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Abstract

The growing complexity of biological data has spurred the development of innova-
tive computational techniques to extract meaningful information and uncover hidden
patterns within vast datasets. Biological networks, such as gene regulatory networks
and protein-protein interaction networks, hold critical insights into biological fea-
tures’ connections and functions. Integrating and analyzing high-dimensional data,
particularly in gene expression studies, stands prominent among the challenges in
deciphering these networks. Clustering methods play a crucial role in addressing these
challenges, with spectral clustering emerging as a potent unsupervised technique con-
sidering intrinsic geometric structures. However, spectral clustering’s user-defined
cluster number can lead to inconsistent and sometimes orthogonal clustering regimes.
We propose the Multi-layer Bundling (MLB) method to address this limitation, com-
bining multiple prominent clustering regimes to offer a comprehensive data view.
We call the outcome clusters “bundles”. This approach refines clustering outcomes,
unravels hierarchical organization, and identifies bridge elements mediating commu-
nication between network components. By layering clustering results, MLB provides
a global-to-local view of biological feature clusters enabling insights into intricate
biological systems. Furthermore, the method enhances bundle network predictions by
integrating the bundle co-cluster matrix with the affinity matrix. The versatility of

B Mebhran Fazli
mfazli@aceso-sepsis.org

Richard Bertram
rbertram @fsu.edu

Deborah A. Striegel
dstriegel @aceso-sepsis.org

Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M.
Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr,
Bethesda, MD 20817, USA

Department of Mathematics, Florida State University, 1017 Academic Way, Tallahassee, FL
32306, USA

Programs in Neuroscience and Molecular Biophysics, Florida State University, 91 Chieftan Way,
Tallahassee, FL 32306, USA

Published online: 12 July 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-024-01335-8&domain=pdf
http://orcid.org/0000-0002-3458-592X

105 Page20f29 M. Fazli et al.

MLB extends beyond biological networks, making it applicable to various domains
where understanding complex relationships and patterns is needed.

Keywords Clustering method - Dimension reduction - Spectral clustering -
Biological network - Correlation network analysis

1 Introduction

The growing complexity of biological data has necessitated the development of inno-
vative computational techniques to extract meaningful information and uncover hidden
patterns within vast datasets. Biological networks, such as gene regulatory networks,
protein-protein interaction networks, and metabolic networks, represent powerful rep-
resentations of the interconnectedness among biological entities and their functional
relationships. These networks serve as invaluable tools in understanding the intricate
molecular machinery that governs life’s fundamental processes (Panditrao et al. 2022).

One fundamental challenge in deciphering biological networks is integrating and
analyzing high-dimensional data, particularly in the context of gene expression studies
(Van Dam et al. 2017; Chowdhury et al. 2020). The advent of high-throughput tech-
nologies, like microarray and next-generation sequencing, has provided researchers
with a wealth of genomic data. However, understanding how individual genes interact,
collaborate, or influence each other remains a complex puzzle.

Clustering techniques are the primary step in solving this puzzle. These methods
cluster the biological features based on data-driven correlation values or measured
distances (Ezugwu et al. 2022; Xu and Tian 2015; D’haeseleer 2005). They include
K-means clustering (MacQueen 1967; Lloyd 1982; Hartigan and Wong 1979), hier-
archical clustering (Nielsen 2016), spectral clustering (Pothen et al. 1990; Ng et al.
2001; Von Luxburg 2007), affinity propagation (Frey and Dueck 2007), and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al. 1996).
In the case of gene expression data, clustering methods enable identification of groups
of genes with similar expression patterns. By grouping genes into clusters or co-
expression modules based on their expression profiles, gene clustering sheds light on
co-regulated gene sets that often participate in shared biological processes (Chowd-
hury et al. 2020; Van Dam et al. 2017; Sarmah and Bhattacharyya 2021). These clusters
offer insights into the coordinated behavior of genes, the activation of specific path-
ways, and potential regulatory mechanisms (Yang et al. 2014; Kogelman et al. 2014).

Among clustering methods, one potent unsupervised technique is spectral cluster-
ing (Ezugwu et al. 2022; Xu and Tian 2015). This graph-based method considers the
intrinsic geometric structure of data to overcome limitations in traditional clustering
algorithms like K-means and hierarchical clustering (Von Luxburg 2007). It constructs
a similarity graph from the data, which could be derived from various similarity mea-
sures, then performs dimensionality reduction by computing eigenvectors of the graph
Laplacian matrix. These eigenvectors capture the data’s underlying structure, and sub-
sets of the set of eigenvectors serve as lower-dimensional representations. By applying
standard clustering algorithms like K-means to these representations, spectral cluster-
ing identifies clusters even in complex data with non-convex shapes and disconnected
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components, making it valuable for tasks like biological network analysis. However,
despite the unsupervised characteristics of spectral clustering, users must pick how
many clusters are expected from the data. We refer to such a choice as a clustering
regime, and different choices lead to different groupings of the data, so that some data
that share a cluster in one clustering regime are in different clusters in another. Although
spectral clustering provides a metric on the importance of a clustering regime based on
measuring gaps between consecutive eigenvalues (eigengaps), deciding which regime
is best is subjective and up to the user. To overcome this, we introduce the Multi-Layer
Bundling (MLB) method by combining the most prominent clustering regimes (based
on eigengaps), each of which provides a particular viewpoint, to provide a comprehen-
sive overview of the data clustering. The key idea is to use the intersection of clusters
from several clustering regimes to form “bundles”. The number of clustering regimes
used, starting from the most prominent, determines the layer number. Bundles of layer
I are the clusters in clustering regime 1 (most prominent). A layer 2 bundle consists
of points that were in the same cluster in clustering regimes 1 and 2. A layer 3 bundle
consists of points that were in the same cluster in clustering regimes 1, 2, and 3. Since
the bundling algorithm is based on recursive intersections, the number of elements in
the bundles decreases as the layer number increases.

This technique not only reveals more refined clustering outcomes than a single
spectral clustering regime but can also be particularly advantageous for understanding
biological networks’ hierarchical organization, thereby providing a global to local
view. It can also identify bridge elements mediating communication between network
components.

To illustrate the procedure, we construct branched networks with varied amounts
of branching. We then synthesize sample-feature data at each node based on the con-
nectivity of the network. We determine the multiple layers of bundles of features from
the correlation matrix of features based on the synthetic data. Finally, by projecting
the results on the simulated network, we show the advantages of MLB over simple
spectral clustering.

One advantage of the bundling method is that it is easy to perform, and does not rely
on user-defined parameters. It also does not modify the data to facilitate analysis. The
different bundling layers only reflect the combination of different spectral clustering
regimes. These different viewpoints can help uncover relationships in the data that
may not be apparent in a single application of spectral clustering.

By utilizing MLB, critical bridge sets of points of an interacting system can be
uncovered. These bridge sets are crucial components that, if removed, would discon-
nect system compartments and disrupt information propagation. The tool’s capability
to identify potential bridges deeply hidden in the data adds to its effectiveness.

Not only does the bundling method determine bundles of related elements, its
iterative nature also provides the ability to form networks of bundles that indicate the
inter-relationship of the different bundles. This information, contained in the bundle
co-cluster matrix, is obtained through the layering process, and therefore not available
in a standard spectral clustering process or other clustering methods (including tools
in gene co-expression analysis) (Von Luxburg 2007; Ezugwu et al. 2022; Xu and Tian
2015; Van Dam et al. 2017).
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In summary, the MLB method presents several advantages over standard spectral
clustering for deciphering relationships among elements of biological networks and
other complex datasets. It is built on spectral clustering and is readily implemented.
We demonstrate the technique here using synthetic data in which the network of cor-
relations is prescribed. It is intended to be used, however, for clustering any biological
data in which a similarity matrix can be constructed.

2 Methods
2.1 Network Construction and Data Synthesis

Correlated biological data often reflect an underlying structural network. For example,
metabolites are related through metabolic enzymes, and genes through transcription
factors. To test the bundling method, we start with a structural network and use it
to generate synthetic data. The advantage to doing this is that we know, and can
manipulate, the structural network that gave rise to the data, so we can measure how
well the method captures properties of that network.

The network construction begins with a single node. A new node is added and
connected to the first node with probability ¢, where ¢ is referred to as the branching
parameter. A pseudo-random number is drawn from a uniform distribution over the
interval [0, 1]. The new node is added if the random number is less than ¢. The neighbor
addition continues until the next drawn random number is > ¢. This process is applied
to each node as it is added to the network (Fig. 1) until there are n = 500 nodes.

After establishing the initial network, a rooted tree with given probability of branch-
ing, we randomly add ten additional edges to form cycles. Figure 2 shows examples
of six networks constructed this way with different values of the branching parameter.
When the branching parameter is low, nodes have similar degrees. When high, there
is a wide distribution of degrees, with some nodes serving as network hubs. Half of
the edges in the network, chosen at random, are labeled as “+” and the other half as

w9
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$=04 $=0.5

Fig.2 Examples of structural networks for different branching parameter values (Color figure online)

The second phase of the synthetic data generation involves assigning values to
the nodes in the network. To start, a node is chosen at random and given a value,
which can be positive or negative. As long as no neighboring nodes have assigned
values, their value is drawn from a normal distribution N (u = 0, o) for a given o.
If neighboring nodes have assigned values, the current node’s value is based on the
values of neighboring nodes and the sign of the labels on the connecting edges.

An example of the process is shown in Fig. 3. Suppose that values for nodes a, b,
and ¢ have been assigned, and that a value for i is next to be determined. The initial step
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Probability

& Cj
Feature value

Fig. 3 Illustration of the elements that go into the assignment of feature value for node i (Color figure
online)

in the determination of the value c; is to choose a value u; that is based on the values
assigned to neighbors and the edge polarities. In this example, u; = (cp —cq —c¢) /3.
(The feature value from node d is not included since it has not yet been assigned.) The
feature value for node i is then determined by drawing a real number from the normal
distribution A/ (u;, o). In general, for any node i the formula for y; is:

wi=y L M

N¥*
JEN} | ! |

where | N[*| is the cardinality of the set of assigned neighbors of node i and €; reflects
the edge polarity (¢; = 1if polarity is positive, and €; = —1 otherwise). We maintain a
fixed o for the normal distribution throughout this process. However, the performance
of the bundling method is tested for different o values.

Finally, for a given network of n nodes, we form the feature matrix, S,,x,, by
iterating the value assignment process a total of m = 400 times. This method for pro-
ducing synthetic data provides a dataset with a large variation of values for each node
while maintaining the prescribed positive or negative correlations among neighboring
nodes.

2.2 Overview of Spectral Clustering

We begin with an overview of spectral clustering (Von Luxburg 2007) since this is the
foundation of our bundling approach. Since we are using a correlation-based metric,
we begin with the Pearson correlation matrix R from the sample-feature matrix S. This
can be used to construct a weighted network with edge weight equal to the absolute
value of the correlations, described by the affinity matrix A = |R|. Spectral clustering
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uses the graph Laplacian (Q) of this matrix:
Q:=D-A 2)

where D is the diagonal “degree matrix”

D;; = ZAi,j- 3)
J#i

To remove the dependency on data size, we normalize the Laplacian matrix:
Q:=D"'2QD"!/2 4)

6 is positive semi-definite and has n non-negative real-valued eigenvalues that can
be labeled in ascending order 0 = A1 < Ay < --- < X, and corresponding eigen-
vectors vi, va, ..., V5. A key step in spectral clustering is identifying gaps in the size
of eigenvalues. We define §; as the difference between consecutive eigenvalues, or
eigengaps:

Si=Aip1— i, i=1,2,...,n—1. 5
These can then be ordered,

61(1 > 5K2 =z 8/(",1- (6)

where the set of k values are eigenvalue indices:
{K17K27-"9K}’l*1}' (7)

A large eigengap indicates a natural break in the data, and the associated index
indicates the number of clusters. The most prominent break in the data occurs with «
clusters, the second most prominent with k7 clusters, etc. The eigenvectors vy, . .., vy,
span a subspace of R” and each n-dimensional data vector is projected into this sub-
space at this ith “clustering regime”. Now, we need a label assignment algorithm
to cluster the projected data points into the clustering regimes i. To do this, we use
the “cluster-qr” algorithm (Damle et al. 2018) implemented in the scikit-learn Python
package (Pedregosa et al. 2011). The outcome clustering regime i is represented as a
set of sets:

Ci={,.... &} (8)

where & j’ is the set consisting of the jth cluster in regime i. We then define a “layer
£ bundle B” as an intersection of £ clusters &;s, each belonging to a clustering regime
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from layer 1 to layer £. That is, a bundle of layer £ is the set of points that were in the
same cluster for each clustering regime 1, ..., £. The set of bundles of layer By is then

£
Be:=1{B|B=( & #2. ji=1 ...} ©)

i=1

3 Results
3.1 Visualization of Clustering Regimes and Bundles Within the Network

Figure 4 shows a structural network used to compute synthetic data for a feature
matrix Sy, «n, as described in Methods. The nodes are color-coded according to the
spectral clustering of these data. The plot shows the graph Laplacian eigenvalues sorted
in ascending order from smallest (zero) to largest, with only the first 15 displayed. The
first eigengap is between the first eigenvalue and the second, which suggests that the
most prominent cluster is the entire network, so there is a single cluster in clustering
regime 1 (C1). The next largest gap is between eigenvalues A3 and A4, so this clustering
regime (C3) has 3 clusters. A few additional clustering regimes are also shown in
the figure, each clustering the network in different ways. No pattern in the clusters
appears among cluster regimes C to Cs. In particular, the number of clusters does not
necessarily increase or decrease monotonically as one moves through the clustering
regimes. Even though certain clustering regimes bear similarities or subset relations,
this is not necessarily the case. Each clustering regime is a different projection of the
data into spaces spanned by a different number of eigenvectors, so data points that are
clustered together in one projection may be split apart in a different projection.

Those nodes that stay together across clustering regimes have a high degree of
similarity, and we say that they are elements of the same bundle. Figure 5 depicts
three layers of bundling from the same set of data used in the previous figure. The set
of bundles of layer 3, B3, consists of 5 bundles (color coded, left column). All nodes
in one bundle were in the same cluster in C» and in C3 (the number of bundles will
never be less than the largest number of clusters in the composite clustering regimes).
The set of layer 4 bundles, By, consists of 6 bundles (center column), which is one
more than in layer 3. This increase occurs because another clustering regime, Cy, is
used in addition to the two regimes used before. The number of bundles increases
further, to 16, in layer 5 (right column). Adding additional clustering regimes can
never decrease, and will likely increase, the number of bundles. By incorporating
more clustering regimes, i.e., delving into deeper layers of bundling, we obtain more
refined bundles, offering a more localized view of the data. Therefore, MLB provides
a systematic transition from a global view (the sole layer 1 bundle contains all data
points) to a local view of the data.

How many layers of bundling should one form? The deepest possible layering is
equal to the number of nodes. At this level, all bundles contain just a single node, so
no useful information is provided. As depicted in the plot in Fig. 5, we can identify
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Fig. 4 Five clustering regimes from synthetic data generated as described in Methods, with parameters
¢ = 0.8 and o0 = 0.2. Eigengaps in the sorted eigenvalues of the graph Laplacian provide the five best

options for the number of clusters in different clustering regimes. In each clustering regime, the nodes are
colored based on the clusters that they fall into (Color figure online)
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suitable points where stopping would be prudent. The figure shows the cardinality of
bundles of different sizes versus layer number. The blue line is the total number of
bundles regardless of size. This is a non-decreasing function of the bundling layer,
as mentioned above. The orange line shows the number of bundles with at least 5
elements. The purple line shows the number of bundles that are the largest, with over
50 elements each. The total number of bundles increases consistently from layer 4
onward, as the larger bundles from prior layers break into smaller ones (the purple
curve of large bundles drops to 1 after layer 4). However, the bundle size distribution
remains relatively constant from layer 5 until layer 8 as the orange, green, red, and
purple curves reach a plateau. This suggests that layer 5 would be a good stopping
point.

3.2 Multi-layer Bundling Depicts Bridge Sets of Data

One use of MLB is the identification of bridge sets within a given dataset, which are
nodes that connect one large module of data to another large module. A bridge set
can be viewed as transitional data which shares information between the two larger
modules, and would typically be a smaller set of data than those that it couples together.
In the structural network used to generate the synthetic data, such a bridge should be a
small set of nodes that connects to much larger sets of clusters or bundles. To quantify
this, we define a bridge factor of a cluster or a bundle x by the ratio of the cardinality
of each neighboring cluster/bundle to that of x, N,. That is:

Moow 20 if vy =1

Yy = YEN, |x|’ (]O)

0, otherwise .
where x is a bundle or a cluster, | - | is cardinality, and Ny is the set of neighboring
bundles or clusters. If a cluster/bundle has only one neighbor (|N,| = 1), then its

bridge factor is zero.

Figure 6 shows a comparison between the bridge factors of layers B3, B4 and Bs
with their corresponding clustering regimes C3, C4 and Cs. The dark color indicates
high values of y, and the light color indicates low values. The figure shows that some
bundles have high bridge factors (dark colored bundles in right column). These bridges
are small groups of nodes that are identified as bridges because they clustered together
with neighboring nodes in some clustering regimes, but not all, and the cardinality of
the bridge set is small relative to that of its neighbors. In contrast, the bridge factors
for clusters (left column) are much lower (lighter color), and therefore the bridge sets
of data are not as clearly defined.

A local bridge set between two other sets of nodes in a network can be thought of
as providing a short path between these other sets, although another path may exist.
A global bridge set provides the only path between sets of neighboring nodes. At low
layers of bundling, local bridge sets are identified (see B3—Bs in Fig. 7), while global
bridge sets are identified in later layers (see Bg—Bg in Fig. 7). In both layers By and
Bg, the only bridge set identified is the single node in the center of the network that
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Fig.5 Three bundling layers and the clustering regimes from which they are formed, arranged as columns.
Nodes of the same color are in the same cluster of a clustering regime (C ;) or the same bundle of a bundle
layer (By). The plot shows the number of bundles of various sizes versus the layer number. The blue curve
is the total number of bundles at each layer (Color figure online)
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Cs >0.4 B,

Fig. 6 Bundling more effectively extracts bridge sets of data than clustering. In the left column, nodes are
colored corresponding to the bridge factor value of clustering regimes C3, C4, and Cs. The same is shown
on the right but for bundling layers B3, B4 and Bs. Darker colors mean larger y, and are elements of the
bridge sets (Color figure online)
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connects all modules (it has the highest betweenness centrality). The ability to identify
bridge sets at different scales reflects the multi-scale nature of the bundling method.

The previous examples suggest that bridge sets of data are better detected in
bundles than clusters. To determine if this is true in general, we examined syn-
thetic data generated by 50 different structural networks with branching parameters
¢ = 04,0.5,...,0.9. In Fig. 8, for each branching parameter, the violin plots of
bridge index values for clustering regimes 1 to 5 and bundle layer 5 (Bs) are plotted.
Any distinct bridge has a very high y, putting it in the upper tail of the violin plot. For
all values of the branching parameter, the tail is longer and thicker for Bs than for the
clustering regimes, indicating that there are more large bridge factors in bundle layer
5 than in the clustering regimes from which it is computed, confirming that bridge sets
of data are better identified by bundling than by spectral clustering alone.

3.3 The Network of Bundles Can Help Determine the Structure of the Feature
Correlation Network

One property of the bundling process is that it is iterative, with each iteration building
on the last and incorporating the next most prominent spectral clustering regime. If
two nodes are in different bundles in layer 5, they could have been in the same bundle
in layer 4. In fact, this happens frequently with some bundles: they are closely related
to one or more other bundles in that they have many nodes that were together in an
earlier bundling layer. This bundle overlap can be used to construct a bundle network,
whose nodes are bundles and the edges indicate significant bundle overlap. We show
next that this bundle network can help determine similarities in the data. That is, it
can help find the network of interactions (e.g., the structural networks in Fig. 2) that
led to the correlations among the data. As an example, consider the network shown in
Fig. 9a. The nodes in this network are colored according to the layer 5 bundles that
they are part of. It is clear from this that the nodes of each bundle are co-localized
in the network. This is expected since the data values were chosen to correlate (or
anti-correlate) with neighboring nodes. The graph in Fig. 9b is the bundle network
that corresponds to the structural network on the left. Two bundles are connected
by an edge if one node in one bundle is connected to a node in the other in the
structural network on the left. The challenge is to find the edges in the bundle network
without knowing the structure of the network used to generate the data on the left. Our
goal is to use the information obtained from spectral clustering and bundling to find
these edges, and thus understand how the different bundles are interconnected. We
first attempt to reconstruct the bundle network using only bundle affinity properties
derived from the affinity matrix of the data, A. Then, we use the bundle overlap (co-
clustering) information obtained through the layering process. Finally, we examine
their combined effect on network reconstruction.

We begin by constructing a square symmetric matrix H* corresponding to bundle
layer k whose dimension is equal to the number of bundles at this layer, which we
denote as N*. Element (x, y) in HF is the average of the affinity values between
nodes in these bundles. This is illustrated in the top diagram in Fig. 10, where a line
segment connecting nodes i and j corresponds to the i, j element of the affinity matrix
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Fig. 7 Local bridge sets are identified at low bundling layers, while global bridge sets are identified at
higher layers. The nodes in the six bundling layers are colored according to the value of the bridge factor
y, with dark color indicating large y (Color figure online)
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Fig.8 Violin plots of bridge factors computed from synthetic data generated by 50 structural networks with
6 different branching parameters ¢. Bundle layer 5 is shown, along with its composite clustering regimes.
Bridge factors in the upper tails reflect bridge features (Color figure online)

A (whose elements are the absolute values of the Pearson correlation between feature
values, as defined in Methods). The 6 segments correspond to the 6 elements that
are averaged to calculate H’;, y- The general formula for element (x, y) of this bundle
affinity matrix of layer k is:

I Zieﬂx,jeﬂy Aij

H: | = 11
o |Bx11By! (o
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Fig. 9 An example of a structural network used to generate synthetic data and corresponding layer 5
bundles. a The structural network with nodes colored according to which layer 5 bundle they are in. b The
corresponding bundle network, where an edge means that at least one node of one bundle is connected to a
node in a neighboring bundle in the structural network on the left (Color figure online)

(b) ‘

regime 1 regime 2 regime 5 regime 6

Fig. 10 a Illustration of how element (x, y) of the bundle affinity matrix HF is computed. The orange and
blue sets indicate two bundles, By and By. Each dashed line segment indicates an element of the affinity

matrix that is used in the calculation. In this example, the six affinity values are averaged to give H];,V.

b Illustration of how element (x, y) of the bundle co-cluster matrix L3 is computed, using the same two
bundles. The black closed curve indicates the entire data set (nodes in the structural network), which is
the regime 1 cluster that contains elements of By and By. The closed red, blue, and green curves indicate

clusters at different layers. A cluster at regime k that contains elements of both 8y and By, is denoted by Sé‘
(Color figure online)

The algorithm to construct what we call the “H-bundle network™ has two steps.
In the first step, the maximum value along each row of H¥ is determined (in case
of a tie, we use the location of the maximum with the smallest index number). The
indices for each of these maxima are used to connect two bundles by an edge. Since
there are N* rows in the matrix, there will be at most N¥ — 1 edges. The resulting
H-bundle network may have more than one connected component. If this is the case,
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(b)

Fig. 11 Three approaches for reconstituting the bundle network of Fig. 9b using only spectral clustering
and bundling information. a The H-bundle network constructed using the bundling affinity matrix of layer
5, H. b The L-bundle network constructed using the layer-5 bundle co-clustering matrix L’ withr = 12.¢
The LH-bundle network constructed using the matrix L + H with » = 12. In all networks, the green edges
match edges in the target bundling network of Fig. 9b. Blue edges are in the target network, but not the
reconstituted network (i.e., false negatives). Red edges are in the reconstituted network, but not the target
network (i.e., false positives) (Color figure online)

then a second step is taken to add additional edges. In this step, all elements of HX not
already used for edges are listed in descending order according to their magnitude.
If the indices of the top element would provide an edge that reduces the number of
connected components in the network then this edge is added to the network. If not, it
is discarded and the next element in the list is examined. This process continues until
there is a single connected component in the H-bundle network.

The H-bundle network constructed this way is shown in Fig. 11a. The green edges
are those that match the target bundle network of Fig. 9b. Many edges in the target
were missed in the construction of the H-bundle network, and these missing edges
(false negatives) are indicated in blue in Fig. 11a. Finally there are some edges in the
H-bundle network that are not in the target network. These false positives are shown
in red in Fig. 11a.

Another option for determining the inter-relationship of bundles is to see how they
cluster together across layers. This information is used to form a square symmetric
matrix L corresponding to bundle layer k, with dimension equal to the number of
bundles at this layer, N k We call this the layer-k bundle co-cluster matrix.

The calculation of element (x, y) of the co-cluster matrix L° is illustrated in
Fig. 10b. At each clustering regime less than or equal to 5, the cluster or clusters
that each bundle belongs to are identified and their cardinality determined. For exam-
ple, at clustering regime 1, there is a single cluster containing both bundles (it contains
all data points), and this cluster is denoted Szl with cardinality |& Zl | equal to the number
of data points n. The sum of the cardinality of B, and B, is then divided by |$Z1| to
obtain the fraction of the cluster occupied by the two bundles. This is repeated at
each regime up to and including clustering regime 5 and the values summed. At some
regimes, the bundles will be in different clusters (as illustrated in Fig. 10b at regime
2), and in this case the fraction is set to 0. In general, for a calculation of bundles at
layer k, this is
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k
3 |,3x|+|/3y|7 (12)

14
=gl

which will appear in the equation for L y- The next step in calculating Lx y Is to see

how the bundle elements co-cluster as they break apart at higher clustering regimes.
For the example shown in Fig. 10b, the two bundles By and 8, have elements in two
clusters at regime 6, cluster 52,61 and sz. We compute the fraction of each of these
clusters (and any others containing elements of both 8, and ) occupied by the two
bundles. This is repeated over a number of clustering regimes and the fractions summed
together. Finally, this sum is added to the previous sum, so that element (x, y) of the
bundle co-clustering matrix at layer k is:

¢ ¢
L;;’yzzlﬁlerlﬁv n Z Z 1Bx NE 1+ 1By N (13)

14 4
OB S &

where r is the total number of clustering regimes considered (we use k = 5 and
r = 12 in the results shown below). We note that for cluster regimes ¢ < k there is at
most one cluster containing elements of both 8, and B, but for regimes £ > k there
may be several such clusters that form a set Cz’y. It is for this reason that the double
summation is included in the second term of Eq. 13.

Once the bundle co-cluster matrix of layer k is constructed, it is used to compute an
“L-bundle network’ using the same approach that was used for the H-bundle network.
The L-bundle network for the example of Fig. 9 is shown in Fig. 11b. This L-bundle
network matches 12 of the edges in the target bundle network of Fig. 9b, which
is similar to the 13 correct edges in the H-bundle network. Once again, there are
numerous false negative (blue) and false positive (red) edges.

While neither of these approaches outperforms the other, each finds correct edges
that the other misses. What if the two approaches are combined? A simple way of
doing this is to normalize the two matrices and then add them together. The procedure
used to pick edges for the H-bundle and L-bundle networks is again used, forming the
“LH-bundle network” (Fig. 11c¢). This combined network does a better job of matching
the target bundle network of Fig. 9b, with 16 correct edges. There are, however, still
7 false negatives and 2 false positives, so the match to the target is not perfect. The
quality of the match can be quantified with the Jaccard similarity index (Liben-Nowell
and Kleinberg 2007), which provides a measure of the overlap between the edge sets
of the two networks. This is defined as:

& N &l

Jaccard index = ——— (14)
|E- U &l

where &, is the edge set for the target bundle network and &, is that of the H-bundle,
L-bundle, or LH-bundle network.

To determine the performance of the three methods for reconstituting the bundle
network, we applied this reconstruction method to a large number of synthetic data
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Fig. 12 The performance of three different methods for reconstituting the target bundle network. The
network branching parameter is ¢, and o is the standard deviation in the calculation of synthetic feature
values. The orange curve indicates the match of the L-bundle network to the target network, the blue is the
match of the H-bundle network, and the purple is the match of the LH-bundle network to the target (Color
figure online)

sets calculated from different branching parameters ¢ and standard deviation values
o for the calculation of data values. To be comparable, for each parameter set the
layer-5 bundle network was constructed, as were the layer-5 H-bundle, L-bundle, and
LH-bundle networks. The Jaccard similarity index was used to quantify the overlap
between the target bundle network and the reconstituted network. The results of the
analysis are shown in Fig. 12. For each parameter combination, the LH-bundle network
showed greater similarity to the target bundle network than either the H-bundle or L-
bundle network. The figure also shows that the H-bundle network is closer to the target
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than the L-bundle network when the branching is low, and the opposite is true when
the branching is high.

3.4 Comparison Between Multi-layer Bundling and clustering with WGCNA

Here, we compare the clustering results of the commonly used WGCNA (Weighted
Gene Co-expression Network Analysis) technique (Langfelder and Horvath 2008)
with those of MLB. The comparison is made first using synthetic data, and then using
biological data.

Throughout this comparison, we exercised different parameter values in WGCNA
while using the default functions. In the similarity matrix calculation, we used unsigned
Pearson correlation on expression data and enforced a soft threshold by raising the
similarity matrix elements to a power to achieve scale-free topology in the degree dis-
tribution of the similarity network. The result is then transformed into a Topological
Overlap Matrix (TOM) to measure the network connectivity of a gene pair by con-
sidering not only their direct interaction but also their interactions with other genes.
Finally, hierarchical clustering with the Dynamic Tree Cut method is used to detect
clusters (called “modules” in the WGCNA notation).

Most of the procedures above depend on user input, including three key tuning
parameters: (1) the exponent (PWR) to produce a scale-free topology, (2) the minimum
module size (MMS) that sets a lower bound on the size of a module, and (3) the merging
threshold (MRT € [0, 1]) for merging the preliminary modules into a smaller set of
modules.

Using data from a synthetic correlation network, shown in Fig. 13, we do a compar-
ison of the two methods. The left panel shows the bundling results for layer 3, while
the right panel shows WGCNA clustering with the MRT parameter chosen to produce
a number of modules that is similar to the number of bundles. There is a great deal
of similarity between the clustering results, but also some differences. One difference
is the large blue bundle is split into two modules (red and blue) in WGCNA. This
splitting is not seen with bundling, even at different layers, and is peculiar since it
splits the blue module into separate uncoupled components (the blue module has 3
components, while the blue bundle has a single component). Another difference is the
set of elements in the gray module (circled in magenta in the figure), which are data
points that were unassigned to a module in WGCNA. These are part of the large green
bundle in MLB, and at a later layer form a bridge set.

Both MLB and WGCNA require the user to assign parameter values. Those for
WGCNA were discussed above. For MLB, the parameter is the number of layers to
include. So, how do the bundles (for MLB) or modules (for WGCNA) change when
parameter values are changed? That is, what is the sensitivity to parameter changes?
We investigate this first with MLB. Figure 14 is a Sankey plot that shows how group
membership varies from layer 3 bundles (B3) to layer 6 bundles (Bg). The layer 3
bundles correspond to those in Fig. 13a; the length of each colored bar in the Sankey
plot reflects the number of elements in the bundle. The 4 bundles in B3z become 7
bundles in B4, and the bundle elements transform according to the gray curves. Most
elements of the blue bundle stay together in B4 (in a bundle now colored purple), but

@ Springer



Multi-layer Bundling as a New Approach for Determining... Page210f29 105

(@)

Fig. 13 MLB versus the WGCNA clustering method. a Color-coded bundling of simulated test data from
layer 3. b Color-coded modules of the same data using WGCNA with MMS =20, PWR =12, and MRT=0.4
(Color figure online)

some split off into a smaller blue bundle. The orange and green bundles are almost
unaltered by the addition of an extra layer in the bundling process. Note that once two
elements of a bundle split into separate bundles, as the layer number is increased, they
can never rejoin.

The sensitivity analysis of WGCNA clustering is shown in Fig. 15. The top row
shows how the modules change when the MMS (minimum module size) parameter
is decreased from 50 down to 5, and the Sankey plot immediately below it shows
the change in group membership. With MMS =50 there are 4 modules that split into
7 modules with MMS =20. More modules are created with smaller values of MMS,
since smaller modules are allowed. However, unlike MLB, elements of a module can
split into different modules as MMS is decreased, and then rejoin again as MMS is
decreased further. An example of this is the orange module for MMS =50 that splits
into a large orange and a smller purple module with MMS =20. Much of that purple
module rejoins the orange module for MMS =10. The bottom portion of the figure
shows networks and a Sankey plot for a larger value of the PWR parameter (the
exponent of transformation applied to elements of the similarity matrix). When the
MMS parameter is now varied, one observes that, as before, the number of modules
increases as MMS decreases. Also, as before, some elements of a module split into
different modules, and then rejoin later for low MMS values (some elements of the
blue module with MMS =20 split at MMS = 10 and then rejoin into an orange module
at MMS =5). Finally, the Sankey plots in the middle of Fig. 15 examine changes in
group identity when PWR is changed from 6 to 12, and for four different values of
MMS. The most obvious change is in the number of modules, which is greater for
PWR =12 than for PWR =6.

Overall, the sensitivity analysis indicates that in both methods the clustering varies
with the choice of parameter values. However, the changes in MLB are more pre-
dictable (once elements split, they never rejoin into a common bundle), and because
there are fewer parameters in MLB (just 1), the range of variation in group identity is
considerably less than in WGCNA.
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B;

Fig. 14 A Sankey plot of bundling layers 3 to 6 showing changes in group identity as more layers are added
(Color figure online)
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We next compare the clustering performance of WGCNA to MLB using a biolog-
ical data set, publicly available data on the level of mRNA expression using a gene
microarray in female mouse liver (Ghazalpour et al. 2006). It comprises 3600 of the
most connected genes from 135 female mice. To find the WGCNA modules among
the genes, PWR was set to 6, the lowest exponent that enforces the scale-free topol-
ogy in the data similarity network, and MMS =30 (Ghazalpour et al. 2006). In our
analysis, we examined clusters obtained with MRT =0, 0.05, 0.1, 0.15, 0.2, 0.3, and
0.4. The first column of the Sankey plot in Fig. 16 shows the resulting modules using
MRT =0 (and PWR =6, MMS =30). The second column shows bundles of layer 4.
This illustrates the mapping of the data between modules and bundles. In some cases,
genes clustered into several modules mostly lie in a single bundle (e.g., the top three
modules are all contained within the top bundle), and in some cases a single module
is split into several bundles (e.g., module M2 is split into bundles B3, B7, and B10).

We next tested the physiological significance of modules and bundles. To do this,
we calculated the bundle/module eigengenes, the first principal component of a given
bundle or module (Langfelder and Horvath 2008). This was done for all modules with
MRT =0, 0.05, 0.1, 0.15, 0.2, 0.3, or 0.4 and all bundles from layers 3 to 5. Then, we
evaluated the correlation coefficients (R) and corresponding p-values between bundle
or module eigengenes and a list of 26 physiological traits including body weight,
glucose level, and cholesterol level. For only 8 traits are there modules or bundles that
are correlated with traits with |R| > 0.5 and p < 0.01. Figure 17 show volcano plots
for these eight traits, where each data point corresponds to a module or bundle. The
red squares indicate bundles with significant correlation with a trait, while the blue
squares indicate modules with significant correlation. Labels correspond to modules
with MRT=0 or layer 4 bundles. For each trait, the cluster with the highest correlation
coefficient (in absolute value) corresponds to a bundle. For some traits, non-abdominal
fat, insulin, and leptin, the only clusters with |R| > 0.5 are bundles. This analysis
indicates that, for this data set and choice of parameters, MLB outperforms WGCNA
with regard to the correlation of cluster membership with physiological traits.
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Fig. 15 Sensitivity of WGCNA clustering to parameter changes. The networks in the upper row show
modules for PWR =6 and MMS =50, 20, 10, and 5. The lower row of networks show modules for the same
set of MMS but with PWR = 12. Sankey plots in the middle compare modules among different MMs in each
row and between columns with the same MMS and different PWR. In all cases, MRT=0.2 (Color figure
online)

4 Discussion

Spectral clustering is an often-used method for grouping data. This comes with uncer-
tainty, however, in knowing which clustering regime to use. The MLB method bypasses
this by using the several most prominent clustering regimes to determine bundles, each
of which provides a view of the data from global to local as one moves into deeper
bundling layers. The most appropriate number of layers to use can be inferred from
an examination of the bundle sizes at different layers (Fig. 5). The bundling method
also identifies bridge sets in the data that serve as links between bigger bundles. These
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Fig. 16 A Sankey plot of membership in WGCNA modules (with PWR =6, MMS =30, MRT=0) and MLB
layer 4 bundles. The dark turquoise links indicate greater than 20 overlapping members between a module
and a bundle, while light turquoise links indicate fewer overlapping memberships (Color figure online)
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Fig. 17 Volcano plots measuring the degree of correlation of members of modules or bundles with 8
physiological traits from a data set on gene expression in the female mouse liver. Points in the figure
correspond to modules obtained using MRT =0, 0.05, 0.1, 0.15, 0.2, 0.3, or 0.4 and bundles from layers 3
to 5. Labeled points correspond to MRT=0 or bundle layer 4. Bundles with significant correlation to a trait
are shown as red squares; modules with significant correlation are shown as blue squares. The gray circles
indicate bundles or modules in which |R| < 0.5 or p < 0.01 (Color figure online)
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bridge sets, which are transitional data coupling two larger data modules, are less dis-
cernible using spectral clustering alone. The iterative bundling process also provides
information that can be used to determine the relationship between different bundles.
Thus, the method not only forms multi-layer groupings of the data, but also connects
these groupings based on how they are bundled together over different layers.

MLB inherits the data dimensionality reduction power of spectral clustering but
does it in a systematic and iterative approach. It does this using the raw affinity data,
without modification. This is in contrast with the popular software package WGCNA
(Zhang and Horvath 2005; Langfelder and Horvath 2008, 2012; Zhao et al. 2010;
Van Dam et al. 2017), which converts the affinity matrix into an adjacency matrix by
raising each element to a power (a soft-thresholding parameter, PWR) such that the
degree distribution of the corresponding network follows a power law distribution.
The resulting adjacency matrix is then transformed into a Topological Overlap Matrix
(TOM). This is a form of averaging that can weaken the association between two
elements of the network. Finally, WGCNA applies hierarchical clustering to the TOM
to cluster genes into modules, and the number of modules is determined by the user
by setting thresholds (MMS,MRT). Bundling, in contrast, makes direct use of the
affinity data, and provides the number of bundles (clusters) for each layer without user
input.

The bridge bundles that can be identified with bundling are similar in some ways
to nodes that have been referred to as articulation points or cut vertices in networks,
whose removal increases the number of connected components in the network (Tian
et al. 2017). The Depth-First Search (DFS) algorithm can be used to find such special
nodes in a network (Even 2011; Tarjan and Vishkin 1985). Also, centrality measures
such as betweenness centrality (Freeman 1977; Newman 2018; Freeman 1978), which
identifies nodes that act as bridges, and percolation centrality (Piraveenan et al. 2013),
which identifies nodes that are crucial for maintaining the connectedness of the net-
work, are used to identify bridge nodes. These methods all work on networks, where
MLB works with data sets. They also differ from our approach to finding bridge sets
in that they do not take into consideration the size of the clusters. Why does the size
of a cluster or bundle matter in the identification of bridge sets? We view a large
cluster/bundle as a collection of data with extensive similarities that share a categori-
cal identity. For example, a large cluster/bundle could reflect upregulation of a set of
genes related to inflammation in a particular disease state. Two large clusters/bundles
would then reflect two distinct categorical states. In contrast, we view a bridge set as
transitional between these, with similarities to both, but not as a separate categorical
state. For this reason, we define bridge sets to have small cardinality relative to the
clusters or bundles they join together.

The network reconstruction that we performed was an effort to use bundle infor-
mation to identify the structure of the network that gave rise to positive and negative
correlations in the data. The algorithm for forming the L-bundle and H-bundle net-
works is only one possible method for converting the information in the L and H
matrices into network structures. Improvements to this algorithm could yield better
reconstructions of the bundle network, and point to a direction of future potential
development. One major advantage of using synthetic data in which correlations in
data are based on a structural network, as we did here, is that it is possible to com-
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pare the reconstituted bundle network to a ground truth bundle network. In real life
applications, this will not be possible, but the reconstruction process will instead be a
very useful tool for establishing relationships between the bundles, even if there are
false positives and negatives in the edges in the reconstituted network. Bundles that
are highly related, i.e., neighbors in the reconstructed bundle network, may reflect sets
of genes whose gene products are elements of pathways impacted by a disease, for
example. One advantage of the iterative bundling process, then, is that not only are
the most highly correlated elements of the network grouped together into bundles, but
the history of clustering is not lost and can be recapitulated in the reconstituted bundle
network.

In the final section of the manuscript we compared the performance of MLB to
that of WGCNA using both synthetic and biological data sets. The comparison with
synthetic data indicates a strong dependency of WGCNA clustering on the choice
of parameter values, while one advantage of MLB is that there is a single parameter
(the number of layers to use). The comparison with the biological data set indicated
superior performance of MLB over WGCNA with regard to correlation with physio-
logical traits, but it is possible that with other parameter choices WGCNA would have
exhibited better performance. If so, then this again shows the importance of choosing
good parameter values with WGCNA, where in most cases there will be little basis
for making such a choice.
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