spiking would occur in single spikers. In contrast, 
for the tonic spiker the Hopf bifurcations never coalesce; 
as the ramp slope is made arbitrarily small the fast-subsys-
tem bifurcation diagram approaches the asymptotic one 
(Fig. 4B), which has two Hopf bifurcations.

3.5 � A hypothetical third type of neural response 
to fast current ramps

We have seen in both model and biological neurons two 
response types to fast current ramps. In one type, either a 
single spike or no spike is produced. In the other type, the 
number of spikes elicited is smaller during a large-slope 
ramp than during a small-slope ramp. Our analysis shows, 
however, that a third type of response is possible. Here, the 
number of spikes produced is larger during a large-slope 
ramp than during a small-slope ramp. Although we found 
no instances of this response in our electrophysiological 
recordings, it is at least theoretically possible if the two-
parameter bifurcation structure is similar to the black curve 
in Fig. 10B, which was generated using an intermediate 
value of the slowly activated K+ conductance ( gKS = 50 
nS). For this “intermediate neuron,” the spiking region is 
larger than that of a single spiker but still drastically smaller 
than that of a tonic spiker. With this larger region, a ramp 
of duration 50 ms would cross through the spiking interval 
of applied current, so this short-duration, large-slope ramp 
would generate multiple spikes (Fig. 11A). Similar behavior 
is exhibited by single spiking neurons when exposed to a 

Fig. 9   Bifurcation analysis of 
the model tonic spiker neuron 
( gKS = 5 nS ) to fast ramps of 
applied current. Equations (6), 
(7), and (16) were used. A 
Response to a large-slope 
(50 ms duration) ramp shows 
a branch of stable periodic 
spiking solutions, delimited on 
the left by a subcritical Hopf 
bifurcation and on the right by 
a supercritical Hopf bifurcation. 
The applied current changes 
rapidly during the ramp, 
illustrated by the long arrows. 
B Response to a small-slope 
(300 ms duration) ramp is very 
similar, but now the change in 
applied current during the ramp 
is much slower. Illustrated with 
small arrows, whose length is 
scaled to reflect the speed of 
the phase point. The asymptotic 
spike frequency over the range 
of the periodic branch is shown 
in C and D. As the applied cur-
rent is increased, the frequency 
of spiking increases for both 
ramps, peaking at ~ 1.2 mHz for 
both a large-slope ramp and a 
small-slope ramp
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very short current ramp, as shown in Fig. 12. For intermedi-
ate neurons, a ramp with a longer duration and smaller slope 
of, for example, 200 ms, would not pass through the spiking 

region. We would expect to see no spikes (Fig. 11B) or at 
most one spike with such a small-slope ramp (Fig. 11B). 
The one-parameter bifurcation structure for these two cases 
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Fig. 10   Two-parameter bifurcation diagram illustrating how the tonic 
spiking window varies with ramp duration. In each case, the Hopf 
bifurcations in the one-parameter bifurcation diagram (Fig.  9) are 
traced out in a second parameter, the ramp duration. The model used 
includes Eqs. (6), (7), and (16). A For the tonic spiker ( gKS = 5 nS ), 
the subcritical Hopf bifurcation branch (left blue curve) is nearly ver-
tical, indicating that the initiation point of the tonic spiking behavior 
is relatively independent of the ramp duration (or slope). The termi-
nation point (right blue curve) increases with the ramp duration. The 

tonic spiking region is large, ensuring that ramps with a wide range 
of slopes will elicit tonic spiking behavior in these neurons. The 
dashed horizontal lines indicate the durations of the current ramps 
shown in earlier figures. The spiking region for the single spiker 
( gKS = 110 nS ) (delimited by the red curve) is present only for short 
ramp durations. B The spiking region for a model neuron generated 
using gKS = 50 nS has a spiking region that is intermediate between 
those that of the single spiker and that of the tonic spiker

Fig. 11   Response of a model 
intermediate neuron ( gKS = 50 
nS) to current ramps. A When 
the neuron is given an applied 
current ramp with a large 
slope (duration = 50 ms), it 
exhibits tonic spiking. B No 
spikes are produced during a 
small-slope current ramp (dura-
tion = 200 ms). C The bifurca-
tion structure for the large-
slope ramp has a large spiking 
interval. D There is no spiking 
interval for the small-slope 
ramp, as shown by the solid red 
line. This response is similar to 
that of an intermediate neuron 
when exposed to a slow ramp, 
which is shown with the dashed 
red line

A B

C D
Large-Slope Ramp Small-Slope Ramp

400200 8000 600 1000 1200
Applied Current (pA)

400200 8000 600 1000 1200
Applied Current (pA)

-80

-40

-20

40

-60

20

0

60

Vo
lta

ge
 (m

V
)

-40

-20

40

-60

20

0

60

Vo
lta

ge
 (m

V
)

200100 4000 300 500 600
Time (ms)

-80

-40

-20

40

-60

20

0

Vo
lta

ge
 (m

V
)

200100 4000 300 500 600
Time (ms)

-80

-100

-60

-40

-80

0

Vo
lta

ge
 (m

V
) -20



Journal of Computational Neuroscience	

1 3

is shown in Fig. 11C for the large-slope ramp and Fig. 11D 
for the small-slope ramp. There is a large spiking interval 
for the large-slope ramp, but none for the small-slope ramp, 
explaining the time courses shown in Fig. 11A, B. These 
diagrams differ qualitatively from those of the single spiker 
(Fig. 8) and tonic spiker (Fig. 9), where tonic spiking inter-
vals either did (tonic spiker) or did not (single spiker) exist 
for either ramp slope. Although we did not see intermediate 
neuron spiking patterns in our experimental studies of DA 
neurons, it would in principle be possible to see this from a 
spiking neuron with the titration of a channel blocker for the 
slowly-activated K+ current in the cell, once the identity of 
that channel was determined, so that the whole-cell channel 
conductance is reduced but not entirely blocked.

4 � Discussion

The goal of this study was to develop an analysis approach 
for understanding the response of a model neuron to fast 
applied current ramps. This topic arose from recent experi-
mental work in which such ramps were employed in the 
characterization of the spiking properties of DA neurons 
of the rat OB (Korshunov et al., 2020). While bifurca-
tion analysis using the applied current as the bifurcation 
parameter is desirable for such analysis, the existence of 
one or more variables that change on a relatively slow 
time scale make this problematic. We demonstrated how 
a decomposition of the model neuron into its fast and slow 
components could pave the way for employing bifurca-
tion analysis on the fast subsystem, while constructing a 
functional relationship between the slow variable and the 
applied current to account for the slow subsystem. This 
provided the means of understanding the spiking behavior 
of the model neuron in response to fast ramps of different 
slopes, which parallel responses in actual DA neurons. 
This approach can be extended in a straight-forward man-
ner to models with multiple slow variables.

As shown in Fig. 10, the ramp speed can have a large 
impact on the fast-subsystem bifurcation diagram. Why does 

this happen? The answer lies in the fact that different ramp 
speeds change the cell’s membrane potential at different 
rates; ramps with large slope increase V at a faster rate than 
small-slope ramps. This influences the activation variable z 
so that it increases at different rates for the different ramps. 
The result is a different fast-subsystem bifurcation diagram 
for different ramp slopes. As the ramp speed is reduced to 
low values the bifurcation diagram converges to that of the 
full system of equations.

In addition to the mathematical analysis of fast ramps, 
we demonstrated how slow applied current ramps can be 
performed on biological neurons to provide information on 
the asymptotic spiking properties of the neuron (Fig. 4). 
We believe that such experimental bifurcation diagrams 
are useful for at least two reasons. First, they help in the 
partitioning of neurons into different “types” according to 
their asymptotic spiking properties. In the case studied here, 
a single-spiking neuron and a tonic spiker have very dif-
ferent asymptotic behavior, and this is readily revealed by 
the experimental bifurcation diagram produced with a slow 
current ramp. The second reason such diagrams are useful 
is that they help to constrain any mathematical model devel-
oped for the neuron; the model neuron should have the same 
qualitative asymptotic behavior as the neuron that is being 
modeled. Although only representative examples are shown 
in Fig. 4, we regularly found that single spiking neurons had 
a bifurcation structure similar to Fig. 4C (of the 11 recorded 
single spiking neurons, 9 did not show periodic branching in 
bifurcation diagrams), and tonic spikers had structure similar 
to Fig. 4D (of the 11 recorded tonic spiking neurons, 9 had 
periodic branching in bifurcation diagrams).

The model neuron that was used in this study was not cal-
ibrated to describe DA neurons. In fact, while our previous 
publication (Korshunov et al., 2020) did reveal differences 
in the activity of voltage-gated Na+ channels and the hyper-
polarization-activated cyclic nucleotide (HCN) channel that 
produces the h-current, there was no attempt to fully eluci-
date the full mix of channels (e.g., K+ channels) present or 
to develop a biophysically accurate mathematical model of 
these neurons. It was not our aim, therefore, to make precise 

Fig. 12   Response of a single 
spiker neuron when exposed to 
a ramp with a short duration. A 
The two-parameter bifurcation 
diagram for a single spiking 
neuron. The dashed line for a 
ramp duration of 25 ms passes 
through two Hopf bifurcations, 
resulting in the spiking behavior 
shown in B. This spiking 
behavior is similar to that of 
an intermediate neuron when 
exposed to a large-slope ramp, 
as shown in Fig. 11A
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statements about these types of neurons. Instead, the aim 
was first to demonstrate that even a simple neuron model 
that captures the spiking behavior of a biological neuron 
subject to short current steps can convey useful information 
about the neuron’s asymptotic behavior and its behavior in 
response to fast current ramps, and then to show how fast-
slow analysis of the model neuron can bring insights about 
the spiking behavior of the neuron in response to fast current 
ramps. The analysis approach can be used with any single-
compartment neural model, from simple (like ours) to much 
more complex models containing activation and inactivation 
variables for many ionic currents. Though implementation 
of the analysis would be more difficult with more complex 
models, the same basic approach should work.

Ionic current from a slowly activated K+ channel with a 
relatively large 50 ms time constant was a key element of our 
model. There are a number of ion channel types with slow 
gating properties. These include, but are not limited to, the 
activation of M-type K+ channels (Yue & Yaari, 2004), inac-
tivation of A-type K+ channels (Connor & Stevens, 1971), 
activation of small (SK)-type and intermediate (IK)-type 
Ca2+-activated K+ channels (Kshatri et al., 2018), activation 
of ATP-sensitive K+ channels (Tinker et al., 2014), activa-
tion of the HCN-type channels (Wahl-Schott & Biel, 2009), 
and inactivation of L-type Ca2+ channels (Kubalova, 2003) 
and T-type Ca2+ channels (Perez-Reyes, 2003). All of these 
introduce slow components to the system, and depending 
upon the speed of the current ramp, some gating variables 
would be best grouped into the fast subsystem and some into 
the slow subsystem.

One big advantage that model neurons have over bio-
logical neurons is that the state of each gating variable is 
known at each point in time. Indeed, this knowledge is 
what allowed us to obtain the linear relationship between 
the slow gating variable and the applied current during 
a fast ramp. Although this can’t be done for most gating 
variables in biological neurons, it is possible to do it for 
some. For example, activation of Ca2+-activated K+ chan-
nels is dependent on the intracellular free Ca2+ concentra-
tion, which can be measured using fluorescent dyes such 
as Fura-2 (Takahashi et al., 1999). Similarly, for ATP-
sensitive K+ channels, the degree of activation is based 
on the ratio of ATP to ADP in the cell, and this can be 
determined with the fluorescent probe Perceval-HR (Berg 
et al., 2009). Thus, in these instances, it would be possible 
to relate the activation factor to the applied current dur-
ing a fast ramp, as we have done with the model neuron 
in this report. In so doing, a model neuron could be better 
calibrated to the physiology underlying the behavior of the 
biological neuron.

Fast-slow analysis of models of excitable cells has been 
used to understand a range of behaviors, including bursting 
oscillations (Bertram & Rubin, 2017; Izhikevich, 2000), 

pathological fluctuations in the membrane potential of 
cardiac myocytes (Kimrey et al., 2020a; Kügler, 2016), 
and oscillations in the intracellular Ca2+ concentration 
(Harvey et al., 2011). In each instance, the objective was 
to go beyond computer simulations as a means for char-
acterizing the behavior of the model cell. That is, to not 
just demonstrate what can happen, but to understand why 
it happens. We see the application of fast-slow analysis 
to neural spiking during current ramps in the same light.
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