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Tabak J, Mascagni M, Bertram R. Mechanism for the universal
pattern of activity in developing neuronal networks. J Neuro-
physiol 103: 2208 –2221, 2010. First published February 17, 2010;
doi:10.1152/jn.00857.2009. Spontaneous episodic activity is a fun-
damental mode of operation of developing networks. Surprisingly,
the duration of an episode of activity correlates with the length of
the silent interval that precedes it, but not with the interval that
follows. Here we use a modeling approach to explain this character-
istic, but thus far unexplained, feature of developing networks. Be-
cause the correlation pattern is observed in networks with different
structures and components, a satisfactory model needs to generate the
right pattern of activity regardless of the details of network architec-
ture or individual cell properties. We thus developed simple models
incorporating excitatory coupling between heterogeneous neurons and
activity-dependent synaptic depression. These models robustly gen-
erated episodic activity with the correct correlation pattern. The
correlation pattern resulted from episodes being triggered at random
levels of recovery from depression while they terminated around the
same level of depression. To explain this fundamental difference
between episode onset and termination, we used a mean field model,
where only average activity and average level of recovery from
synaptic depression are considered. In this model, episode onset is
highly sensitive to inputs. Thus noise resulting from random coinci-
dences in the spike times of individual neurons led to the high
variability at episode onset and to the observed correlation pattern.
This work further shows that networks with widely different archi-
tectures, different cell types, and different functions all operate ac-
cording to the same general mechanism early in their development.

I N T R O D U C T I O N

Spontaneous activity is a fundamental property of develop-
ing networks (Ben Ari 2001; Feller 1999; O’Donovan 1999),
characterized by episodes of intense activity separated by
periods of quiescence. This episodic activity occurs at an early
developmental stage when the networks are primarily excita-
tory and plays essential roles in the development of neuronal
circuits (Hanson et al. 2008; Huberman et al. 2008; Katz and
Shatz 1996; Spitzer 2006). Episodic activity is also observed in
other hyperexcitable circuits such as disinhibited networks
(Menendez de la Prida et al. 2006; Tscherter et al. 2001). One
striking feature of this activity is the correlation between
episode duration and the length of the preceding—but not
following—interepisode interval (Fig. 1). The spontaneous
activity of many networks exhibits this correlation pattern,
including the developing spinal cord (Tabak et al. 2001),
developing retina (Grzywacz and Sernagor 2000), developing
cortical networks (Opitz et al. 2002), hyperexcitable hippocam-

pal slices (Staley et al. 1998), disinhibited spinal cord (Rozzo
et al. 2002), and spinal cord cultures (Streit 1993; Streit et al.
2001). The general occurrence of this correlation pattern sug-
gests that a common mechanism of operation exists in net-
works that are structurally very different (O’Donovan 1999).
Here, we identify such a general mechanism and explain how
the correlation pattern is created.

Computational studies have shown that primarily excitatory
networks with slow, activity-dependent, network depression
can generate episodic activity (Butts et al. 1999; Kosmidis
et al. 2004; Tabak et al. 2000; van Vreeswijk and Hansel 2001;
Vladimirski et al. 2008). The slow depression process (Darbon
et al. 2002; Fedirchuk et al. 1999) could target either synaptic
connections (synaptic depression) or the ability of the neurons
to sustain spiking (cellular adaptation). Recurrent excitatory
connectivity recruits neurons and sustains high network activ-
ity, whereas the slow depression eventually shuts down activ-
ity. The next episode may occur once the network has suffi-
ciently recovered from depression. This general mechanism
can account for activity in a wide range of networks. Can it
produce the observed correlation pattern between the duration
of episodes and interepisode intervals?

To answer this question, we use a network model of heter-
ogeneous spiking neurons that is capable of generating spon-
taneous episodic activity. Given its ubiquity, the correlation
pattern should be generated regardless of the details of neuro-
nal properties or network architecture. We therefore begin with
integrate-and-fire neurons and all-to-all excitatory connectiv-
ity. Such a model network with depressing synaptic connec-
tions produces the observed correlation pattern. We then show
that the correlation pattern is robust to changes in network
connectivity and cellular properties.

To explain why the observed correlation pattern is such a
robust feature of excitatory networks with slow synaptic de-
pression, we use a mean field model with added noise. The
added noise represents the random fluctuations of network
activity that may trigger episodes. In this model, episode onset
is very sensitive to noise, whereas episode termination is not.
This asymmetry in turn explains the correlation pattern. Thus a
mechanism based solely on recurrent excitatory connectivity
with slow activity-dependent synaptic depression can produce
the correlation pattern that is the trademark of developing
networks.

M E T H O D S

Network models

We used a network of heterogeneous integrate-and-fire neurons
with all-to-all excitatory connections as described by Vladimirski et
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al. (2008). This choice is motivated by the fact that neither a particular
structure nor specific neuronal properties are necessary to generate the
spontaneous activity. Heterogeneity of neuronal excitability prevents
spike-to-spike synchrony and allows robust episodic behavior (Vlad-
imirski et al. 2008). The voltage variation of neuron i is given by

�
dVi

dt
� �Vi � Ii � gsyn�Vi � Vsyn� (1)

with Vi varying between 0 (resting potential) and 1 (spike threshold).
The membrane time constant, �, is set to 1 so time units are relative
to the membrane time constant. Each neuron has a constant input, Ii,
which sets its own excitability and is the source of heterogeneity. The
distribution of Ii was chosen to be uniform over the interval [0.15
1.15] (unless mentioned otherwise), so a fraction of the neurons have
inputs Ii � 1 and they spike spontaneously. This allows the stochastic
triggering of episodes. The other input to each neuron is the synaptic
term �gsyn(Vi � Vsyn) with

gsyn �
g� syn

N
�
j�1

N

aj � g� syn�a� (2)

where N is the number of neurons in the network, g�syn is the maximal
synaptic activation, and aj is the synaptic drive from neuron j to all

other neurons. The term �a� �
1

N
�j�1

N aj represents the average

activity in the network and is used as the output of the simulations.
The synaptic drive from neuron j varies according to

daj

dt
� �a�t��a�1 � aj� � �aaj. (3)

When neuron j fires (i.e., Vj reaches 1), its voltage is reset to 0 and kept
at 0 for a refractory period Tref. At the same time, this neuron’s �a(t) is
set to 1 for a brief period of time Ta; at any other time, �a(t) � 0, so the
synaptic activation coming from neuron j decays with first-order kinetics
with rate constant �a. Note that all the synapses originating from a given
presynaptic neuron are identical; this limits the number of synaptic
activation variables to N. Finally, we subtract the contribution of each
neuron from its own voltage equation (no self-synapses).

Equations 1–3 thus define the basic network model without any type
of depression. To this basic model, we can add synaptic depression or
cellular adaptation. Synaptic depression is modeled by a variable, sj, for
the synapses originating from neuron j. It varies according to

dsj

dt
� �s �1 � sj� � �s�t��ssj, (4)

where �s(t) � 0 at all times except for a period of time, Tdep,
immediately following a presynaptic spike, during which it is set to 1.
Thus spiking causes sj to decrease. This depression factor decreases
synaptic efficacy such that the effective synaptic input becomes

gsyn �
g� syn

N
�
j�1

N

ajsj (2	)

The network model with synaptic depression is thus defined by Eqs.
1, 2	, 3, and 4. For the model with cellular adaptation, we add a slow
outward current to the voltage equation

�
dVi

dt
� �Vi � Ii � gsyn �Vi � Vsyn� � g���i�Vi � V�� (1	)

with V� 
 0 and the activation of the outward current, �i, varying
according to

d�i

dt
� ���t����1 � �i� � ���i (5)

with neuron i’s ��(t) switched from 0 to 1 during a period of time, T�,
immediately after a spike. The network model with cellular adaptation is
defined by Eqs. 1	, 2, 3, and 5. Parameters for the network models are
given in Table 1. Simulations were run with XPPAUT (Ermentrout
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FIG. 1. Correlation pattern typically observed in developing and hyperex-
citable networks. A: cartoon representation of spontaneous activity, showing
episodic increases of the average firing rate in the network. B: scatter plots of
episode duration and interepisode interval, showing a positive correlation
between episode duration and preceding (not following) interepisode interval.
Time scale ranges from 100 ms to 1 min for the episodes of activity.

TABLE 1. Parameters of the network models using integrate-and-fire neurons (normalized units)

Parameter Description Value (Model With Synaptic Depression) Value (Model With Cellular Adaptation)

Ii Input to neuron i 0.15–1.15 0.5–1.5
Tref Refractory period 0.25 0.25
g�syn Max. synaptic conductance 2.8 1.4
Vsyn Synaptic reversal potential 5 5
�a Synaptic activation rate 10 10
�a Synaptic decay rate 1 1
Ta Synaptic activation duration 0.05 0.05
�s Synaptic recovery rate 0.004 —
�s Synaptic depression rate 0.4 —
Tdep Synaptic depression duration 0.05 —
g�� Max. adaptation conductance — 0.5–1.5
V� Reversal potential — �1
�� Adaptation activation rate — 0.2
�� Adaptation deactivation rate — 0.004
T� Adapt. activation duration — 0.05

Times are relative to the membrane time constant, conductances are relative to the leak conductance and potentials relative to threshold voltage.
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2002). The fourth-order Runge-Kutta method was used, with a time step
of 0.001. Results are presented for n � 100 neurons; simulations with
30–300 neurons gave similar correlation patterns. The time courses for
the model with synaptic depression were also similar to simulations run
with 1,000 neurons (Vladimirski et al. 2008).

Mean field model

Conceptually, a mean field neuronal model represents the activity
of a neuronal population averaged over the population and over a
short period of time (Gutkin et al. 2003; Wilson and Cowan 1972). It
is a useful approximation when, as in the current system, there is no
structure in the connectivity pattern. Also, in the current system, the
entire neuronal population is activated almost synchronously on the
episodic time scale (but not on the spike time scale), so the average is
a good indicator of network behavior. It leads to a differential
equation describing the variation of the averaged neuronal activity

�a

da

dt
� � a � a� �wa � �0� (6)

In this equation, a represents the averaged neuronal activity. This is

analogous to the average synaptic activation �a� �
1

N
�j�1

N aj used

above (Eq. 2), also called synaptic drive (Pinto et al. 1996). This
equation implies that activity tends to reach a value given by the
network steady-state input/output function, a�, with time constant �a.
This time constant represents the network recruitment time constant
and is set to 1, so all time units are relative to it. The parameter w is
a measure of the connectivity in the network and is analogous to g�syn

in the network model. The parameter �0 sets the average cell excit-
ability in the network, analogous to –I in the network model (where I
is the average of the individual neuronal inputs Ii). The term wa � �0

represents the input to the network; thus the connectivity parameter w
sets the amount of positive feedback within the network (Tabak et al.
2000, 2006).

Equation 6 can have bistable solutions, where the activity a can be
either high (�1) or low (�0) depending on initial conditions. To
generate episodic behavior, we add a slow synaptic depression process
that can switch the network between the high and low states. This
model is defined by

da

dt
� �a � a� �wsa � �0� (6	)

�s

ds

dt
� �s � s��a� (7)

where s is the synaptic depression variable and s� is a decreasing
function of a, such that s decreases during high activity episodes and
recovers during interepisode intervals. The steady-state network out-
put function is a��i� � 1/�1 � e�i/ka� and the steady-state synaptic
availability is s��a� � 1/�1 � e�a��s�/ks� (see Table 2 for parameter
descriptions).

This model can generate episodic behavior (Tabak et al. 2006), but
it is deterministic and therefore produces constant durations for the
episodes and interepisode intervals. To study the variability of these
durations, we introduce stochastic noise. This noise represents the
combination of factors that leads to variability in the durations of
episodes and interepisode intervals. Episodes are triggered when a
sufficient number of cells fire in a short interval of time, leading to a
synaptic event that can bring the rest of the network above threshold
(Menendez de la Prida and Sanchez-Andres 1999; Wenner and
O’Donovan 2001). Therefore noise represents random correlated
activity in the network; in our network models, noisy fluctuations in
average activity result from heterogeneity and finite size effects and
not from additional noise to the input of each individual neuron
(added noise to individual neurons would mostly result in a different
shape for the network output function a�; Giugliano et al. 2004; Nesse
et al. 2008). We model random correlated activity by adding Gaussian
white noise to the activity equation, which becomes

da � ��a � a��wsa � �0��dt � n��dt (8)

where n is the noise amplitude and � is a random number drawn at
each time step from a normal distribution.

Parameter values for the mean field model with noise are given in
Table 2. The simulations were run with XPPAUT using the forward
Euler method with a time step of 0.05. All XPPAUT files used in this
work are available for download from www.math.fsu.edu/�bertram/
software/neuron.

R E S U L T S

Excitatory network models with synaptic depression generate
the observed correlation pattern

Can a simple neural network model reproduce the episodic
activity and associated correlation pattern observed in many de-
veloping neuronal networks? To answer this question, we use a
network with no special architecture (all-to-all coupling) and
composed of excitable cells with no endogenous bursting proper-
ties (modeled as integrate-and-fire neurons; see METHODS). All
synapses are excitatory and slowly depress because of presyn-
aptic activity. This creates a circuit with minimal complexity
with the capacity to generate spontaneous episodic activity
(Vladimirski et al. 2008). All cells are identical, except for
their input current Ii, which is randomly chosen such that a
small fraction of the neurons are spontaneously spiking. At the
beginning of an episode, activity quickly spreads from the most
to the least excitable cells. Typically, all cells spike asynchro-
nously during an episode (Vladimirski et al. 2008).

Figure 2A shows the time courses for the model average

activity �a� �
1

N
�j�1

N aj (where aj is the synaptic drive from

neuron j, i.e., the firing pattern of that neuron filtered by the
synaptic machinery; see METHODS) and average depression vari-

able �s� �
1

N
�j�1

N sj (where sj is the level of recovery from

depression of all synapses from neuron j; sj � 0 when the
synapses are fully depressed and sj � 1 when the synapses are
fully recovered). The activity is episodic, with 
s� decreasing
during an episode, eventually terminating the episode when
synaptic efficacy becomes too low to sustain activity. Then

s� recovers during the interepisode interval, until a new
episode is initiated. Note that the maximal value reached by

s�, i.e., its value at episode onset, varies from episode to

TABLE 2. Parameters of the mean field model

Parameter Description Value

w Connectivity 0.8
�0 Input for half activation 0.17
ka Spread of a� 0.05
�s Activity for half depression 0.2
ks Spread of s� 0.05

Steady-state network output function is a�(i) � 1/(1 � e�i/ka) and steady-
state synaptic availability is s�(a) � 1/(1 � e(a��s)/ks).
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episode. This is also visible in Fig. 2B where the 
a� versus

s� trajectory is plotted. There is more variability of 
s� at
episode onset than at episode termination. This difference in
variability results in a significant positive correlation between
episode duration and the preceding (Fig. 2C) but not the
following interepisode interval (Fig. 2D). This is because a
longer preceding interval (“long” on Fig. 2B) means a higher

s� at episode onset and therefore a longer episode duration
before 
s� decreases enough to stop the episode. On the other
hand, because episodes terminate close to the same 
s� value,
regardless of episode duration, there is no significant correla-
tion between episode duration and the following interval.

The correlation pattern results from the large variability of

s� at episode onset compared with the low variability at
episode termination. To illustrate this difference, we plot the
distribution of the average recovery variable 
s� at episode
onset and episode termination. The width of the onset distri-
bution (Fig. 2E) is much greater than that of the termination
distribution (Fig. 2F). Note that this stochasticity of the episode
onset is an intrinsic property of the network, because there is
no added source of noise in the model (Thivierge and Cisek
2008). A fraction of the neurons spike slowly during the
recovery period, so an episode can be triggered at any time if

enough neurons fire together to trigger a wave of recruitment of
other neurons. This seems to be a stochastic event, and the
probability that such an event occurs increases with recovery
time.

Thus the simple excitatory network model generates spon-
taneous episodic activity with the correlation pattern observed
experimentally. This correlation pattern is the result of the
greater variability of episode onset compared with episode
termination. To test whether the correlation pattern is robust,
we ran 10 simulations with different, randomly chosen distri-
butions of input current Ii. The correlation coefficients between
episode duration and interepisode intervals are plotted on Fig. 3A.
In all cases, episode onset was more variable than episode termi-
nation, resulting in a significant correlation between episode
duration and preceding interval, but not with following interval.

Robustness of the correlation pattern to changes in cellular
and network properties

Is the correlation pattern still observed if some features of
the model are modified? Our hypothesis is that as long as the
two key features of the model—recurrent excitatory connec-
tivity and slow activity-dependent depression of network ex-
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FIG. 2. Episodic activity and correlation
pattern of the excitatory network of inte-
grate-and-fire (I&F) neurons with synaptic
depression and all-to-all coupling. A: time
courses of activity, 
a� (thin, black curve),
and average recovery from depression, 
s�
(thick, light green curve). Note how the
value of 
s� at episode onset varies from
episode to episode, while the value of 
s�
at episode termination remains almost con-
stant. B: “phase plane” representation, where

a� is plotted as a function of 
s� for
each time point shown in A. This defines a
trajectory with the bottom part of the trajectory
corresponding to the interepisode intervals, the
upper part corresponding to the episodes and
the right and left parts corresponding to the
transitions between episodes and silent inter-
vals (arrows indicate direction of movement).
This representation clearly shows the greater
variability of episode onset than episode ter-
mination. Short, episode starting after a short
interval; long, episode starting after a long
interval. C: the correlation between episode
duration and preceding interepisode interval is
high. D: absence of correlation between epi-
sode duration and following interepisode inter-
val. E: wide distribution of 
s� values at
episode onset. F: narrow distribution of 
s�
values at episode termination. sd, SD of the
corresponding distribution.
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citability—are present, the correlation pattern will be observed.
To test this, we alter some features of the network—one at a
time—and check if the same correlation pattern is present.
Note that we limit the scope of this study to all-to-all and
random connectivity patterns.

First, we change the connectivity of the network. We do not
consider networks with ordered topologies because there is no
common structure in the many developing and other hyperexcit-
able networks that exhibit the correlation pattern (O’Donovan
1999). Instead, we replace the all-to-all coupling connectivity of
our network model by random connectivity whereby each neuron
projects to 10% of the population. This randomly connected
sparse network exhibits episodic activity with a high degree of
variability at episode onset, resulting in the same robust correla-
tion pattern as the fully connected networks (Fig. 3B). The same
robust correlation pattern is also obtained with connection prob-
ability decreased to 5%.

Next, we replace the integrate-and-fire neurons (with all-to-
all coupling) with Hodgkin-Huxley–type neurons (see appen-
dix for the formulation of this model). That is, we change the
neuronal model from an integrator to a resonator (Izhikevich
2001). This network requires a high degree of heterogeneity in
the distribution of input current to generate episodic activity,
and the activity is less regular (both onset and termination are
more variable than with I&F neurons). The baseline level can
also vary during the interepisode interval (Fig. 4, A and B) in
some simulations, which was never observed with the network
of I&F neurons with all-to-all coupling. Nevertheless, as
shown in Figs. 3C and 4, C and D, this model network still
produces activity with the variability of 
s� much higher at
episode onset (Fig. 4E) than episode termination (Fig. 4F),
leading to a robust correlation between episode duration and
the preceding, but not the following, interepisode interval.

Finally, we change the slow negative feedback process that
terminates the episodes. For this last model, synapses do not
depress, but each individual neuron has a slow outward current
with activation �j (see METHODS). This model generates episodic
activity similar to the model using synaptic depression (Fig. 5A),

but with the average cellular depression ��� �
1

N
�j�1

N �j in-

creasing during an episode and recovering (decreasing) during
the interepisode interval. This network model tends to produce
very regular activity because the adaptation process slows
down the faster firing cells (the cells with higher input current)
more than the slower cells. This tends to homogenize the
network. To limit this effect, we chose the conductance pa-
rameter for the adaptation process randomly, over a wide
interval, for each cell. Simulation results for the model with
cellular adaptation are shown in Figs. 3D and 5. Although the
same pattern of correlation is generally observed, the variabil-
ity at onset relative to termination is less (Fig. 5, E and F) than
for the other model networks. In a minority of cases, this
resulted in the absence of a significant correlation between
episode duration and preceding interval or the presence of a
significant correlation between episode duration and following
interval (Fig. 3D). Thus the correlation pattern seems less
robust in the model with cellular adaptation.

Emergence and disappearance of the correlation pattern as
cellular excitability is increased

The results shown in Figs. 2–4 show that simple excitatory
network models with slow synaptic depression can generate
episodic activity with the observed correlation between episode
duration and interepisode interval. We note that episodic ac-
tivity is observed for a wide range of parameter values (Vlad-
imirski et al. 2008) and that we did not need to tune parameter
values to obtain the correlation pattern shown in the preceding
sections, suggesting that it is also a robust feature of the episodic
activity generated by these networks. In this section, we focus on
the all-to-all coupled network of Hodgkin-Huxley–type neurons
with synaptic depression (Figs. 3C and 4) and test the robustness
of the correlation pattern on parameter values. A complete param-
eter study is outside the scope of this paper; here, we describe the
effects of cell excitability on the correlation pattern, because this
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FIG. 3. Robustness of the correlation pattern to model implementation. Each plot indicates the correlation coefficient between episode duration and preceding
or following interepisode interval obtained from 10 simulations. Filled circles indicate significant correlation (P 
 0.01). A: results from a network of I&F
neurons with synaptic depression and all-to-all coupling. Input currents were uniformly distributed on the interval [0.15, 1.15] (the minimal input current that
results in spiking, or rheobase, is 1). Each simulation corresponds to a different, randomly chosen, distribution of bias currents. B: results from a network of I&F
neurons with synaptic depression as in A, but with sparse (10%) connectivity. Here, all simulations used the same, uniformly spaced distribution of bias current
on [0.15, 1.15], but differed in the connectivity matrix. For each simulation, each neuron was assigned to project to 10 randomly chosen postsynaptic neurons.
C: results from a network of Hodgkin-Huxley neurons with synaptic depression and all-to-all coupling. Bias currents were uniformly distributed on the interval
[�10, 5] (rheobase �3 	A/cm2). Each simulation corresponds to a different, randomly chosen, distribution of bias currents. D: results from a network of I&F
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[0.5, 1.5]. Each simulation corresponds to 2 different, randomly chosen, distributions for bias currents and g�.
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is motivated by experimental findings (Menendez de la Prida et al.
2006).

We noticed that simulations resulting in low correlations
between episode duration and preceding interepisode interval
are often the ones for which cell excitability (i.e., input current)
in the network is the lowest. This is in agreement with exper-
imental findings from disinhibited hippocampus slices (Me-
nendez de la Prida et al. 2006), which showed no correlation
between episode duration and interepisode interval, unless
cellular excitability was increased using a high extracellular
concentration of potassium ions. Figure 6A shows the time
course of network activity and slow recovery from depres-
sion for a network with all cells receiving an additional
hyperpolarizing current of �1.2 	A/cm2. In this case, there
are practically no episodes starting before the recovery from
synaptic depression reaches its asymptotic level. Thus all
episodes start around the same value of 
s�, so they all
have a similar duration regardless of the preceding interepi-
sode interval. Therefore there is no correlation between
episode duration and preceding interepisode interval (Fig.
6B) or episode duration and the following interepisode
interval (Fig. 6C).

As the additional bias current is made less hyperpolarizing,
episodes can more often start before maximal recovery is
reached, increasing the variability of 
s� at episode onset
(Fig. 6D, green dotted curve representing the ratio between the
SD of 
s� at onset and the SD of 
s� at termination). As

s� at onset becomes more variable relative to 
s� at
termination, the episodes that start at higher 
s� have a longer
duration. That is, a correlation between episode duration and
interepisode interval appears (Fig. 6D, ●). As the bias current
is increased to depolarizing values, episode onset is facilitated
and becomes less variable relative to episode termination. The
correlation between episode duration and preceding interval
therefore becomes lower. Further increasing the bias current
led to activity with less clearly defined episodes, so the detec-
tion of episode onset and termination became ambiguous and
the correlation pattern could not be determined. Although not
shown here, we obtained similar results with I&F neurons, that
is, low correlation (or no correlation) for very low cellular
excitability, strong correlation at intermediate excitability and
again lower correlation for high cell excitability.

Thus the mechanism of synaptic depression reproduces the
experimental finding that a correlation pattern emerges when the
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FIG. 4. Episodic activity and correlation
pattern of the excitatory network of Hodgkin-
Huxley (HH) neurons with synaptic depres-
sion and all-to-all coupling. A: time courses of
activity, 
a� (thin, black curve), and average
recovery from depression, 
s� (thick, light
green curve). B: “phase plane” trajectory.
C: the correlation between episode dura-
tion and preceding interepisode interval is
high. D: absence of correlation between
episode duration and following interepi-
sode interval. E: wide distribution of 
s�
values at episode onset. F: narrow distri-
bution of 
s� values at episode termina-
tion.
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cellular activity level of a hyperexcitable network is increased.
Also, the correlation pattern is robust to changes in cell excitabil-
ity, because a significant correlation is observed for most of the
range of bias current that supports episodic activity. We obtained
similar results when we varied synaptic efficacy instead of cellular
excitability (data not shown). This robustness to parameter values,
together with the robustness to model choices (Fig. 3), imply that
the correlation pattern is a general feature of excitatory networks
with activity-dependent depression.

Mean field model with noise reproduces the
correlation pattern

Figures 2, 4, and 5 suggest that the mean activity and mean
depression variables may provide sufficient information to under-
stand the correlation patterns generated by the network models.
Thus we now use a mean field model that describes the global
activity of the whole population in the network in terms of the
mean firing rate (averaged over the population and over the
synaptic time scale) a and a mean depression variable s (see
METHODS). Although such models may not capture all the effects of
cellular heterogeneity in a network (Vladimirski et al. 2008), they

qualitatively describe many features of episodic activity (Latham
et al. 2000; Tabak et al. 2000) and can be easily analyzed.

We modified a mean field model of an excitatory network with
synaptic depression (Tabak et al. 2006) by adding noise to the
mean activity to generate variability in episode duration and
interepisode interval (METHODS). This noise is meant to reflect
coincident firing of a subset of neurons in the finite network
population. If several cells spike within a short period of time,
they create a small bump in the mean activity level in the network.
The noise we add to the global activity therefore represents the
fluctuations caused by correlated activity of subsets of the network
(Doiron et al. 2006; Holcman and Tsodyks 2006).

First, we show that the mean field model with noise gener-
ates episodic activity with correlation patterns similar to those
of the network models used above. Figure 7 shows the activity
and correlation patterns produced by the mean field model. The
activity is episodic (Fig. 7A), with slow oscillations of the
synaptic recovery variable s. Furthermore, the variability of s at
episode onset is much greater than its variability at episode
termination (Fig. 7, A, B, E, and F), leading to a correlation
between episode duration and preceding—not following—
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FIG. 5. Episodic activity and correlation
pattern of the excitatory network of I&F neu-
rons with cellular adaptation and all-to-all cou-
pling. A: time courses of activity, 
a� (thin,
black curve), and average adaptation 
��
(thick, light green curve). Note that the activity
appears more regular than for the previous
examples (Figs. 2 and 4). B: “phase plane”
trajectory. C: the correlation between episode
duration and preceding interepisode interval is
high. D: absence of correlation between epi-
sode duration and following interepisode inter-
val. E: distribution of 
�� values at episode
onset. F: narrow distribution of 
�� values at
episode termination.
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interepisode interval (Fig. 7, C and D). These results are
qualitatively similar to the ones obtained for the network model
with spiking neurons (Fig. 2). Therefore the mean field model
captures not only the mechanism for generating spontaneous
episodic activity but also for producing the observed correla-
tion pattern.

Qualitative explanation for the correlation pattern

We now take advantage of the simplicity of the mean field
model to perform a geometric analysis of the effects of the
noise that lead to the correlation pattern shown in Fig. 7, C and
D. More sophisticated tools have been used previously (Lim
and Rinzel 2010; Pedersen and Sorensen 2006). Our analysis
uses the fact that one model variable (a) is fast, whereas the
other (s) is slow.

The mechanism underlying episodic activity in the deter-
ministic version of our mean field model can be visualized

using a phase portrait (Fig. 8A). We start by treating s as a
constant. The S-shaped curve represents the possible steady
states of the activity for each value of s; this is the a-nullcline
and is defined by a � a�(wsa � �0), where a� is the steady-
state output function of the network (see METHODS). For a range
of values of s, there are three steady states, one on the low branch
with a � 0 (the network is silent), one on the high branch with
a � 1 (network active), and one on the middle branch (dashed).
Unlike the high and low steady states, the steady state on the
middle branch is unstable and serves as a threshold for the
network activity: at a given s, if a is above the threshold value,
the activity will quickly equilibrate to the high state; if a is
below threshold, it will fall to the low state. The S-shaped
steady-state curve allows hysteresis to occur when s is allowed
to vary. Thus when s slowly varies (according to Eq. 7), the
activity becomes episodic, switching between the high and low
branch of the a-nullcline. For example, when activity is high,
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FIG. 6. Dependence of the correlation pat-
tern on cell excitability. A: time course of
activity (
a�, black) and recovery from de-
pression (
s�, thick light green) for a network
of 100 HH neurons with all-to-all coupling and
synaptic depression. Input currents to the neu-
rons are uniformly distributed on the interval
[�10, 5], and an additional bias current of
�1.2 	A/cm2 is applied to all cells of the
network. Note that episodes occur after random
amounts of time once 
s� has reached its
maximal value. B: absence of correlation be-
tween episode duration and preceding interepi-
sode interval. C: absence of correlation be-
tween episode duration and following interepi-
sode interval. D: correlation coefficient
between episode duration and preceding in-
terepisode interval (circles, black line) and
variability of 
s� at episode onset relative to
variability at episode termination (dotted green
line), plotted as a function of the bias current.
The relative variability is measured as the log
of the ratio of the SD of 
s� at onset and at
termination. For the most negative bias cur-
rents (
 �1 	A/cm2), the correlation is not
significant because the variability of 
s� at
episode onset is low. As the variability at onset
increases, the correlation between episode du-
ration and interepisode interval becomes sig-
nificant and remains high until higher values of
bias current lead to lower relative variability of

s� at episode onset.
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synapses depress so s decreases. The state of the network,
represented by a point in the (a, s) plane, tracks the high branch
moving to the left, until it reaches the point where the high and
middle branch meet [high knee (HK)]. Beyond this point, there
is only one steady state, on the lower branch. Thus activity
falls down and the system then tracks the low branch
moving to the right, as s recovers. This is the silent phase.
Beyond the point where the low and middle branches meet
[low knee (LK)], the system jumps back to the high branch,
starting the next episode, and the cycle repeats.

How does this picture change when noise is added to the
system? We first consider perturbations to the deterministic
system and ask whether a sudden input that provokes a jump in
activity level can make the system switch between the active/
silent phases. In Fig. 8A, we consider two cases, where the
system is in either the active or the silent phase and approach-
ing the transition point (HK or LK). For the perturbation to
induce a transition, it must bring the system across the middle
branch. If the system is in the silent phase, a small jump in the
activity will successfully bring it above threshold (upward
arrow) and thus switch it to the active state. On the other hand,
if the system is in the active phase, a comparatively large
decrease in activity will be necessary to bring it below thresh-
old (downward arrow), because the a-nullcline (the S-curve)

has a rounder shape at the high knee. Thus it is more difficult
to perturb the system from the active to silent phase than from
the silent to the active phase. This implies that noise of a given
amplitude will be able to initiate an episode of activity for a
relatively wide range of s values compared with the range of s
values where episodes terminate.

However, this is not the only factor explaining the higher
variability of s values at episode onset compared with episode
termination. The noise term is in the differential equation
describing activity. To understand its contribution in the frame-
work of deterministic dynamical systems, we consider noise as
an extra input to the network, an input that varies quickly with
time but whose effects are integrated over time. If that extra
input was constant, �i, it would affect the shape of the
a-nullcline, now defined by a � a�(wsa � �0) � �i. This
affects the low knee of the S-curve more than the high knee, as
shown on Fig. 8B. That is, an input to the network has a greater
effect on the transition point at episode onset than at episode
termination. If �i is small, the change in the horizontal position
of the knee, �sk, is given approximately by �sk/�i � �sk/ak,
where sk is the value of s at the knee, and ak is the activity level
at the knee (as shown in appendix). Thus the ratio of the
changes in the low and high knee postitions caused by a small
perturbing input is �slk/�shk � (slk/shk)(ahk/alk). For the case
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FIG. 7. Episodic activity and correlation pattern of the ex-
citatory mean field model with synaptic depression. A: time
courses of activity, a (thin, black curve), and average recovery
from depression, s (thick, light green curve). The value of s at
episode onset varies from episode to episode, whereas the value
of s at episode termination remains almost constant, as for the
network of spiking neurons (Fig. 2). Noise amplitude was 0.01.
B: phase plane representation, where a is plotted as a function
of s for each time point shown in A. C: the correlation between
episode duration and preceding interepisode interval is high.
D: absence of correlation between episode duration and follow-
ing interepisode interval. E: wide distribution of s values at
episode onset. F: narrow distribution of s values at episode
termination. These distributions compare with the ones shown
in Figs. 2 and 4.
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shown in Fig. 8B, this ratio is 17.4, so the effect of an input on
the low knee is �17 times greater than the effect on the high
knee.

If the input is not constant but noisy, the a-nullcline is
constantly deformed. As shown in Fig. 8B, this will have a
much greater effect at episode onset than episode termination.
As an illustration, in Fig. 8C, we plot the time course of the
positions of the knees slk and shk on the s-axis during the simu-
lation shown in Fig. 7A (a portion of the time course of s from Fig.
7A is also shown as a thick green curve). Because the knees’
positions can vary with a large amplitude, for illustration pur-

poses, we filtered them according to �k

dLK

dt
� slk � LK, where

LK is the filtered low knee position (and with a similar equation
for the high knee HK), with a time constant �k � 10. It is clear that
the low knee varies more widely than the high knee, with a
ratio of SD sd(LK)/sd(HK) � 17.4, as predicted from our
analysis with a small constant input (Fig. 8B). Consequently,

during the silent phase, if the low knee’s position slk falls
below the current value of s and does not immediately come
back up, an episode can be triggered even if s is far from
having fully recovered. Similarly, if the knee’s position moves
up, the occurrence of an episode can be delayed. These early or
delayed transitions occur to a much lesser extent for episode
termination. Thus the difference in the spread of the distribu-
tion of the low and high knee locations (Fig. 8, D and E) can
explain the difference in the spread of the values of s at episode
onset and termination (Fig. 7, E and F).

Finally, we note that the higher sensitivity of the lower knee to
perturbations (Fig. 8B) does not occur for a model where the slow
negative feedback process is cellular adaptation instead of synap-
tic depression (Tabak et al. 2006). In the case of cellular adapta-
tion, both knees are equally affected by noise, so the correlation
pattern mainly depends on the shape of the a-nullcline, which in
turn depends on the shape of the network steady state input/output
function a�. For a network of I&F neurons, a� has a sharp
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FIG. 8. Phase plane argument for higher

variability at episode onset. A: the trajectory
of the deterministic model tracks low and
high branches of the a-nullcline (the
S-shaped curve). Episode onset and termina-
tion occur at the knees of the S-curve: LK,
low knee, the transition point from silent to
active phase; HK, high knee, the transition
point from active to silent phase. Note that
the trajectory slightly overshoots the knees.
When the system is close to the low knee
during the silent phase, a small perturbation
(short upward arrow) brings it above thresh-
old (dashed portion of the S-curve). When
the system is close to the high knee during
the episode, a stronger perturbation (long
downward arrow) is needed to bring it below
threshold. B: effect of an input on the a-
nullcline. Thick curve, control position as in
A; thin curves, effect of small input � �i
with �i � 0.01. The low knee is more
affected than the high knee. The ratio of
their horizontal displacements is given by
�slk/�shk � (slk/shk)(ahk/alk) � 17.4 for the
parameters given in Table 2. C: portion of
the time course of s from Fig. 7A (thick
green curve), together with the time courses
of the knees positions slk (LK) and shk (HK).
The knees positions are filtered according to
�kdLK/dt � slk � LK (and similarly for the
high knee). Episode onset occurs when s
passes above slk, whereas episode termina-
tion occurs when s falls below shk. D: dis-
tribution of all slks obtained during the entire
simulation. E: distribution of all shks ob-
tained during the entire simulation. The ratio
of their SD was 17.4. Compare these distri-
butions with the distributions shown in Fig.
7, E and F.

2217UNIVERSAL FEATURE OF DEVELOPING NETWORKS

J Neurophysiol • VOL 103 • APRIL 2010 • www.jn.org

 on A
pril 16, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


increase at low activity and a smooth saturation at high activity,
which results in a nullcline with a flatter shape at the bottom
(sharp low knee, round high knee, as in Fig. 8A). This leads to a
significant correlation between episode duration and preceding,
but not following, interval (data not shown, but observed for the
network case, Fig. 5, C and D). However, for a symmetrical a�

such as the one used here, the shape of the a-nullcline is symmet-
rical too, unlike the nullcline obtained with synaptic depression
(Fig. 8A). In that case, noise can induce transitions between active
to silent phase and silent to active phase with equal probability.
This results in a weak but significant correlation between episode
duration and both the preceding and following intervals (Lim and
Rinzel 2010; Tabak et al. 2007). Thus when the slow negative
feedback process is cellular adaptation, the correlation pattern
may depend on network parameters. In contrast, for synaptic
depression, even if we choose a� such that the S-shaped nullcline
is symmetrical, a strong correlation between episode duration and
preceding (not following) interval is still observed because of the
high sensitivity of the low knee to perturbations.

D I S C U S S I O N

The correlation between episode duration and previous—not
following—interepisode interval may represent a signature of
developing networks (O’Donovan 1999), but its cause has not
been studied until now. Here, we show that two characteristic
features of developing networks are sufficient to produce
activity with this correlation pattern: recurrent excitatory con-
nectivity and activity-dependent synaptic depression. We show
that this pattern can emerge naturally in diverse developing
networks because the correlation pattern is robust to changes in
connectivity or cell properties. The correlation pattern is a
direct consequence of the high sensitivity to noise of episode
onset compared with episode termination.

What causes higher variability at episode onset?

In developing spinal and hippocampal networks, episodes
(spinal cord) or network bursts (hippocampus) of activity are
stochastic events, triggered by random fluctuations in basal
activity (Menendez de la Prida and Sanchez-Andres 1999;
Wenner and O’Donovan 2001). In the heterogeneous networks
of excitatory neurons with synaptic depression used here,
episode onset only occurs once a small subpopulation of
neurons with intermediate excitability becomes active (Tso-
dyks et al. 2000; Vladimirski et al. 2008; Wiedemann and
Luthi 2003). The recruitment of this subpopulation seems to be
a stochastic event, requiring the synchronous firing of some of
the spontaneously spiking cells. Thus the variability observed
at episode onset results from heterogeneity (Thivierge and
Cisek 2008) of cell excitability. In comparison, episode termi-
nation is highly predictable, the variability of the average
depression variable being about one order of magnitude less at
episode termination than episode onset.

To explain this asymmetry between episode onset and epi-
sode termination, we used a mean field model with noise. The
stochastic recruitment of a subpopulation of neurons caused by
variations in the degree of synchrony between spontaneously
firing cells cannot be incorporated directly in a simple mean
field model. Instead, we modeled the varying degree of corre-
lated activity by adding noise to the mean activity a (Holcman

and Tsodyks 2006; Venzl 1976). The mean field model with
noise exhibits a similar correlation pattern and asymmetry
between episode onset and termination as the network models.
Therefore details of individual neuron interactions are not
necessary to produce the correlation pattern, which simply
results from population dynamics and activity fluctuations.

Here, we considered noise as either a perturbing stimulus or
a rapidly varying input to gain intuition into the production of
the correlation pattern using phase plane analysis. This geo-
metric analysis suggests that the greater variability of the level
of recovery from depression at episode onset is caused by two
reasons: 1) a smaller stimulus is required to reset the system
from the silent to active than from active to silent phase (Fig.
8A); and 2) the sensitivity of the transition point to perturba-
tions is one order of magnitude greater at episode onset than
termination (Fig. 8B). Note that 1) is dependent on the shape of
the network steady state input/output relationship, which it-
self is determined by the individual cell properties, degree
of heterogeneity, and synaptic properties. On the other hand,
2) requires that the slow process that terminates the episode
be a divisive factor, like synaptic depression.

If the slow negative feedback process is instead subtractive,
like cellular adaptation, the correlation pattern can only be
present because of 1). Thus for a network with cellular adap-
tation, the presence of the correlation pattern is not a robust
feature and depends on cell and synaptic properties. If the
network input/output function is a symmetrical sigmoid such as
the one used in our mean field model, the correlation pattern is
not present (Lim and Rinzel 2010; Tabak et al. 2007). The
network simulations with cellular adaptation exhibit the corre-
lation pattern (Fig. 5) because the input/output function of the
network is asymmetrical, being much sharper at low activity
than high activity levels. Thus if the episodic activity generated
by an excitatory network does not exhibit the correlation
pattern, our results suggest that the slow feedback process
responsible for episode termination might be of the subtractive
type, i.e., not synaptic depression.

Although these results were obtained using the framework of
deterministic dynamics to provide an intuitive geometric ex-
planation for the correlation pattern, we note that a stochastic
analysis, in the context of single cell oscillations, provides
similar results (Lim and Rinzel 2010). This analysis shows that
the spread of the distribution of the slow variable at the
transitions between silent and active phases (such as Fig. 7, E
and F) depends on two factors. These two factors are equiva-
lent to points 1) and 2) above (shown in appendix).

Does the mechanism described here occur in
biological networks?

Could a different mechanism than the one presented here
produce the correlation pattern? We are aware of one alterna-
tive mechanism that might generate a similar correlation pat-
tern. Suppose that there is a slow, unobserved rhythm that
underlies the appearance of episodes of activity. Episodes can
occur at any phase of this rhythm, but their likelihood and
duration are greater before or at the peak of the slow underly-
ing rhythm. An episode preceded by a short silent phase would
more likely occur before the peak of the slow oscillation and
would be shorter than an episode occurring after a long silent
phase (more likely to occur around the peak), hence a corre-
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lation between episode duration and preceding silent phase. On
the other hand, episode duration would not affect the following
silent phase, so little correlation would be observed between
them. Thus this mechanism might reproduce the observed
correlation pattern, if certain conditions are met. However, the
presence of the underlying oscillation was not detected in data
from the chick embryonic spinal cord. This mechanism also
requires more assumptions than the mechanism presented here.

The mechanism presented in this paper is simple and pro-
duces a correlation pattern that is robust, mostly independent of
anatomical or biophysical details or parameter values. We used
all-to-all coupling and random coupling (as well as more
ordered architecture, data not shown), integrate-and-fire, and
Hodgkin-Huxley neurons and found that for all of these net-
works the correlation pattern was produced in a similar way.
Parameter tuning was not required, and we found that a wide
range of parameter values supporting episodic activity pro-
duced the correlation pattern. In short, the correlation pattern
emerges naturally from excitatory model networks with slow
activity-dependent synaptic depression. This mechanism is
therefore likely to occur in biological networks regardless of
the actual biophysical processes found in these networks.
Synaptic depression may be caused by transmitter depletion
(Jones et al. 2007; Staley et al. 1998), chloride extrusion (Chub
and O’Donovan 2001; Marchetti et al. 2005), or activation of
GABAB receptors (Menendez de la Prida et al. 2006), but these
different biophysical processes all underlie the same basic
mechanism and therefore should all contribute to produce the
same correlation pattern.

Furthermore, our model makes predictions, some of which
have been verified experimentally. The high sensitivity to bias
input at episode onset exhibited by the mean field model
translates into a high sensitivity of the interepisode interval
(but not episode duration) to cell excitability (Tabak et al.
2006). This is also observed in the network models (data not
shown). Thus if developing and other hyperexcitable networks
generate the correlation pattern according to the mechanism
described here, they should respond to acute changes in exper-
imental manipulations affecting cell excitability with a large
change in interepisode interval but a smaller change in episode
duration. This has been shown in bursting hippocampal net-
works (Staley et al. 1998). Our model also predicts (Fig. 6) that
the correlation pattern may be low or absent when cell excit-
ability is so low that most episodes do not start before full
recovery. This is observed experimentally in hyperexcitable
hippocampus networks that do not exhibit the correlation
pattern unless cell excitability is raised by increasing the
extracellular potassium concentration (Menendez de la Prida et
al. 2006). More generally, the correlation pattern is observed
for most of the range of parameter values that support episodic
activity, except toward the edges of that range (i.e., at high or
low network excitability). This predicts that the correlation
pattern may be weak or absent early in development when the
activity just emerges or later in development as spontaneous
activity disappears.

As developing networks mature, a refinement of the synaptic
topology takes place, creating specific network structures. This
change in structure might affect the correlation pattern. Re-
placing long-range, random connections with short-range con-
nections can switch the activity pattern of a network from
synchronized episodes to propagating waves (Netoff et al.

2004). Although spontaneous waves in two-dimensional net-
works may exhibit the correlation pattern typical of developing
networks (Grzywacz and Sernagor 2000), the effect of network
structure on the correlation pattern may weaken some of our
predictions and should be studied.

Significance of the findings

Neuronal networks are complex and plastic, and they display
a variety of structures and functions. Can we find unifying
concepts of neuronal network activity? This study strengthens
the view that developing networks may have a common mode
of operation. Not only does the combination of fast excitation
and slow activity-dependent depression generate spontaneous
episodic activity in model networks, but it also naturally
produces the correlation pattern observed in many developing
networks, regardless of model details. This suggests that net-
works with different architectures, different components, and
different functions all share a common mechanism of operation
early in development. This could form the basis of a general
framework for the study of neuronal network operations.

As networks mature, GABAergic and glycinergic transmission
switch from functionally excitatory to inhibitory, silencing epi-
sodic activity. This switch, together with the refinement of syn-
aptic connectivity, leads to different structures and functions in the
various networks. Nevertheless, mechanisms for rhythm genera-
tion in many mature networks rely on recurrent excitation with
slow synaptic depression or cellular adaptation. This is the case of
the slow wave cortical oscillations during sleep (Compte et al.
2003; Sanchez-Vives and McCormick 2000), the inspiratory
rhythm (Rubin et al. 2009), and the pulsatile secretion of oxytocin
during lactation (Rossoni et al. 2008). The same mechanism also
readily emerges when the balance between excitation and inhibi-
tion is broken (Darbon et al. 2002; Golomb et al. 2006; Staley et
al. 1998). Interestingly, nonrhythmic cortical circuits may also
rely on a recurrent excitatory core (Yuste et al. 2005). We
speculate that much progress in our understanding of neuronal
networks may be obtained by asking how network structure and
inhibitory connectivity alters the basic rhythm generation mech-
anism found in immature networks.

A P P E N D I X

Network model with Hodgkin-Huxley–type neurons

Here, we use a reduced Hodgkin-Huxley model for each neuron
with two variables: voltage (V) and activation of delayed rectifier
potassium current (n) (Rinzel 1985). Each neuron is described by the
following two equations

C
dVi

dt
� �gleak�Vi � Vleak�

�g�Nam�
3 �Vi��0.8 � ni��Vi � Vleak� � g�Kni

4�Vi � Vleak�

� Ii � gsyn�Vi � Vsyn�

dni

dt
� �n�Vi��1 � ni� � �n�Vi�ni

where the synaptic conductance is given by gsyn �
g�syn

N
�j�1

N ajsj as for

the integrate-and-fire network model, with aj (synaptic drive from
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neuron j) and sj (depression variable for neuron j) calculated as
described in METHODS (Eq. 3 and 4) with the �(t) functions now
replaced by �(V) � 1/(1 � e(Vthresh �V)/kv). Voltage unit is milli-
volts, time unit is milliseconds, and the capacitance, conductances,
and currents are normalized with respect to surface (with C � 1
	F/cm2). Integration time step was 0.01 ms. A computer code,
along with all parameter values, is available for download from
www.math.fsu.edu/�bertram/software/neuron.

Sensitivity of the knees’ position to perturbation

We add a perturbing input i to the network activity equation as follows

da

dt
� �a � a��wsa � �0� � i (A1)

and ask how this input affects the horizontal location of the knees (i.e.,
the value of s at episode onset and termination), as shown on Fig. 8B.
The a-nullcline is the curve s(a) for which a is at steady state (da/dt �
0). Thus it is defined by

a � i � a��wsa � �0� (A2)

To find how this curve is affected by i, we differentiate Eq. A2 with
respect to i. This results in

�a

�i
� 1 � �ws

�a

�i
� wa

�s

�i
�a	��wsa � �0� (A3)

The knees are the special solutions of Eq. A2 for which the two sides of the
equation are not only equal but have the same slope, that is, same derivative
with respect to a. Thus at the knees, differentiating Eq. A2 gives

1 � wsa	��wsa � �0� (A4)

Substituting in Eq. A3, we obtain

�s

�i
� �

s

a
�at the knees� (A5)

We see that a knee’s position can be highly sensitive to i if activity
at the knee is very low; this is the case for the low knee. Activity is
high at the high knee, so the high knee is not very sensitive to i (cf.
Fig. 8B). This is true regardless of the shape of the network output
function a�. Here we only assume that a� is differentiable.

Distribution of the slow variable at the transitions

Lim and Rinzel reformulated the equation describing the dynamics of
the fast variable (a in our case) using a potential function U(a,s) � �[a �
a�(wsa � �0)]da. For any fixed s, this function has a double-well shape.
The stable steady states of the activity now correspond to the minima of
the potential and the unstable (middle) steady state corresponds to the
maximum separating the two wells. Noise-induced transitions between
the low and high states of activity pictured on Fig. 8A are now transitions
between the two potential wells. The distribution of the slow variable at
the transitions can be obtained using the probability of transitions above
the energy barrier �U(s) (Kramers rate). If the noise amplitude is small
such that all transitions occur around s � s* and the time scale of s is close
to the time scale of the transitions, the SD of s at the transitions can be
approximately expressed as

sd � Kn2��d�U�s*�

ds
� (A6)

where K is a constant and n is the noise amplitude. The denominator
represents the sensitivity of the depth of the potential well to the slow
process, which is

d�U�s*�

ds
� � waa	��wsa � �0��da (A7)

where the bounds of integration are the values of a at the bottom of the
well and at the top of the energy barrier. Because the transitions occur
near the knees of the a-nullcline, we can use Eq. A4 and substitute it

in Eq. A7 to get
d�U�s*�

ds
� ��a/s�da. Making the approximation

that a and s are close to their values at the knees before the transition,
we finally find that the SD of s at the transitions is proportional to
1

�a

sk

ak

.

The first term is the inverse of the size of the jump required to cross
the middle steady state shown in Fig. 8A, and the second term is the
absolute sensitivity of the knee position to a perturbation (cf. Eq. A5)
represented graphically in Fig. 8B. Both terms are larger at low
activity level, so the transition from silent to active phase is more
sensitive to noise than the transition from active to silent phase.

The second term is the largest and therefore the asymmetric
sensitivity of the knees to perturbations is the main factor in the
asymmetric sensitivity of the transitions to noise. We emphasize that
the term s/a appears because the slow negative feedback process is of
the divisive type. If the model uses cellular adaptation (subtractive
feedback) instead of synaptic depression as the slow process, the term
s/a is replaced by the parameter w (the connectivity), so there is no
asymmetry between high and low activity. In that case, the only factor
that can cause asymmetry in the sensitivity to noise is 1/�a.
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