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Abstract

We describe a new technique for comparing mathematical models to the

biological systems that are described. This technique is appropriate for systems

that produce relaxation oscillations or bursting oscillations, and takes advan-

tage of noise that is inherent to all biological systems. Both types of oscillations

are composed of active phases of activity followed by silent phases, repeating

periodically. The presence of noise adds variability to the durations of

the different phases. The central idea of the technique is that the active

phase duration may be correlated with either/both the previous or next silent

phase duration, and the resulting correlation pattern provides information

about the dynamic structure of the system. Correlation patterns can easily be

determined by making scatter plots and applying correlation analysis to the

cluster of data points. This could be done both with experimental data and with

model simulation data. If the model correlation pattern is in general agreement

with the experimental data, then this adds support for the validity of the model.
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Otherwise, the model must be corrected. While this tool is only one test of

many required to validate a mathematical model, it is easy to implement and

is noninvasive.
1. Introduction

Multivariable systems in which one or more of the variables change
slowly compared with the others have the potential to produce relaxation
oscillations. These oscillations are characterized by a ‘‘silent state’’ in which
the fast variables are at a low value, and an ‘‘active state’’ in which the fast
variables are at a high or stimulated value. The fast variables jump back and
forth between these states as the slow variables slowly increase and decrease.
The fast variable time course thus resembles a square wave, while the slow
variable time course has a saw-tooth pattern. The van der Pol oscillator is a
classic example for this system (van der Pol and van der Mark, 1928). Several
important biological and biochemical systems have the features of relaxation
oscillators, including cardiac and neuronal action potentials (Bertram and
Sherman, 2005; van der Pol and van der Mark, 1928), population bursts in
neuronal networks (Tabak et al., 2001), the cell cycle (Tyson, 1991),
glycolytic oscillations (Goldbeter and Lefever, 1972), and the Belousov–
Zhabotinskii chemical reaction (see Murray, 1989, for discussion). Bursting
oscillations are a generalization of relaxation oscillations, where the active
state is itself oscillatory (Bertram and Sherman, 2005; Rinzel and
Ermentrout, 1998). Thus, bursting consists of fast oscillations clustered
into slower episodes. These oscillations are common in nerve cells
(see Coombes and Bressloff, 2005, for many examples) and hormone-secret-
ing endocrine cells (Bertram and Sherman, 2005; Dean and Mathews, 1970;
Li et al., 1997; Tsaneva-Atanasova et al., 2007; Van Goor et al., 2001).

Analysis techniques for models of relaxation-type oscillations are well
developed. For pure relaxation oscillations a phase-plane analysis is typically
used (Strogatz, 1994). For bursting oscillations, a geometric singular pertur-
bation analysis, often called fast/slow analysis, is the standard analytical tool
(Bertram et al., 1995; Rinzel, 1987; Rinzel and Ermentrout, 1998). From
these analyses one can understand features such as threshold behaviors, the
effects of perturbations, the conversion of the system from an oscillatory to a
stationary state or vice versa, the slowdown of the fast oscillations near the
end of the active state that is often observed during bursting, or the
subthreshold oscillations that are sometimes observed during the silent
phase of a burst. Thus, the analysis is useful for understanding the dynamic
behaviors observed experimentally.

While most of the analysis described above assumes that the system is
deterministic, in reality all of the biological and biochemical systems on
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which the models are based contain noise. The noise could be due to
intrinsic factors such as a small number of substrate molecules or ion
channels of a certain type. It could also be due to extrinsic factors such as
stochastic synaptic input to a neuron, stochastic activation of G-protein-
coupled receptors by extracellular ligands, or measurement error. Whatever
the origin, noise can make it more difficult to detect some subtle features of
the oscillation. This makes it harder to know how well the mathematical
model reproduces the behavior of the system under investigation, since key
model predictions may depend on the detection of these subtle features in
the experimental record (Bertram et al., 1995).

In this chapter, we describe a tool based on statistical correlation analysis
that can be used to compare the behavior of a mathematical model against
experimental data and thus help to determine the validity of the model. This
method is designed for relaxation-type models and makes use of intrinsic
noise in the system. Subtle features such as spike frequency slowdown or
subthreshold oscillations are not utilized. Instead, we look at correlation
patterns between the durations of active and silent phases in the experimen-
tal data, and in simulation data generated by stochastic implementations of
the corresponding model. We demonstrate the use of the tool through four
examples. First, we show how it can be (and has been) used to make a
powerful (and testable) prediction that can distinguish the type of
slow negative feedback underlying a relaxation oscillation. Second, we
demonstrate how the tool can be used to study bursting oscillations, focus-
ing on the ‘‘square wave’’ class of bursters. The third example focuses on
‘‘elliptic bursters,’’ and demonstrates that the correlation pattern can distin-
guish one type of bursting from another. Finally, we apply the correlation
analysis to a model of the pituitary lactotroph, a cell in the pituitary gland
that secretes the hormone prolactin. We contrast the correlation patterns
obtained with this model with experimental electrical data from a pituitary
lactotroph cell line.
2. Scatter Plots and Correlation Analysis

In a deterministic system, the duration of each active phase of a
relaxation-type oscillator is the same, and the duration of each silent phase
is the same. However, when the system exhibits random fluctuations, or
noise, durations will vary since the noise can perturb the system prematurely
from one state to another. We measure the duration of each silent phase and
each active phase (see Appendix for the algorithm used for bursting oscilla-
tions), and then make a scatter plot of the active phase durations versus the
previous silent phase durations. A separate scatter plot is made of the active
phase durations versus the following silent phase durations. We then use
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these scatter plots to look for correlations between the active phase and
silent phase durations. This can be done using simulation data from a model,
or using actual data for the corresponding experimental system. As we
demonstrate in the examples below, one expects certain correlation patterns
to exist, based on the dynamic structure of the model. The validity of the
model is supported (but not established) if the expected correlation patterns
match those from the experimental data. If there is no match, then it is likely
that the model should be modified or the parameters adjusted.
This approach can be used for relaxation oscillations or bursting oscillations,
and is most useful when there are enough experimental data to establish
statistical confidence in the correlation patterns.
3. Example 1: Relaxation Oscillations

We consider a system whose activity a is controlled by a fast positive
feedback and a slow negative feedback process. This forms the basis for
many biological oscillators (Ermentrout and Chow, 2002; Friesen and
Block, 1984; Tsai et al., 2008). The activity varies according to:

ta
da

dt
¼ �aþ a1ðwa� y0Þ þ i: ð1:1Þ

This equation means that a tends to reach a steady state determined by
the steady-state input/output function (or activation function) a1, with a
time constant ta (which is set to 1, so time is relative to ta). The function a1
is a sigmoid function of its input (Fig. 1.1) which is proportional to the
system’s output, a. This injection of the activity back into the system’s input
represents positive feedback and the gain of the feedback loop is set by the
parameter w. The other parameter, y0, represents the half-activation input:
if the input is below y0, the output (activity) will be low, and if the input is
above y0, then the output will be high. Finally, the term i provides for a
possible external input to the system, such as a brief resetting perturbation.

This activity equation can describe, for example, the mean firing rate
within a network of neurons connected by excitatory synapses (Tabak et al.,
2000, 2006; Wilson and Cowan, 1972). In this mean field framework, the
network steady-state input/output function a1 depends on the input/
output properties of the single cells, the degree of heterogeneity in the
network, as well as the synaptic dynamics. The parameter w represents the
degree of connectivity in the network while y0 sets the amount of excitation
that neurons need to receive to become activated.

Such a system will always evolve to a steady state (defined by da/dt ¼ 0).
For some parameter values, the systemmay have two stable steady states, one at
a high- and one at a low-activity level. This is a direct consequence of the
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Figure 1.1 System with (fast) positive feedback and two types of (slow) negative
feedback. The positive feedback loop is shown in black; the negative feedback loop is
in gray. (A) System with divisive feedback, which decreases the gain of the positive
feedback loop by a factor s (upper panel). The effect of this feedback is a decrease of the
slope of the system steady-state activation. (B) System with subtractive feedback, which
decreases the effective input by y (upper panel). The effect of this feedback is a shift of
the steady-state activation function of the system to the right. In both cases, the steady-
state output function is given by a1ðxÞ ¼ 1=ð1þ expð�x=kaÞÞ.
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positive feedback. To create relaxation oscillations, we add a slow negative
feedback process. Thiswill allow the system to switch repetitively between the
high and low steady states. We consider two types of slow negative feedback.

The first type is divisive feedback. This feedback reduces the amount of
positive feedback and is implemented using a slow variable, s, according to:

ta
da

dt
¼ �aþ a1ðwsa� y0Þ þ i; ð1:2Þ

ts
ds

dt
¼ �sþ s1ðaÞ; ð1:3Þ

where s1 is a decreasing function of a, so that s decreases during high
activity episodes and recovers when the activity is low. Figure 1.1A illus-
trates that such divisive feedback decreases the slope of the input/output
relationship of the system. In a mean field neuronal network model, for
example, synaptic depression would be implemented as divisive feedback
(Shpiro et al., 2007; Tabak et al., 2006).
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The second type is subtractive feedback. In this case, the half-activation
point of the system is shifted by a slow variable, y, according to:

ta
da

dt
¼ �aþ a1ðwa� y0 � yÞ þ i; ð1:4Þ

ty
dy
dt

¼ �yþ y1ðaÞ; ð1:5Þ
where, y1 is an increasing function of a, so that y increases during high
activity and decreases during low activity. Figure 1.1B shows how subtrac-
tive feedback shifts the activation function to the right, so more input is
necessary to achieve a given output. In a mean field neuronal model,
adaptation of cell excitability by outward ionic currents would be imple-
mented as subtractive feedback (Shpiro et al., 2007; Tabak et al., 2006).

Both themodels defined by Eqs. (1.2) and (1.3) (s-model) and by Eqs. (1.4)
and (1.5) (y-model) generate relaxation oscillations. We first examine the
oscillations generated by the s-model (Fig. 1.2A). The upper panel shows
the time courses of a and s. Activity is oscillating between active (high a) and
silent (low a) phases. During the silent phase (1), s increases, increasing the level
of positive feedback, until activity jumps to a high level (2). This starts the
active phase (3), during which s decreases, decreasing the level of positive
feedback. When s is low enough, there is not enough positive feedback to
sustain the high activity, a falls to the low level (4) and the cycle repeats.

We can gain qualitative understanding of this cyclic activity by using a
‘‘phase-plane’’ representation. Instead of plotting time courses, we plot a(t)
versus s(t) in the (a, s) plane (Fig. 1.2A, lower panel). First, we use the fact that
s is much slower than a, and, for each value of s, now treated as a parameter,
plot the steady states of Eq. (1.2) (the points for which da/dt ¼ 0).We obtain
an S-shaped curve, called the a-nullcline. For some values of s there are three
possible steady states, one low (stable), one high (stable), and one intermedi-
ate that is unstable. Thus, within that range of s values the system is bistable, as
mentioned above, with the middle state acting as a threshold: at any given
time, if a is below this threshold it will fall to the low steady state; if it is above
threshold it will rise to the high steady state.

We now allow s to vary and plot the state of the system, represented by a
trajectory in the (a, s) plane. Assume a is low initially, so we start on the
lower branch of the S-curve. In this case s increases slowly according to
Eq. (1.3) and the trajectory follows the lower branch (1). This continues
until s passes the value where the low and middle steady states meet (the low
‘‘knee’’ of the a-nullcline, LK), so there is no other steady state of Eq. (1.2)
other than the upper steady state. Thus, the system jumps to the high
activity state (2). Once in the high activity state, s decreases and the system
slowly tracks the high branch of the S-curve, moving to the left; this is the
active phase (3). Eventually, the trajectory passes the high knee (HK) of the
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Figure 1.2 The s-model and the y-model produce relaxation oscillations with similar
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shorter duration than the unstimulated ones. Lower panel, the oscillations are repre-
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time courses of y and a. Lower panel, phase-plane trajectory superimposed on the
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S-curve (HK) where the upper steady state meets the middle steady state.
Activity then falls abruptly to the low level (4) and the cycle repeats. In the
phase plane, the effect of a brief stimulation (arrow in Fig. 1.2A) is apparent:
if the stimulus (i) is large enough to bring a above the middle branch of the
S-curve (i.e., the threshold), a will immediately jump up to the high state.
The resulting premature active phase will be shorter than an unstimulated
active phase because it starts at a lower value of s, so less time will be needed
to reach the HK. Note that an active phase can also be prematurely
terminated by a stimulation that brings a below the threshold. In that case,
the following silent phase will also be correspondingly shorter (not shown).
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Figure 1.2B shows that the y-model also generates relaxation oscillations
and responds to brief perturbations in a very similar way. The only visible
difference is that the a-nullcline is a Z-shaped curve instead of S-shaped.
This is because y increases with high activity and decreases during periods of
low activity, in an opposite fashion to s. In both models, the oscillations of
the slow variable allow the system to switch between the active and silent
phases. The system tracks the stable branches of the a-nullcline until it
reaches a knee, where it transitions from one branch to the other.

In many cases, only the activity variable a, but not the feedback variables
s or y, would be readily measurable in experiments. The two models
generate oscillations in a with the same properties, so how can one tell
whether experimentally observed relaxation oscillations are controlled by a
divisive or a subtractive feedback mechanism? In the following, we show
that noise that is intrinsic to the biological system has different effects on the
two models, so one would only need to record spontaneous oscillations to
distinguish between the two possible models.

We include noise by replacing i in Eq. (1.4) with m�, where m is the
magnitude of the noise and � is a normally distributed random variable.
Results presented in the following are not overly sensitive to the way
noise is added to the activity. The most important assumption is that noise
perturbs the system’s activity, not the slow feedback process.

The simulations with noise produce episodic activity as shown in
Fig. 1.2, but with variable durations of the active and silent phases. The
activity time course is shown in Fig. 1.3A for the s-model with noise.
We expect that noise induces early (or delayed) transitions between
the silent and active phases, leading to shortened (or lengthened) active
and silent phases. To evaluate these effects, we plot active phase duration
as a function of the preceding silent phase (Fig. 1.3B) or following silent
phase (Fig. 1.3C). We observe a strong positive correlation between the
length of the active phase and preceding—but not following—silent phase.
This correlation pattern (Fig. 1.3B and C) is the signature of relaxation
oscillations that rely on slow divisive feedback.

The cause for this pattern can be deduced from Fig. 1.3A. Transitions
between silent to active phases can occur at very different levels of the slow
variable s, but the transitions fromactive to silent phases seem to occur around
the same value of swith very little change from period to period. This implies
that a shorter silent phase corresponds to a lower value of s at active phase
onset, and thus to a correspondingly shorter active phase duration
(cf. Fig. 1.2A). The correlation shown in Fig. 1.3B therefore illustrates that
all the variability in active phase duration is due to variability in the preceding
silent phase duration. On the other hand, regardless of active phase duration,
the following silent phase starts at the same s value as all other silent phases and
therefore is not influenced by active phase duration. Thus, there is no
correlation between active phase and following silent phase duration
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Figure 1.3 Activity patterns generated by the two types of relaxation oscillators. (A)
Time courses of a and s generated by the s-model with noise. There is visibly more
variability of the s value at the on transition than at the off transition (mean values at the
transitions are indicated by the horizontal-dashed lines). A strong correlation between
active phase and preceding (B), but not following (C), silent phase duration corre-
sponds to a wide distribution of s at the on transition (D) and a narrow distribution of
s at the off transition (E). (F) Time courses of a and y generated by the y-model with
noise. There is a weak correlation between active phase duration and both the preced-
ing (G) and following (H) silent phase duration. They correspond to equal amounts of
variability in the distributions of y at the on (I) and off ( J) transitions. APD, active phase
duration; SPD, silent phase duration.
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(Fig. 1.3C), that is, the variability in active phase duration does not cause any
of the variability in the following silent phase duration.

To illustrate this discrepancy between the ‘‘on’’ (silent to active) and the
‘‘off’’ (active to silent) transitions, we plot histograms of the value of s at the
transitions. Figure 1.3D shows the wide distribution of s values at the ‘‘on’’
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transition, while Fig. 1.3E reveals a very narrow distribution of s values at the
off transition. Thus, the correlation pattern shown in Fig. 1.3B andC is due to
the large variations of s at the on transition relative to the off transition.
Note that if the variability of s at the off transition was greater, then the
correlation between active and preceding silent phase duration would be
reduced, since there would be some variability in active phase duration not
caused by variability in the length of the silent phase. Also, with less variability
at the on transition, the small amount of variability at the off transition would
have a larger impact and there would be a tendency for a longer active phase to
be followed by a longer silent phase. If the variability of s values at both the on
and off transitions was equal, we would observe a weak (but significant)
correlation between active phase duration and both preceding and following
silent phase durations. This situation occurs with the y-model.

Figure 1.3F shows time courses generated by the y-model with noise.
For the same amount of noise as used in the s-model, there is less variability
in the length of active and silent phases. More importantly, the variability of
y is similar at the on and off transitions (Fig. 1.3I and J). This results in weak
but significant correlation between the duration of the active phase and both
preceding (Fig. 1.3G) and following (Fig. 1.3H) silent phases. Thus, if the
correlation pattern is similar to Fig. 1.3B and C then divisive feedback is
likely involved, while if the correlation pattern is similar to Fig. 1.3G and H
a subtractive feedback is involved.

We now give a qualitative explanation for the differences in the amount
of variability of the slow negative feedback variables at the on and off
transitions, since these differences cause the differences in the correlation
patterns. It is possible to predict the correlation patterns using survival
analysis of particles in a two-well potential (Lim and Rinzel, submitted).
Here, we give an equivalent but more intuitive explanation based on
geometrical arguments. Again, we use the difference of time scales between
the fast activity and the slow negative feedback processes, and we begin with
the s-model (divisive feedback).

There are two contributing factors to the observed correlation pattern.
The first concerns the shape of the a-nullcline in the phase plane.
Figure 1.4A shows that a perturbation which transiently changes the activity
level can induce a phase transition if it brings the activity across threshold
(the middle branch of the S-curve). Because the nullcline is much flatter on
the bottom than on the top, it is easier to induce an on transition (at the
sharp low knee (LK) of the S-curve) than an off transition (at the round
HK). Thus, positive perturbations will be able to induce on transitions for a
much larger range of s values than the range of values for which negative
perturbations of the same amplitude can induce off transitions.

This effect, however, contributes only a small fraction of the variability
induced by noise, because noise does not just act to create a series of quick
perturbations in the activity level. The effects of noise are integrated over
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Figure 1.4 Qualitative explanation for the differences in the variability at the on and
off transitions. (A) The a-nullcline and superimposed trajectory of the relaxation
oscillation for the s-model. Vertical arrows show a perturbation of amplitude 0.2 that
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to noise moving the LK to a small s value. The downward arrow indicates a late on
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time since noise is included in the activity equation (Eq. 1.4). Thus, if we
see noise as a rapidly varying external input to the system, we also realize
that it affects the a-nullcline, perturbing it. To quantify this contribution of
noise, we first consider how a change Di to a constant input to the system
affects the a-nullcline. As illustrated in Fig. 1.4B, Di shifts the LK horizon-
tally to a greater extent than the HK. In fact, we have shown that for a small
change in external input, the ratio of the resulting changes in the position of
the LK and HK, Dslk/Dshk, is proportional to the ratio of the activity at the
HK and LK, ahk/alk (Tabak et al., 2009). Since activity is close to 0 at the
LK, this ratio can be high, around 17.4 for the parameters used here.



12 Maurizio Tomaiuolo et al.

Author’s personal copy
The prediction from this analysis with constant input is that noise will
‘‘shake’’ the a-nullcline during the simulation, moving the knees horizon-
tally. Figure 1.4C shows the resulting time course of both LK and HK
positions. LK varies much more than HK, as predicted, and the ratio of
their standard deviations is close to 17.4. This panel also shows the time
course of s (magnified from Fig. 1.3A), which increases during the silent
phase and decreases during the active phase. When LK moves downward,
s can cross over (upward arrow) and produce an on transition at an
unusually low value of s. On the other hand, when LK remains high it
can delay a transition (downward arrow). Thus, the large variations in the
positions of the LK create the variability of s at the on transition. On the
other hand, there is little variability of HK and therefore little variability of
s at the off transition. Therefore, the wide and narrow distributions of LK
(Fig. 1.4D) and HK (Fig. 1.4E) explain the wide and narrow distributions
of s at the on (Fig. 1.3D) and off transitions (Fig. 1.3E).

These differences between LK and HK are absent in the y-model. First,
Fig. 1.4F shows that for subtractive negative feedback, the knees of the a-
nullcline are symmetrical and therefore it is equally easy for a perturbation to
induce an on or off transition (compare with Fig. 1.4A). Second, input
variation affects both knees’ position similarly (Fig. 1.4G). Thus, noise
creates equal variations in the LK and HK (Fig 1.4H), and the variability
of y is similar at the on and off transitions. The distributions of HK and LK
(Fig. 1.4I and J) are comparable to the distributions of y at the on and off
transitions (Fig. 1.3I and J).

In these examples, we used a smooth sigmoid function for a1,
the steady-state activation of the system (Fig. 1.1). If instead, a1 had an
abrupt onset and smooth saturation, then the Z-shaped nullcline of
Fig. 1.4F would have a sharper LK, and the same pattern of correlation as
the s-model could be observed. On the other hand, if the activation
function was steep at higher a and smooth at lower a then the opposite
correlation pattern could be observed (i.e., correlation between length
of active and following—but not preceding—silent phase). Thus, the
correlation pattern obtained from the y-model depends on the exact
shape of the activation function.

In contrast, for the s-model we obtain the correlation pattern shown on
Fig. 1.3B and C regardless of the shape of a1 because the large noise-
induced variations of the LK are dominant. One exception would be when
y0 is very large, in which case the deterministic system would exhibit a
stable equilibrium rather than a relaxation oscillation. That is, the oscillation
is driven entirely by the noise. In this case, there should be no correlations
between the active and either the preceding or the following silent phases.
With this exception, the correlation pattern produced by the s-model is very
robust to parameter changes.
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In many systems, the active phase is not steady but oscillatory—this
defines bursting. The slow negative feedback variable controls the transi-
tions between active and silent phases of bursting as described above for the
relaxation oscillations. However, the fast oscillations that occur during the
active phase of bursting can greatly increase the sensitivity of the off
transition to noise. This, in turn, can change the correlation pattern. In
the following examples, we present several cases of bursting oscillations in
excitable cells that exhibit different correlation patterns.
4. Example 2: Square Wave Bursting

Square wave bursting has been described in a number of cell types
(Butera et al., 1999; Chay and Keizer, 1983; Cornelisse et al., 2001) and
belongs to the class of integrator-like neurons (Izhikevich, 2001). It has
two primary characteristics. One is that the spikes often ride on a depolar-
ized plateau, as in Fig. 1.5A. However, this is not always the case, since the
spikes may undershoot the plateau (Bertram et al., 1995). The second
characteristic is that the time between spikes progressively increases during
the active phase of a burst. To investigate the correlation pattern on square
wave bursting, we use a simplified version of a biophysically derived
pancreatic b-cell model (Sherman and Rinzel, 1992). Equations for this
and other bursting models used herein can be found in the primary
references. Parameter values used were those described therein. Addition-
ally, equations, parameter values, and computer programs for all models
are available at http://www.math.fsu.edu/�bertram/software/neuron.

For the bursting models discussed, the primary observable variable is the
membrane potential or voltage (V ), which evolves in time according to

C
dV

dt
¼ �

X
i
Ii þ Inoise: ð1:6Þ

The ionic currents, Ii, vary from model to model, as do the number and
identity of other variables. Random noise is introduced through the term
Inoise ¼ m� where, � is a normally distributed random variable and m is the
noise magnitude. In addition to this voltage equation, there are equations
for current activation and inactivation variables. One of these variables
changes slowly compared with V, and for each model is similar to y
discussed earlier, providing subtractive negative feedback.

Figure 1.5A shows the voltage time course of the model with added
noise of magnitude 1 pA with the corresponding slow variable, s, super-
imposed. This is a slow negative feedback variable that activates an inhibi-
tory current. When s is sufficiently large the voltage cannot reach the spike

http://www.math.fsu.edu/~bertram/software/neuron
http://www.math.fsu.edu/~bertram/software/neuron
http://www.math.fsu.edu/~bertram/software/neuron
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Figure 1.5 (A) Voltage trace and slow variable of a noisy square wave burster
(Sherman and Rinzel, 1992). To facilitate superposition, the slow variable (s) time
course has been rescaled. (B) Scatter plot obtained by plotting the duration of each
active phase with the duration of the preceding silent phase. In this case, no correlation
is observed (r ¼ 0.12, p ¼ 0.15). (C) The plot of active phase duration versus duration
of the next silent phase shows a positive correlation (r ¼ 0.72, p < 10�20). Thus, on
average, a short (long) active phase will be followed by a short (long) silent phase. (D)
Distribution of the slow variable at the beginning of an active phase. (E) Distribution of
the slow variable at the end of an active phase. The width of the slow variable
distribution is greater at the active phase termination than at the active phase onset.
That is, active phase termination is more sensitive to noise than active phase initiation.
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threshold, so spiking stops and the cell enters a silent phase. In the absence of
spiking the inhibitory s variable declines, eventually reaching a level that is
low enough to allow spiking to resume.
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Scatter plots of the active phase duration versus the previous and the next
silent phase durations are constructed as described in the previous section.
The scatter plot of the active phase versus the following silent phase
(Fig. 1.5C) shows a positive correlation, indicating that short (long) active
phases lead to short (long) silent phases. In panel B, however, there is no
correlation between the durations of the active phase and the previous silent
phase. That is, the length of the silent phase does not provide information
regarding the duration of the next active phase of bursting.

To explain the correlation pattern, we plot the distributions of the values
of the slow variable at the beginning and the end of an active phase.
Variation of this slow variable is responsible for starting and stopping the
spiking during a burst. For square wave bursting the width of the slow
variable distribution is greater at the active phase termination (Fig. 1.5E)
than at the active phase onset (Fig. 1.5D). The reason for this is that the
spiking slows down near the end of the active phase, and the voltage spends
most of its time near the spike threshold (i.e., the trajectory is approaching a
homoclinic orbit), and so is sensitive to small perturbations. Thus, the
termination of the burst is more subject to noise than its initiation.

This example illustrates that correlation analysis of the active and silent
phase durations, when applied to a model of square wave bursting, produces
a pattern with positive correlation for active versus next silent phase dura-
tion, but no correlation for active versus previous silent phase duration. This
result holds for the other three models of square wave bursting tested, and
the rational for this is that all models of square wave bursting have similar
dynamic structures. This correlation analysis technique can be used on
actual voltage data from a nerve or endocrine cell, for example, to deter-
mine if the cell is a square wave burster. It would only require that active
and silent phase durations be determined and plotted as in Fig. 1.5B and C.
If the patterns match those of a square wave burster, then this tells the
modeler a great deal about the form that the model should take. That is, it
greatly limits the range of possible models that describes the cell’s electrical
behavior.
5. Example 3: Elliptic Bursting

Next, we consider elliptic bursting, which is observed in several types
of neurons (Del Negro et al., 1998; Destexhe et al., 1993; Llinas et al., 1991)
and belongs to the class of resonator-like neurons (Izhikevich, 2000; Llinas,
1988). Elliptic bursting is characterized by large spikes that do not ride on a
depolarized plateau and small subthreshold oscillations that are present
immediately before and after the active phase of a burst (Fig. 1.6A). The
large spikes alone, however, do not uniquely identify this burst type, since
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Figure 1.6 (A) Voltage trace and slow variable of an elliptic burster with noise
(magnitude 0.2 pA). (B) Scatter plots of active phase duration against the duration of
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termination is less sensitive to noise than active phase initiation.
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square wave bursters can have large spikes (Bertram et al., 1995), as can
type two or parabolic bursters (Rinzel and Lee, 1987) and other burst
types. Moreover, the small subthreshold oscillations are largely obscured
when noise is added to the system. That is, the subthreshold oscillations
present in the deterministic system may not readily be distinguished from
those introduced by the random noise. We use the reduced version of the
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Figure 1.7 Correlation analysis applied to experimental data, and compared with a
corresponding model. (A) Sample voltage trace of GH4 cell bursting. (B) Scatter plot
obtained using GH4 cell data showing the active phase duration versus previous silent
phase duration (r ¼ 0.10, p ¼ 0.21). (C) Scatter plot of active phase duration versus
next silent phase duration (r ¼ 0.68, p < 10�20). (D)–(E) Scatter plots obtained from
computer simulations of a model of the pituitary lactotroph (Tabak et al., 2007) with
noise added (4 pA magnitude), ((D), r ¼ �0.07, p ¼ 0.43) and ((E), r ¼ 0.67,
p < 10�15).
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Hodgkin–Huxley giant squid axon model (Rinzel, 1985), with an added
slow outward current, to analyze the correlation patterns for elliptic burst-
ing. Figure 1.7A shows the voltage time course of the model with noise
magnitude of 0.2 pA with the corresponding slow variable superimposed.
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The scatter plot of the active phase versus the duration of the previous
silent phase (Fig. 1.6B) shows a positive correlation, indicating that short
(long) active phase durations are preceded by short (long) silent phase
durations. In contrast, there is only a weak correlation between the active
phase duration and the duration of the next silent phase (Fig. 1.6C). There-
fore, the duration of the previous silent phase predicts the active phase
duration, but the active phase duration does not accurately predict the next
silent phase duration.

As in the previous sections, we plot the distributions of the slow variable
at the onset and at the termination of an active phase. The slow variable in
elliptic bursting exhibits a wider distribution at burst onset (Fig. 1.6D) than
at burst termination (Fig. 1.6E). The reason for the wide onset distribution
is that the subthreshold oscillations bring the voltage near the spike thresh-
old, and once this threshold is crossed an active phase is initiated. Thus, the
active phase initiation is very sensitive to noise, has been described previ-
ously for this type of bursting (Kuske and Baer, 2002; Su et al., 2004).
During the active phase only a precise voltage perturbation at the right time
can lead to spike termination (Rowat, 2007). Thus, active phase termina-
tion is relatively insensitive to the effects of noise.

This example demonstrates that application of correlation analysis can
distinguish model elliptic bursting from model square wave bursting. The
analysis could also be applied experimentally, taking advantage of the noise
that is inherent in the system. The outcome of the analysis could help with
the choice of model used to describe the biological system.
6. Example 4: Using Correlation

Analysis on Experimental Data

In this example, we illustrate how correlation analysis can be used as a
test for the validity of a model by applying it to both the model and the
experimental system. The model describes fast bursting electrical activity in
prolactin-secreting pituitary lactotrophs (Tabak et al., 2007). The experi-
mental preparation is the GH4 pituitary lactotroph cell line. Like primary
lactotrophs, cells from this lactotroph cell line often exhibit fast bursting
electrical oscillations. A sample trace of GH4 bursting activity is shown in
Fig. 1.7A. Correlation analysis was applied to a voltage trace approximately
5-min long, consisting of �150 bursts. The scatter plots show that there is
no correlation between active phase duration and the previous silent phase
(Fig. 1.7B), but a strong positive correlation between active phase duration
and the next silent phase duration (Fig. 1.7C).

We next compare these scatter plots with those from computer simula-
tions of the model with added noise of magnitude 4 pA. The bursting
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produced by the model is neither square wave nor elliptic (Tabak et al.,
2007), but instead is of the type referred to as pseudo-plateau (Stern et al.,
2008). The model scatter plots show that, as with the experimental data,
there is no correlation between active and previous silent phase durations
(Fig. 1.7D), and a strong positive correlation between the active and the next
silent phase durations (Fig. 1.7E). Thus, the correlation analysis provides
some support for the validity of the mechanism for bursting in the
mathematical model.
7. Summary

We have demonstrated that correlation analysis can be a useful tool for
comparing mathematical models with experimental data as a first check for
the validity of the model. This type of analysis is appropriate for systems that
produce relaxation oscillations or bursting oscillations. While it does not
validate the model, it is a first test that is simple to apply to both the model
and the biological system. Furthermore, it is noninvasive: all that is required
is that one measure the activity of the biological system and make scatter
plots of active and silent phase durations. Because the correlation analysis is a
statistical test, confidence in the results increases with the number of data
points. In this case, the data points are bursts or relaxation oscillations. For
our example with the GH4 lactotroph cell line, 5 min of continuous
recording was sufficient to give reliable results. While our examples focused
on neural oscillations, the method is equally applicable to other types of
biological systems that generate relaxation-type oscillations.
Appendix: Algorithm for the Determination

of Phase Durations During Bursting

Here, we describe themethod used to determine silent and active phase
durations for a noisy burst time course, where V is the observable. Upon
visual inspection, we first set a threshold, VS, such that if V > VS a spike is
recorded. Denote the times at which two spikes occur by ti and tj, then two
spikes are considered to lie within a single burst if |ti – tj| < d, where, d is a
positive parameter chosen by examination of interspike intervals. Con-
versely, if |ti – tj| > d then the two spikes are not considered part of the
same burst. In a similar way, we obtain the duration of each silent phase by
computing the difference between the last spike of a burst and the first spike
of the following burst.We then create three vectors of equal size.One vector,!
b, contains all the active phase durations in chronological order (i.e., [b1, b2,
. . ., bN]). The other two vectors contain the silent phase durations.
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The preceding silent phase vector is
!
sprec ¼ ½s1; s2; :::; sN �, while the follow-

ing silent phase vector is
!
snext ¼ ½s2; s3; :::; sNþ1�. We then plot the elements

of
!
b versus those of

!
sprec or versus

!
snext tomake scatter plots. Computer codes

for the computation of active and silent phase durations can be downloaded
from http://www.math.fsu.edu/�bertram/software/neuron.

In the case of experimental data, the data may have to be detrended if
any slow trends in active and silent phase durations are present.
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