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In three-dimensional excitable systems, scroll waves are rotating vortex states that consist of

smoothly stacked spirals. This stacking occurs along one-dimensional phase singularities called

filaments. If the system has a positive filament tension, these curves either straighten or collapse

over time. The collapse can be prevented if the filament pins to a nonreactive object or a group of

objects, but even in this case, the filament length does not typically grow. Using numerical simula-

tions, we provide examples of filament growth induced by pinning, such as a scroll ring pinning to

an inert trefoil knot, and explain the mechanism of this growth. Surprisingly, the corresponding

filament loop thus not only persists in time but also steadily extends far from the pinning object.

Published by AIP Publishing. https://doi.org/10.1063/1.5008274

Excitation waves exist in many chemical and biological

systems. These waves may form spirals centered at phase

singularities in two-dimensional media such as the thin

atrial tissue of the human heart, shallow chemical sys-

tems, and even bee hives. Three-dimensional analogues of

spiral waves are called scroll waves and rotate around a

curve called the filament. They appear in the thicker

ventricles of the heart and deeper reactive solutions.

Previous studies have shown that in systems where scroll

waves would collapse, non-reactive objects can stabilize

the filament and prevent this collapse. We use computer

simulations to show that such objects can, in addition,

induce scroll wave expansion. This expansion can result

in very complex wave patterns with serious consequences

if present in cardiac tissue.

I. INTRODUCTION

Reaction-diffusion systems are capable of sustaining

excitation pulses. These pulses are traveling waves with a

constant speed and amplitude and are followed by a refrac-

tory period that prevents the immediate propagation of a new

pulse. Examples in chemistry include concentration waves in

autocatalytic reaction-diffusion media,1 catalytic surface

reactions,2 corrosion processes,3 and synthetic biochemical

networks.4 Excitation waves organize many mechanisms in

biology. These include cell aggregation of social amoebae,5,6

uterine contractions during labor,7 voltage waves on heart

tissue,8 defense response waves of honey bee populations,9

and epidemic outbreaks such as the bubonic plague.10 At an

intracellular level, calcium waves in oocytes prevent

polyspermy.11

In two spatial dimensions, excitation pulses can break

and form vortices in the shape of Archimedean spirals rotat-

ing around a central phase singularity, the spiral tip.12,13

Spiral tips move along specific types of trajectories including

circular orbits, epitrochoids, or hypotrochoids.14 Wave

breaks in three dimensions result in scroll waves, which can

be thought of as a continuous stack of spiral waves and rotate

around one-dimensional phase singularities called filaments.

The speed of filament movement not only is approximately

inversely proportional to its curvature15 but is also influenced

by higher order effects.16 The system-specific filament

tension, a, causes closed filaments to either shrink (a> 0) or

expand (a< 0). Filaments with negative tension are unstable,

which leads to buckling filaments and chaotic wave fields.17,18

In systems with positive filament tension, filaments may

expand due to reactivity gradients19 or due to spatial confine-

ment.20 However, neither of these effects lead to chaos.

Static and impermeable heterogeneities impact the

behavior of spiral tips and filaments if the respective distance

is less than about one wavelength. Filaments have a tendency

to wrap around thin heterogeneities, greatly changing the

behavior of the wave field. This pinning may prevent fila-

ment loops from shrinking in systems with positive filament

tension where they would otherwise collapse. More specifi-

cally, in experiments with the autocatalytic Belousov-

Zhabotinsky (BZ) reaction, filaments were able to wrap

around tori or double tori, preventing scroll ring collapse.21,22

Additional experiments with the BZ reaction revealed that fil-

aments may be sustained by two to four spherical beads,

while single spheres do not stop the collapse but extend the

life of the loop by up to 25%.23 Numerical studies inspired by

these experiments showed that in a system with randomly

placed spherical beads, more and larger beads increased the

likelihood of scroll wave persistence.24

While previous pinning studies have demonstrated that

non-reactive impermeable objects can stop filament collapse,

none have reported filament expansion. We present a novel

mechanism for scroll ring expansion in a system of positive

filament tension where pinning to heterogeneities induces

the expansion. Using a simple, two-variable excitable system

model and parallel computing with a programmable graphics

processing unit (GPU), we show that scroll ring expansion
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can be induced by pinning to a knotted object. The topology

of the knot induces chiral mismatch in the wave rotation

about the pinned filament. We demonstrate that a similar

mismatch can occur on a topologically simpler torus by initi-

ating two scroll rings of opposite chirality. In both cases, the

chiral mismatch is responsible for persistent filament expan-

sion and the consequent complex wave pattern.

II. METHODS

Our simulations employ the Barkley model25 which is

commonly used to describe excitable reaction-diffusion sys-

tems. The model is given by the following dimensionless

equations:

@u

@t
¼ DuDuþ ��1uð1� uÞ u� vþ b

a

� �
; (1)

@v

@t
¼ DvDvþ u� v; (2)

where u and v are bound by 0� u, v� 1. In the context of the

BZ reaction, the variables u and v are similar to the concen-

trations of bromous acid and the oxidized form of ferroin.22

The system parameters �, a, and b are 0.02, 1.1, and 0.18,

respectively. The diffusion coefficients are Du¼Dv¼ 1. This

choice of parameters allows for scroll waves with positive

filament tension which have no movement in the binormal

direction.26 We integrate using the forward Euler method

with a seven point finite difference scheme to discretize the

Laplacian. Non-reactive impermeable cylindrical surfaces

are inserted into the domain before the initial conditions

are set. These objects are discretized by voxels of size

0.2� 0.2� 0.2. The minor radius of each surface is 1.0. The

major radius of each torus is 22.8. The inner curve of the

trefoil knot is given by the following equation (and illus-

trated in Fig. 1):

0 � u � 2p

X ¼ 48� 5 sin 3ðp� uÞ;
Y ¼ 48� 2 cos 2ðp� uÞ � cos ðp� uÞ½ �;
Z ¼ 48� 2 sin 2ðp� uÞ � sin ðp� uÞ½ �:

8>>>><
>>>>:

(3)

The system boundary and the boundary with the inert objects

obey no-flux (Neumann) boundary conditions. Simulations

are performed on a 480� 480� 480 grid with a spacing and

time step of 0.2 and 0.005, respectively.

We parallelize our solver by sectioning the domain into

a 60� 60� 60 grid of blocks. Single blocks are processed by

a warp of the GPU and contain an 8� 8� 8 grid of points.

Each point is processed by a thread within a warp, where a

thread can share information within its warp and each point

on a block’s boundary shares information with the warp for

the adjacent block.

Each simulation is initiated with an expanding spherical

wave with the following equations:

u ¼ 0:95 1 � r � 4;

u ¼ 0 otherwise;

(
(4)

v ¼ 0:6

6� 5r
0 � r < 1;

v ¼ 0:9ð20� 5rÞ
15

1 � r � 4;

v ¼ 0 otherwise;

8>>>><
>>>>:

(5)

where r is the distance from the center of the expanding

spherical wave. At t¼ 4 and if y is smaller than the value of

y in the center of the expanding spherical wave, we set u¼ 0

and v¼ 0; otherwise, the values of u and v remain

unchanged. This creates a single scroll ring with a circular

filament that in the absence of further perturbation does not

move in the binormal direction but shrinks and eventually

collapses due to positive filament tension. We define a point

to be on the filament if u¼ 0.5 and v ¼ a
2
� b and track it

with the marching cube algorithm.22,27

III. RESULTS

We first simulate a scroll ring collapsing onto a trefoil

knot. Figure 2 depicts the wave field (orange) as it starts to

interact with the knot (cyan). The scroll ring is only partially

shown to facilitate visualization. Subsequently, the wave

structure transforms from a bowl shape [Fig. 2(a)] to an

extremely complex pattern with wave rotations occurring far

from the knot [Fig. 2(b)]. This expansion is entirely unex-

pected because filaments in this system should shrink due to

positive filament tension, and so, the expansion must be

induced by interaction with the inert knot.

Figure 3 illustrates how the filament interacts with the

trefoil knot over time. The simulation is initialized with the

filament surrounding the knot [Fig. 3(a)]. As the filament

collapses, two antipodal regions contact the knot and the

waves locally rotate around it, while the remainder begins to

deform [Fig. 3(b)]. We represent the contact regions as green

or blue sections on the object, where each color represents aFIG. 1. A trefoil knot and its parametrization by u.
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different rotational chirality. That is, the direction of rotation

around the green portion of the knot is opposite to that

around the blue portion. Later, two additional contact regions

appear and all four regions begin to wrap around the knot

[Fig. 3(c)]. Eventually, the filament surrounds the majority

of the knot and the free parts collide with the boundary. Each

of the four contact regions emits two arms of the filament

that connect the trefoil to the boundary [Fig. 3(d)]. Later,

two pairs of arms coalesce and pinch off the trefoil, leaving

four arms of the filament at the ends of two contact regions

[Fig. 3(e)]. The filament appears to remain in this arrange-

ment indefinitely (the simulation ends after 1800 rotations).

This demonstrates that scroll wave pinning to a knotted

object can induce filament expansion, even in a system with

positive filament tension.

To understand this expansion, we explore a simpler case

where a scroll ring pins to a torus. We initialize the scroll

ring so that the circular filament (with radius one third the

size of the torus’ major radius) exists in the same plane as

the torus that it intersects [Fig. 4(a)]. The part of the filament

inside the torus collapses and pins to the torus (green), while

the outer portion remains a free loop [Fig. 4(b)]. Just like

with the trefoil knot, the contact region starts to self-wrap

around the torus and the free part expands [Fig. 4(c)].

Eventually, the filament completely wraps around the torus

and the free part pinches off [Fig. 4(d)]. Afterwards, the free

part exists as a loop and drifts away [Fig. 4(e)], eventually

vanishing at the boundary. At this point in time, the scroll

wave is organized about the filament which is completely

pinned to the torus [Fig. 4(f)].

Why does the filament initially expand? Why does the

free part move away from the torus after pinching off? To

answer these questions, we examine the spiral waves in a

two-dimensional slice of the three-dimensional system where

a scroll ring pins to a torus (Fig. 5). In this slice, the torus

appears as two circles (blue), the wave front (white) initially

has a U shape with one end point near the inside of the torus

and the other end point outside of the torus. Both these end

points are spiral tips (red) [Fig. 5(a)]. The part of the wave

inside of the torus collapses onto it (right blue point) and

rotates with a frequency of �¼ 0.12. The spiral tip outside of

FIG. 2. A scroll ring pinning to an inert trefoil knot. Orange represents u> 0.3. The trefoil knot is shown in cyan. (a) The scroll ring is near its initial condition

before its first rotation. Only the lower back portion of the wave is shown. (b) The scroll ring has developed a very complicated wave pattern after 247 rota-

tions. Only the lower portions of the waves are shown.

FIG. 3. A scroll ring pinning to an inert trefoil knot (cyan). Only the filament

is shown. Red represents the free filament. Blue and green represents the

pinned filament with differing chirality. (a) The filament of the scroll ring

before its first rotation. (b)–(e) The filament after approximately 12, 38, 247,

and 448 rotations.

FIG. 4. A scroll ring pinning to a torus (cyan). Only the filament is shown.

Red represents the free filament. Green represents the pinned filament. (a)

The scroll ring filament before the first rotation. (b)–(f) After approximately

23, 42, 47, 53, and 79 rotations.
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the torus rotates with a lower frequency of �¼ 0.09. Both

these phase singularities emit waves that annihilate each

other upon collision (yellow). Since the pinned spiral tip

rotates faster than the unpinned tip, the frequent waves that

are emitted cause wave collisions that push the free spiral

back [Figs. 5(a)–5(c)]. When the filament completely wraps

around the torus, there is a second pinned spiral tip in the two-

dimensional slice that coincides with the left blue point [Fig.

5(d)]. The free filament is now a closed curve, reflected as two

red points in the two dimensional slice. Both free spiral tips

are pushed out of the boundary from wave collisions [Figs.

5(e) and 5(f)]. This phenomenon of wave collisions causing

spiral tip drift has been documented in two-dimensional sys-

tems.28 We also note that pinning to thick obstacles decreases

the rotation frequency as reported earlier,21 but a study using

the Barkley model has shown that thin heterogeneities can

increase the frequency as in our case.29

We also investigated the vortex dynamics in the pres-

ence of a thick toroidal heterogeneity because in this case

the rotation frequency about the object should be lower. If

we increase the minor radius of the torus by a factor of three

(r¼ 3.0), a pinned scroll wave rotates around it with a fre-

quency of �¼ 0.08. Because this is slightly less than the fre-

quency of the free scroll wave, we predicted that the waves

that propagate from a pinned section of the filament should

not be able to push back the free filament. Just as before, we

initialize a circular filament that intersects a torus, this time

with a minor radius of r¼ 3.0 [Fig. 6(a)]. It rapidly collapses

[Fig. 6(b)], and ultimately, all waves disappear and the entire

system approaches its spatially homogeneous steady state

[Fig. 6(c)]. We also studied the situation of a thick trefoil

knot with r¼ 3.0 [Fig. 6(d)]. The filament attaches to the

knot [Fig. 6(e)] but eventually completely collapses, leaving

the system in its steady state free of wave activity [Fig. 6(f)].

These simulations match our expectations and show that a

sufficiently thin heterogeneity is necessary to induce filament

expansion.

While filament expansion is transient in the case of the

tori (Fig. 4), it persists when the filament is attached to a

trefoil knot (Fig. 3). This occurs because the expanding fila-

ment ultimately detaches from the torus, but not the trefoil.

What is the reason for this difference? Filaments attached to

a nonreactive cylindrical object rotate with a particular

FIG. 5. Scroll ring pinning to a torus illustrated by two-dimensional slices at z¼ zcenter (the z value in the center of the initial, expanding sphere) of a scroll

ring pinning to a torus. v is shown where white represents the high v values. Blue circles represent the slices of the torus. Red represents the spiral tip. Yellow

represents the wave collisions. (a) The scroll ring before its first rotation. (b)–(f) After approximately 23, 42, 47, 53, and 79 rotations.

FIG. 6. Thick cylindrical surfaces (r¼ 3.0) do not induce filament expan-

sion. Only the filament is shown. Red represents the free filament. Blue and

green represent the pinned filament with differing chirality. (a) A scroll ring

collapsing onto a thick torus before its first rotation. (b) After two rotations,

the length of the pinned and free filament has declined. (c) After three rota-

tions, the system is near a spatially homogeneous steady state. (d) A scroll

ring collapsing onto a thick trefoil knot before its first rotation. (e) After 13

rotations, the filament has begun to pin to the knot, but the filament length

has decreased. (f) After 20 rotations, the system is near a spatially homoge-

nous steady state.
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chirality around it. When the ends of the filament meet on

the torus, both rotate with the same chirality and can coa-

lesce. However, in the case of a trefoil knot, this meeting

involves different rotational chirality.

Figure 7(a) shows a chirality plot that, for each rotation

number, shows the chirality of the attached portion of the fil-

ament (green or blue) with the unattached portion (cyan) sep-

arating green and blue regions. This analysis is performed in

terms of the parameter u that describes the position on the

trefoil knot. Subsequent panels show the full trefoil and fila-

ment at time points corresponding to the vertical red lines in

panel A. After 12 rotations (panel B), there are only two

small attached regions of opposite chirality. These both grow

in time, and two new chiral regions appear soon after. Such

an arrangement persists for many rotations, with the 8-armed

free filament shown in panel C. This structure contains a

cyan region surrounding u¼ p. Eventually, the free filament

comes into contact with this cyan region (panel D), which

results in a new blue region (panel E). At the same time, the

blue region at 3p
2
< u < 2p shrinks as the surrounding green

region expands (panel D). This blue region detaches from

the trefoil allowing the surrounding green regions to coa-

lesce, releasing two pairs of filament arms (panel E). Over

time, the blue region at p < u < 3p
2

expands, while the blue

region at p
2
< u < p contracts (panel F). Ultimately, the blue

region at p
2
< u < p collapses, releasing a pair of filament

arms. Two contact regions of opposing chirality with two

pairs of filament arms remain on the trefoil knot and appear

to persist indefinitely (panel G). We hypothesize that this dif-

ference in rotational orientation stops the final two contact

regions from combining and thus prevents the free parts of

the filament from detaching off of the trefoil knot.

We test this hypothesis by simulating two separate scroll

rings with opposite chirality diametrically opposed on a torus

[Fig. 8(a)]. Each filament has a pinned part that wraps around

the torus and a free part that expands [Fig. 8(b)]. The expan-

sion continues until each chiral region covers half of the

torus. Because of their opposing chirality, they fail to coa-

lesce, and the pinned regions cause the free parts to expand

[Fig. 8(c)]. Eventually, the free parts hit the boundary, leav-

ing four free arms connecting the torus to the boundary

[Fig. 8(d)]. These arms appear to remain indefinitely. This

numerical experiment reveals that opposing chirality of self-

wrapping filaments is sufficient to create an expanding fila-

ment that remains attached to the pinned object. In this way,

the filament can continue to expand indefinitely.

To further test the hypothesis that expanding filaments

are the product of chiral mismatch, we simulate two scroll

rings with the same chirality initiated at opposite ends of a

torus [Fig. 9(a)]. Each filament has a pinned part (green) that

wraps around the torus and an expanding free part (red) [Fig.

9(b)]. When both filaments with the same chirality meet,

they combine and the free part detaches from the torus [Fig.

9(c)]. The free scroll ring shrinks as it drifts away from the

torus [Fig. 9(d)]. Finally, the free scroll ring annihilates at

the boundary of the system, leaving behind a scroll ring

completely pinned to the torus [Fig. 9(e)]. Without opposing

chirality, the free parts of the scroll ring filaments were

unable to expand indefinitely.

IV. CONCLUSIONS

We have shown that an inert trefoil knot, when placed in

the center of a scroll ring, may induce filament expansion.

This phenomenon occurs because as the filament collapses,

part of it pins to the knot and the rest remains free. The

pinned part of the filament rotates faster than the free part

and thus emits waves at a higher rate. The waves originating

from the pinned filament annihilate the waves originating

from the free filament. Eventually, waves from the pinned

filament reach the free filament and push it back. We con-

firmed that these collisions are actually capable of moving

filaments in three dimensions by simulating a scroll ring par-

tially pinned to a torus. Two-dimensional slices of the simu-

lation revealed that this three-dimensional collision-induced

expansion is analogous to a well-documented two-dimen-

sional phenomenon where spiral tips can be pushed by spiral

wave fronts originating from faster rotating spirals.28,30

When the filament partially pins to a torus, it wraps

around it and the unpinned part eventually separates from

FIG. 7. (a) Chirality plot in terms of the location parameter u. Cyan repre-

sents the knot segments that are filament-free, and blue and green indicate

the segments with the filament of opposing chirality. The cyan, blue, and

green in (a) correspond to cyan, blue, and green in (b)–(g). The red lines

depict when (b)–(g) occur. (b)–(g) The filament interacting with the trefoil

knot after 12, 247, 286, 305, 340, and 420 rotations, respectively.

FIG. 8. Two scroll ring filaments with opposite chirality pin to a torus from

opposite ends. Red represents the free filament. Blue and green represents

the pinned filament with differing chirality. (a) The scroll rings before their

first rotation. (b)–(d) Following approximately 29, 42, and 58 rotations. Free

filament arms persist.
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the torus. At this point, the free part is completely discon-

nected from the torus, stops expanding, and collapses while

being pushed towards the boundary. When pinning to a tre-

foil knot, the filament attaches to the knot at multiple loca-

tions and rotates around it with opposing chirality. The

filament self-wraps around the knot, and the different pieces

of the filament eventually meet. Adjacent filaments with dif-

ferent chirality cannot combine and remain as free filaments.

This allows the free part of the filament to continue to

expand until it hits the system boundary. We highlight the

importance of opposing chirality with two simulations of

two scroll rings partially pinned to a single torus. When they

had mismatched chirality, the filament expanded until it

reached the system boundary. If these simulations existed in

an unbound system, we predict that the filament would con-

tinue to expand indefinitely. When chirality matched, both

filaments combined, allowing the free part of the filament to

disconnect from the torus and collapse.

In addition to these results, we explored how the fila-

ment interacts with a trefoil knot when the initial condition

has only one contact point (not shown). This leads to addi-

tional contacts and persistent free filament arms. We also

explored how a scroll wave organizes about a figure eight

knot. As with the trefoil, this resulted in multiple chirality

regions and persistent free filament arms (not shown).

Our results provide concrete predictions for experiments

with the BZ reaction, specifically that partial pinning to thin

cylindrical surfaces can lead to scroll ring expansion. The

experimental verification of these predictions in chemical

experiments seems to be feasible because small inert tori

have been successfully used in previous studies to induce

scroll wave pinning and BZ systems typically show positive

filament tension. These earlier studies also developed meth-

ods for the initiation of scroll rings with controlled initial

radii at predetermined locations.21,31 In addition, inert trefoil

knots and similar heterogeneities could be constructed using

a 3-D printer. Challenges, however, include the limited life-

time of wave patterns in closed BZ systems and the analysis

of the complicated wave fields around the knot.

Finally, our study could provide insights into certain

cardiac arrhythmias. Ventricular tachycardia (VT), an

increased rhythm in the heart originating in the ventricles,

can be caused by a large rotating wave in the thick, three-

dimensional tissue. If the behavior of this wave becomes

chaotic ventricular tachycardia transitions to fibrillation

(VF).32 Negative filament tension is a well-documented

mechanism of filament growth that leads to chaotic wave

fields and is a likely cause for the transition of VT to VF.33

Simulations with cardiac models could test whether the

dynamics discussed in this paper are relevant to ventricular

tachycardia and fibrillation.
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