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In three-dimensional reaction-diffusion systems, excitation waves may form and rotate around a

one-dimensional phase singularity called the filament. If the filament forms a closed curve, it will

shrink over time and eventually collapse. However, filaments may pin to non-reactive objects pre-

sent in the medium, reducing their rate of collapse or even allowing them to persist indefinitely.

We use numerical simulations to study how different arrangements of non-reactive spheres affect

the dynamics of circular filaments. As the filament contracts, it gets closer to and eventually

touches and pins to objects in its path. This causes two possible behaviors. The filament can detach

from the spheres in its path, slowing down the rate of contraction, or it can remain pinned to a col-

lection of spheres. In general, more or larger spheres increase the chance that the filament remains

pinned, but there are exceptions. It is possible for a small number of small spheres to support the fil-

ament and possible for the filament to pass through a large number of large spheres. Our work

yields insights into the pinning of scroll waves in excitable tissue such as cardiac muscle, where

scar tissue acts in a way similar to the non-reactive domains. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4980076]

Excitable media, which exist in many chemical and bio-

logical systems, are capable of sustaining traveling waves.

In two-dimensional systems such as the thin atrial tissue

of the human heart, shallow chemical systems, and even

bee hives, these waves may form spirals centered at phase

singularities. In three-dimensional systems such as the

thicker ventricles of the heart and deeper chemical sys-

tems, the three-dimensional analogues of spiral waves are

called scroll waves and rotate around a curve called the

filament. Scroll waves interact with non-reactive hetero-

geneities of various shapes, greatly changing the qualita-

tive behavior of the wave. Inspired by the random nature

of heterogeneities in natural systems, we simulate scroll

waves in domains of randomly distributed non-reactive

spheres and study how they affect the ability of the waves

to persist over time.

I. INTRODUCTION

Excitation pulses–a much studied type of nonlinear

wave–exist in a wide range of man-made and natural sys-

tems. Their main characteristics include a constant speed and

amplitude as well as a trailing refractory zone that interdicts

interference phenomena. In chemistry, prominent examples

include concentration waves in autocatalytic reaction-

diffusion media,1 catalytic surface reactions,2 corrosion pro-

cesses,3 and synthetic biochemical networks.4 In biology,

excitation waves often coordinate macroscopic phenomena

such as the cell aggregation of social amoebae5,6 or uterine

contractions during labor.7 In addition, they occur at the

intracellular level–as exemplified by calcium waves in

oocytes, where they prevent polyspermy8–or manifest them-

selves on very large lengthscales as in the cases of defensive

behavior of giant honey bee colonies9 or even epidemic out-

breaks such as the bubonic plague.10

In most of these dissipative systems, excitation waves

self-organize more complex spatial patterns among which

rotating vortices have attracted the most attention. In two

space-dimensions, the vortices typically take the shape of

Archimedean spirals rotating around a central phase singu-

larity.11,12 The associated spiral tip moves along a small, cir-

cular orbit or follows more complicated trajectories such as

epi- or hypotrochoids.13 In three dimensions, wave rotation

occurs around one-dimensional phase-singularities called fil-

aments. The associated wave fields are known as scroll

waves and can be thought of as continuous stacks of two-

dimensional spirals. The filaments move with local speeds

that are determined by the filament curvature14 and some

other, often less important factors.15 Furthermore, the motion

depends on the system-specific filament tension a causing

loops to shrink (a > 0) or expand (a < 0).16,17 For topologi-

cal reasons, filaments can only terminate at internal or exter-

nal system boundaries and must do so in pairs of opposite

chirality.18

The effect of non-dynamic and impermeable heteroge-

neities on spiral tips and filaments is of short range extending

less than one pattern wavelength but can generate complex

and non-intuitive motion. Furthermore, filaments tend to

self-wrap around thin heterogeneities, thus inducing large-

scale changes in the wave field. Moreover, this local pinning

can stabilize filament loops that would disappear in finite

time due to their tension-induced shrinkage. Numerical
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studies have shown that impermeable heterogeneities may

stop filament motion in the case of induced scroll wave

drift.19 In experiments with the autocatalytic Belousov-

Zhabotinsky (BZ) reaction, this stabilization occurs for three

or more small spheres and in some cases even for pairs.20

Single spheres, however, do not stop the collapse but extend

the life-time of the loop by 25%.21 Similar experiments also

revealed the stabilization by thin (complete and cut) tori and

double tori.22,23 The latter induces a topological mismatch

between the simple filament loop and the pinning genus-2

surface.

The study of the effects of such inert or impermeable

heterogeneities in the context of excitable systems is moti-

vated in large parts by the intrinsically heterogeneous

nature of all living systems. In biology, heterogeneities

arise at different lengthscales from anatomical features, the

cellular structure of tissues, and the compartmentalization

of the intracellular space. A prominent example is the heart

which conducts action potentials, a classic case of excita-

tion waves, to orchestrate the pump action of this vital

organ.24,25 Above the level of individual cells, heterogene-

ities in the cardiac tissue include blood vessels, papillary

muscle insertion points, and remodeled myocardium. The

latter is scar tissue that forms after traumatic events such as

infarction, and is characterized by a greatly reduced electric

conductivity that can block action potentials. Furthermore,

such regions can increase the rate of arrythmias and are

likely to pin reentrant, vortex-like waves that are an impor-

tant cause of tachycardia and fibrillation.26,27 Since human

ventricles are sufficiently thick, the corresponding wave

patterns must be treated in a spatially three-dimensional

setting, which clearly increases the complexity of the

heterogeneity-induced dynamics significantly.28

Compared to the current understanding of spiral waves

in homogeneous two-dimensional systems, little is known

regarding the scroll wave dynamics in three-dimensional sys-

tems with strong heterogeneities. Earlier studies focused on

single defect structures or dynamic heterogeneities in the

form of noise29 but to date no analyses of media with random

static non-reactive non-diffusive heterogeneities have been

reported. This article addresses this interesting case for the

simplest example of randomly arranged spheres, considering

the limiting case of complete wave blockage by the individ-

ual structures. Using a simple, two-variable model of excit-

able systems and parallel computing with a programmable

graphics processing unit (GPU), we show that the collapse of

scroll rings can be delayed or stopped by the random

heterogeneities.

II. METHODS

Our simulations employ the Barkley model,30 which is

commonly used to describe excitable reaction-diffusion sys-

tems. The model is given by the following dimensionless

equations

@u

@t
¼ DuDuþ ��1u 1� uð Þ u� vþ b

a

� �
; (1)

@v

@t
¼ DvDvþ u� v; (2)

where u and v are bounded by 0 � u; v � 1. In the context of

the BZ reaction, the variables u and v represent the concen-

trations of bromous acid and the oxidized form of ferroin.23

The system parameters �, a, and b are 0.02, 1.1, and 0.18,

respectively. The diffusion coefficients are Du ¼ Dv ¼ 1.

This choice of parameters allows for scroll waves with posi-

tive filament tension that have no movement in the binormal

z direction.31 We integrate using the forward Euler method

with a seven point finite difference scheme to discretize the

Laplacian. Non-reactive non-diffusive spheres are randomly

inserted into the domain sequentially before the initial condi-

tions are set. If a sphere would overlap with an existing

sphere, we randomly choose a new location until there is no

overlap. These spheres are discretized by voxels of size

0:2� 0:2� 0:2. The system boundary and the boundary

with the inert objects obey no-flux (Neumann) boundary con-

ditions. Simulations are performed on a 240� 240� 240

grid with 0.2 spacing and a 0.005 time step.

We parallelize our solver by sectioning the domain into

a 30� 30� 30 grid of blocks. Each block is processed by a

warp of the GPU and contains an 8� 8� 8 grid of points.

Each point is processed by a thread within a warp. Each

thread can share information within its warp and each point

on a block’s boundary shares information with the warp for

the adjacent block.

Each simulation is initiated with an expanding spherical

wave with the following equations:

u ¼ 0:95 1 � r � 4;

u ¼ 0 otherwise;

�
(3)

v ¼ 0:9 20� 5rð Þ
15

1 � r � 4;

v ¼ 0:6

6� 5r
0 � r < 1;

v ¼ 0 otherwise;

8>>>>><
>>>>>:

(4)

where r is distance from the center of the domain. At t¼ 4,

we set the top half of the domain (z � 24) to u¼ 0 and v¼ 0

and the bottom half of the domain (z< 24) remains

unchanged, which creates a scroll ring that is stationary in

the binormal z direction. We define a point to be on the fila-

ment if u¼ 0.5 and v ¼ a
2
� b and track it with the marching

cube algorithm.23,32 We assume the arc-length of the fila-

ment is proportional to the number of grid points that contain

filament, thus sðtÞ ¼ gn. Here, s(t) is the arc length, n is the

number of grid points that contain filament, and g is a con-

stant determined by the initial condition where the filament

is circular (thus the initial radius, R0, is known) with the for-

mula g ¼ 2pR0=n. The filament is constantly rotating, so we

average the filament length over each period of rotation.

III. RESULTS

To better understand how scroll waves may interact

with randomly distributed and sized heterogeneities, we

investigate collapsing scroll rings in a domain with randomly
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distributed non-reactive spheres. In each simulation, we

specify sphere size (each sphere in a single simulation has

the same size) and the number of spheres. We do not allow

spheres to overlap. Figure 1(a) (Multimedia view) displays a

pinned scroll wave in such a domain. To facilitate visualiza-

tion, only half of the scroll wave is shown. Figure 1(b) illus-

trates the scroll wave filament. The remaining panels depict

the scroll wave with spheres removed (Fig. 1(c)) and the fila-

ment with only the spheres it is pinned to (Fig. 1(d)).

In a simulation with 60 spheres of radius 2.0, we observe

a slowly collapsing scroll ring. Figure 2(a) shows the decline

of the filament length over time. The filament length (blue)

decreases slower than in the case where no spheres are pre-

sent (orange). The filament is initially pinned to two spheres

(Fig. 2(b), Multimedia view), but unpins and declines

quickly. The filament length curve has occasional plateaus

where pinning slows the collapse of the filament. For

instance, a plateau occurs ahead of point C, due to the pin-

ning to five spheres. At point C, the filament has just

detached off the third leftmost sphere while it remains

pinned to four other spheres (Fig. 2(c)). Eventually, the fila-

ment pins to the center-most sphere (Fig. 2(d)). The filament

is now pinned to a set of five spheres, which is able to sustain

the scroll wave for 50 time units until the filament detaches

off all attached spheres and collapses. We conclude that the

filament shrinks slowly while pinned to a set of spheres, but

then shrinks rapidly as it transitions by detaching off a sphere

and pinning to another. The effect pinning has on the fila-

ment length curve is harder to observe early in the simulation

because the filament is constantly detaching from old spheres

and attaching to new spheres and there is no clear transition

of the filament leaving only one sphere and attaching to a

new sphere.

In a simulation with more than twice the number of

spheres (125 spheres) of the same radius, we observe a per-

sistent scroll ring. Initially, the filament shrinks very rap-

idly. At t¼ 275, the filament starts to contract extremely

slowly while it is still relatively large (Fig. 3(a)) and pinned

to 12 spheres (Fig. 3(b), Multimedia view). The filament

continues to gradually constrict for almost 200 time units

until it detaches from the bottom red sphere (Fig. 3(b)) and

quickly collapses due to its positive line tension. The

shrinking dramatically abates when the filament pins to the

middle red sphere in Fig. 3(c) at t¼ 464. While pinned to

the red sphere, the filament length decreases very slowly

(Fig. 3(a)) and eventually pins to the dark red sphere in Fig.

3(d) to become completely stationary. The filament is now

fully pinned to 13 spheres and touches the leftmost green

sphere as it rotates.

To explore minimum conditions for a persistent scroll

ring, we begin to randomly remove spheres connected to the

filament until the filament collapses. We wait until the scroll

ring is stationary at t¼ 1000 to remove the first sphere and

continue to remove one sphere every 400 time units (Fig.

3(a), red lines). In each case, the sphere to be removed next

is colored dark red. The first and second spheres removed

cause a spike in filament length followed by a stationary

structure where the filament is pinned to the remaining

spheres (Figs. 3(e) and 3(f)). These spikes are due to the fila-

ment taking up the space left behind when the sphere was

removed. The leftmost sphere (red in Fig. 3(f)) is removed

next. The leftmost sphere is chosen for removal since the fil-

ament was never truly pinned to it, and only touched it peri-

odically as the filament rotated. Does such a heterogeneity

affect whether the filament remains stationary? Removing

the leftmost sphere does not cause a significant change in the

filament length; it does, however, change the pinning

arrangement. The filament switches from being pinned to the

FIG. 1. A scroll wave pinned to spheres of radius 2.0 with 125 spheres in the

domain. (a) Half of the wave profile. Orange represents u> 0.3. (b) The fila-

ment is red. (c) Half of the wave profile without spheres shown. (d) The fila-

ment with only pinned spheres. (Multimedia view) [URL: http://dx.doi.org/

10.1063/1.4980076.1]

FIG. 2. A scroll ring collapsing in a domain with 60 spheres of radius 2.0.

Of the 60 spheres, only the 11 that touch the filament at some point in time

are shown. (a) The filament length as a function of time (blue). The orange

curve shows the filament length of a scroll ring that has no interaction with

heterogeneities. The labels correspond to the remaining figure panels.

(b)–(d) A top view of the filament at t¼ 9.0, t¼ 308.5, and t¼ 329.5, respec-

tively. (b) The scroll ring has just been initialized. (c) The filament has just

detached off of a sphere. (d) The filament is now pinned to five spheres.

(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4980076.2]
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blue sphere closest to the dark red sphere in Fig. 3(f) to a

state in which it only periodically touches the sphere (dark

red in Fig. 3(g)), which suggests that a sphere touching, but

not necessarily pinning, the filament can play a role in keep-

ing the filament stationary. The now unpinned sphere is

removed next, and again hardly affects the filament length

(Fig. 3(h)). Removal of the fifth sphere causes another tran-

sient increase in filament length followed by a slowly con-

tracting filament (Fig. 3(i)), which persists until the filament

unpins from a sphere and quickly collapses to a new station-

ary state. Shortly thereafter, the sixth sphere is removed (Fig.

3(j)) and the filament ultimately vanishes. The filament is

able to become permanently stationary when it pins to 13

spheres and it remains stationary even after 4 of these

spheres are removed (Fig. 3(h)).

The first two examples illustrated that more heterogene-

ities improve the chances of obtaining a persistent scroll

ring. How general is this result? To study this, we perform

simulations in which the amount and size of spheres vary.

The number of spheres ranges from 30 to 160 in increments

of five, while the sphere radius ranges from 1.6 to 4.4 in

increments of 0.2. For a given number of spheres, we set the

sphere radius to 1.6 and run five simulations where each sim-

ulation has a different random arrangement of spheres. The

number of simulations in which the scroll ring persists for

1000 time units is recorded. This procedure is repeated with

increasing sphere radius until all five simulations yield per-

sistent scroll waves or the sphere radius is 4.4. We stop

increasing sphere size once we see five persistent simulations

because we expect larger spheres to only facilitate scroll ring

persistence. The results of these simulations are summarized

in Fig. 4 where, for each non-yellow grid point, we track

how many of the five simulations persist. We see that more

spheres or larger spheres both lead to a higher number of per-

sistent scroll waves. More spheres means there are more

options for the filament to pin to, which raises the chance

that the filament is attached to an arrangement of spheres

that can sustain it. In addition, increasing sphere size causes

FIG. 3. A persistent scroll ring in a

domain with 125 spheres of radius 2.0.

Of the 125 spheres, only the 20 that

touch the filament at some point in time

are shown. (a) The filament length as a

function of time. The red lines indicate

the removal of a sphere. The labels cor-

respond to the remaining figure panels.

(b)–(d) A top view of the filament at

t¼ 274.5, t¼ 463.5, and t¼ 899.5,

respectively. The filament is contracting

slowly in (b) and (c). The filament is sta-

tionary in (d). Figure 1(d) depicts (d) in

three dimensions. (e)–(j) The same view

with spheres removed at t¼ 1200,

t¼ 1600, t¼ 2000, t¼ 2400, t¼ 2800,

and t¼ 3150, respectively. In panels

(b)–(j), the filament is pinned to the

blue spheres, the filament periodically

touches the green spheres, orange

spheres have no contact with the fila-

ment, light red spheres are discussed in

the text, and dark red spheres are soon to

be removed. (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4980076.3]
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the filament to detach from spheres more slowly, increasing

the chance to pin to multiple spheres.

Figure 4 shows that more or larger spheres increase the

likelihood of scroll wave persistence, but is this effect due to

the total volume occupied by the spheres or the total surface

area? Superimposed onto Fig. 4 is a solid curve of constant

volume. Along the solid curve, the number of persistent

scroll waves varies primarily from zero to three or four. A

similarly placed dashed curve of constant surface area

crosses points with a smaller range of persistence, primarily

zero to two. This difference suggests the hypothesis that the

total surface area is a better predictor for whether a scroll

ring will persist.

We test this hypothesis by holding the total volume con-

stant at 9310 while varying sphere radius and the number of

spheres. At a given sphere radius, in increments of 0.2, we

calculate the number of spheres that give total volume

�9310 and run 15 simulations with random arrangements.

Each simulation has a sphere radius no less than 1.6 and at

least 30 spheres. We repeat this process for constant volumes

of 4939 and 2208, and for constant surface areas of 6650,

4358, and 2548. Figure 5 summarizes these results. There is

a large upward trend in Fig. 5(a) (slope¼ 1.7), indicating

that even with constant volume, larger spheres facilitate

scroll wave persistence. The upward trend is much less in

Fig. 5(b) (slope¼ 0.53), which is the test for persistence with

a constant surface area. The slope in Fig. 5(a) is significantly

greater than the slope in Fig. 5(b), which suggests that the

total surface area of the heterogeneities is a better indicator

for the probability of persistence than total volume. Our con-

clusion is further confirmed in Table I, where we use the v2

test to determine if the probability of persistence for any

FIG. 4. For a fixed number of spheres and radius, five simulations are performed each with a different set of random sphere locations. We then show the num-

ber of simulations, out of five, for which scroll waves last for t � 1000. Orange represents five persistent scroll waves, while blue represents zero persistent

scroll waves. The yellow regions (value of six) were not simulated. The color bar describes how many persistent scroll waves out of five occur at a particular

color (with yellow as an exception).The solid red curve represents a constant total sphere volume (V) of 4000. Along the solid curve, 3.6% of the domain is

taken up by spheres. The dashed red curve represents a constant total sphere surface area (SA) of 5000. Along the dashed curve, the ratio of total sphere surface

area to volume of the domain (VD) is 0.045.

FIG. 5. Fifteen simulations are performed for each sphere radius, while the number of spheres is set to maintain a constant total volume or surface area. Each

simulation has different random sphere locations. The number of simulations that persist up to t¼ 1000 is plotted versus the sphere radius. The best fit line is

drawn through the points. (a) Total volume is held constant. (b) Total surface area is held constant.
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series of 15 simulations is given by the binomial distribution

with n¼ 15 and q constant for each sphere radius. Here, the

constant total surface area always has higher significance

values than the constant total volume analog.

While the total surface area of all spheres affects the

probability of pinning, whether a sphere arrangement leads

to pinning or not ultimately depends on the position of the

spheres. Multiple simulations with the same total surface

area but different pinning situations make this evident.

Because a free scroll ring’s rate of collapse is proportional to

curvature, so that larger scroll rings collapse more slowly,14

we hypothesize that scroll waves with a larger filament have

a greater chance to pin. We test our hypothesis by placing

six spheres with radius r¼ 2.0 in a circular arrangement at

z¼ 24 centered around the origin (Fig. 6(a), Multimedia

view), which guarantees that the filament will interact with

the spheres. We vary the radius of the circular arrangement

(R) and examine scroll ring persistence. For 6:6 � R � 9:2,

the scroll ring eventually dies and for R> 9.2 or R< 6.6 the

scroll ring persists indefinitely. The results in Fig. 6(b) match

our expectations when R � 7:0. Here, we see that scroll rings

last longer for larger values of R until they persist for more

than t¼ 1000. Unexpectedly, we found that persistence also

increased when the circle radius was decreased below seven,

and for R � 6:4 scroll rings persisted past t¼ 1000. This

trend does not match our original hypothesis and reveals that

tight clusters of non-reactive objects can yield a persistent

scroll ring. We studied at 5:6 � R � 12 in similar numerical

experiments with five or seven spheres. In the case of five

spheres, scroll rings collapsed for every value of R. The

opposite occurred in the case of seven spheres; scroll rings

persisted for every value of R.

IV. CONCLUSIONS

We report that non-reactive spherical heterogeneities

slow down, or in some cases prevent, scroll ring collapse.

Once the filament attaches to a sphere, the collapse of the

scroll ring slows down dramatically. Eventually, the filament

detaches from the sphere and contracts quickly until it inter-

acts with another sphere or vanishes. In many cases, the fila-

ment may stop shrinking entirely when pinned and become

completely stationary except for periodic rotations. We

found that the size and the number of non-reactive spheres in

the domain impacts which of these two behaviors occurs.

Our simulations with randomly distributed inert spheres

demonstrate that having more or larger spheres in the domain

increases the chance of the filament reaching a stationary

state. In addition, the total surface area, compared to volume,

of all spheres in the system is better at predicting whether

the scroll ring filament will persist indefinitely.

We also found that the particular arrangement of non-

reactive spheres has an important impact on whether the fila-

ment will persist. Figure 6 demonstrates this well, where

spheres that are relatively close or far apart can sustain a sta-

tionary filament, but when the spheres are at intermediate

distances the scroll wave filament collapses. It is unclear

why intermediate distances are unfavorable to scroll wave

persistence, and unclear why short distances are favorable

for persistence.

Future studies should explore the impact random inert

spheres have on scroll rings in qualitatively different

reaction-diffusion systems. Filaments of scroll rings in sys-

tems without diffusion in the inhibitor variable, such as car-

diac tissue, drift in the binormal z direction. It is unknown

how this drift affects the filament’s stationary states.

Different choices of the parameters of the Barkley model can

lead to unstable expanding scroll rings, which ultimately

leads to spatiotemporal chaos known as Winfree turbulence.

A recent study has shown that an inert cylinder can stabilize

Winfree turbulence,33 but to date it is unclear how randomly

distributed heterogeneities would affect Winfree turbulence.

As we have mentioned in the introduction, most quanti-

tative experiments on scroll wave pinning have been per-

formed with the BZ reaction. It hence seems appropriate to

briefly discuss the feasibility of BZ experiments on vortex

pinning to randomly arranged, spherical objects. Such inert

objects are readily available in the form of small glass or

TABLE I. The v2 test is used to determine if a binomial distribution with

n¼ 15 and q ¼ sample mean could have created the results found for a

given conserved value.

Constant value Degrees of freedom v2 p value (%)

Volume¼ 9310 13 24.9 2.40

Volume¼ 4939 9 400 0.00

Volume¼ 2208 5 7.10 21.3

Surface area¼ 6650 13 3.66 99.4

Surface area¼ 4358 9 5.77 76.3

Surface area¼ 2548 5 1.13 95.1

FIG. 6. (a) The filament of a scroll ring

attached to six spheres of radius r¼ 2.0.

The spheres are arranged in a circle

with radius R¼ 9.4. (b) We perform a

series of simulations where a scroll ring

is attached to six spheres in a circular

arrangement with radius varying from

5:6 � R � 12. The scroll ring persists

for R< 6.6 or R> 9.2 and has a mini-

mum duration at R¼ 7.0. (Multimedia

view) [URL: http://dx.doi.org/10.1063/

1.4980076.4] [URL: http://dx.doi.org/

10.1063/1.4980076.5] [URL: http://

dx.doi.org/10.1063/1.4980076.6]
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polymer beads but their placement will clearly require a gel

system capable of holding the beads in place. To achieve a

random placement, the system could be steadily build up in

the vertical direction, while the beads would be introduced

continuously at random horizontal locations. During this pro-

cess, the experimentalists would also create the initial scroll

ring following protocols described in Ref. 21 and elsewhere.

Ideally, the beads would match the refractive index of the

surrounding BZ system to allow for an unobscured optical

measurement of the wave pattern and its filament; alterna-

tively, magnetic resonance imaging could be employed.34

If these difficulties could be overcome, our computer

simulations with the Barkley model make predictions that

could be tested experimentally with the BZ reaction. The

fundamental prediction is that scroll wave persistence is

facilitated by increasing the number or size of spheres.

Indeed, the probability of persistence appears to scale with

the total surface area of the spheres. We note that the total

volume of the spheres in our simulations is a small fraction

(less than 5%) of the volume of the domain. Thus, a few

small spheres can have a large impact on the scroll wave

dynamics. A systematic experimental study of this phenome-

non could validate these predictions and perhaps yield

insights into specific sphere arrangements that optimize

scroll wave stabilization.
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