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Abstract

The backbone torsion angle pair (/;w) at each amino acid of a polypeptide is a descriptor of its conformation. One can use chemical
shift and dipolar coupling data from solid-state NMR PISEMA experiments to directly calculate the torsion angles for the membrane-
spanning portion of a protein. However, degeneracies inherent in the data give rise to multiple potential torsion angles between two adja-
cent peptide planes (a diplane). The molecular backbone structure can be determined by gluing together the consecutive diplanes, as in
the PIPATH algorithm [T. Asbury, J.R. Quine, S. Achuthan, J. Hu, M.S. Chapman, T.A. Cross, R. Bertram, PIPATH: an optimized
alogrithm for generating a-helical structures from PISEMA data, J. Magn. Reson. 183 (2006) 87–95.]. The multiplicities in torsion angles
translate to multiplicities in diplane orientations. In this paper, we show that adjacent diplanes can be glued together to form a permis-
sible structure only if they satisfy continuity conditions, described quantitatively here. These restrict the number of potential torsion angle
pairs. We rewrite the torsion angle formulas from [J.R. Quine, M.T. Brenneman, T.A. Cross, Protein structural analysis from solid-state
NMR-drived orientational constraints, Biophys. J. 72 (1997) 2342–2348.] so that they automatically satisfy the continuity conditions.
The reformulated torsion angle formulas have been applied recently in the PIPATH algorithm [T. Asbury, J.R. Quine, S. Achuthan,
J. Hu, M.S. Chapman, T.A. Cross, R. Bertram, PIPATH: an optimized alogrithm for generating a-helical structures from PISEMA data,
J. Magn. Reson. 183 (2006) 87–95.] and will be helpful in other applications in which diplane gluing is used to construct a protein back-
bone model.
Published by Elsevier Inc.

Keywords: Solid state NMR; Torsion angles; Peptide planes; Diplanes; Degeneracies; PISEMA; PIPATH
1. Introduction

Solid state nuclear magnetic resonance (ssNMR) spec-
troscopy has the unique capability to characterize mem-
brane protein structure in a liquid crystalline lipid bilayer
environment ([1–7]) yet there are degeneracies in the inter-
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pretation of the data that complicate the structural analy-
sis. Here, we show that the number of degeneracies is
reduced in the case of permissible protein structures. The
structure of a protein model can be built up using a recur-
sive approach [10] with residue specific assignments.
Another approach would be to combine segments of the
protein structure that have been determined independently.
We refer to this process as the gluing method. The gluing
method is especially useful for solving the structure of pro-
teins from partially assigned ssNMR data. The shotgun
approach [18] for determining a-helical membrane protein
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Fig. 1. A typical PISEMA powder pattern bounded by primary and
reflected ellipses (PISEMA ellipses) and a small extra-elliptical triangle
(PISEMA triangle) near Q. The experimental data ðr; jmj

2
Þ fall within the

shaded regions A–E. The number of degeneracies associated with each
region of the powder pattern is as follows: regions A and B (4-fold
degeneracy), regions C and D (8-fold degeneracy) and region E (12-fold
degeneracy). We assume that the angle between the N–H bond vector and
r33 is a ¼ 0

�
and b ¼ 17

�
[17].
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structures is an example of the gluing method. Another
example is the PIPATH algorithm [25] which builds an
atomic model of a protein by gluing together the diplanes.
The PIPATH algorithm was used in the determination of
the atomic structure of the amantadine-blocked transmem-
brane domain of the M2 proton channel from Influenza A
virus [29].

Orientational restraints [10,16] from ssNMR form the
basis of the recursive and gluing methods. These restraints
give rise to degeneracies [11–13,17] in peptide plane orien-
tations. That is, multiple peptide plane orientations are
consistent with a given data point. Each degeneracy is 2-
fold and can be expressed in the form of �1. Unique orien-
tations are determined from the signs of the associated
degeneracies. In this sense, final resolution of a protein
structure computed from ssNMR orientational restraints
is equivalent to solving for a sequence of sign degeneracies.

Torsion angle formulas from Cross et al. [22] illustrate
how to form a diplane from two PISEMA data points.
Overlapping diplanes can then be glued together to form
the structure of the full protein. However, due to the degen-
eracies, some combinations of diplanes obtained through
the torsion angle formulas are not permissible. These were
described in [13,18,23]. The primary goal of this paper is to
rewrite the torsion angle formulas from Cross et al. [22] so
that they incorporate a rule, which we call the continuity
condition, that ensures the proper gluing of overlapping
diplanes. This makes it much simpler to build structures
using gluing, and is a key element of the PIPATH algo-
rithm [25] for building structures using uniformly labelled
two-dimensional ssNMR data. The torsion angle formulas
can provide an initial model, but further refinement of the
model is needed [20] using both stereochemical restraints
and the NMR data.

2. Theory

2.1. Oriented structures and degeneracies

PISEMA, Polarization Inversion Spin Exchange at
Magic Angle [8,9], is a 2-dimensional ssNMR experiment
that correlates the 15N–1H dipolar coupling and 15N aniso-
tropic chemical shift for each of the labelled residues. A
single PISEMA data point can be analyzed to calculate
the orientation of the associated peptide plane with respect
to B0 [10], but with degeneracies [12,13]. Each degeneracy is
a sign degeneracy and can be represented by �1. We refer
to a structure together with an external vector as an ori-

ented structure.

2.1.1. Degeneracies associated with a single oriented peptide

plane

The orientation of a peptide plane with respect to B0

corresponding to a single PISEMA data point can be spec-
ified by calculating B0 in the peptide plane frame [10]. The
B0 coordinates can be expressed as a function of four sign
degeneracies fe1; e2; e3; e4g [12,17]. That is, the orientation is
determined by the choice of �1 for each e. We work with
degeneracies that have been expressed mathematically in
the principal axis frame (PAF) of the 15N–1H dipolar cou-
pling interaction [17]. The definition of all the sign degen-
eracies were given in [17]. For the sake of brevity we do
not repeat them here.

The set of possible PISEMA data points corresponding
to all B0 orientations is a powder pattern [12,17,20] (Fig. 1).
Each data point can have 4, 8 or 12 sign degeneracies
depending on its location in the powder pattern [20]. The
e1 sign degeneracy for the dipolar coupling is resolved in
regions A, B and D of the powder pattern. It can also often
be resolved in regions C and E if the data is part of a PISA
(Polar Index Slant Angle) wheel reflecting an a-helical
structure. For simplicity, we assume that e1 is resolved
everywhere. If we further assume that the PISEMA data
point lies in the PISEMA ellipse where the degeneracy is
4-fold (i.e. region A or B in Fig. 1), then e3 ¼ �e2 [17]. This
assumption holds for transmembrane helices with a tilt
angle to the bilayer normal of less than 40�. Thus, the sign
degeneracies e2 and e4 determine the orientations of a pep-
tide plane. For the remainder of this article we assume that
this is really the case. Table 1 depicts equivalent ways
([12,13,17,18]) of expressing the four degeneracies associ-
ated with a single peptide plane.

2.1.2. Degeneracies associated with an oriented diplane

Two adjacent peptide planes of a protein, corresponding
to two consecutive PISEMA data points, constitute a



Table 1
Equivalent notations for the degeneracies associated with a single peptide
plane

Polar angles Dipolar coupling frame (e2; e4)

(a;b) (u; v; y) (1; 1)
(a;p� b) (u; v;�y) (1;�1)
(pþ a;b) (�u;�v; y) (�1; 1)
(pþ a;p� b) (�u;�v;�y) (�1;�1)

The degeneracies have been expressed in polar angles (a; b) [13,14] where a
is the angle between the NH bond and the projection of B0 on the peptide
plane, and b is the angle between the normal to the peptide plane and the
direction of B0 (Column 1). They have also been expressed in terms of the
coordinates (u; v; y) of B0 [18] (Column 2) or in terms of e2 and e4 in
the principal axis frame of the dipolar coupling interaction (Column 3)
[17]. Note e2 is the sign of u and e4 is the sign of y.
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diplane [15,22]. Apart from the two degeneracies that arise
from the data for each peptide plane of a diplane, there is
an additional degeneracy capturing the chirality of the Ca

bond and B0 for the a-carbon connecting the peptide
planes [11,22]. Thus, there are altogether five degeneracies
associated with the PISEMA data for a diplane, and
25ð¼ 32) possible oriented diplanes, consistent with two
PISEMA data points given the assumptions described
above.

Let a; b and c be unit vectors in the direction of the CaC,
CN and NCa bonds of a peptide plane (Fig. 2). Also, let
NH
��!

be a unit vector in the direction of the NH bond. Then,
for a diplane, we associate the following sequence of sign
degeneracies:

D ¼ ðD1;D2;D3;D4;D5Þ; ð1Þ

where

D1 ¼ signðB0 �NH
��!Þ;

D2 ¼ signðB0 � ðb� cÞÞ;
D3 ¼ signðB0 � ðc� a0ÞÞ;

D4 ¼ signðB0 �NH
��!0Þ;

D5 ¼ signðB0 � ðb0 � c0ÞÞ:

ð2Þ

The primed superscripts for the bond vectors in (2) repre-
sent the second peptide plane of a diplane. The sign degen-
Fig. 2. Torsion angles and bond vectors of a diplane. The bond vectors of
the second peptide plane have primed superscripts.
eracies D1 and D4 are the e2 degeneracies for the first and
second peptide planes of a diplane, respectively. Similarly,
D2 and D5 are the e4 degeneracies [17].

Since B0 � ða0 � b0) is used in computing the w torsion
angle, and B0 � ðb0 � c0) is not used for / or w, we redefine
the degeneracy D5 in terms of B0 � ða0 � b0). Thus,

D5 ¼ signðB0 � ða0 � b0ÞÞ: ð3Þ

We next show that if two diplanes share a peptide plane,
the degeneracies associated with the two diplanes are not
independent.
2.2. The continuity conditions

Three consecutive peptide planes of a protein can be
formed by gluing together two oriented diplanes. Let D

and D0 denote the degeneracy sequences of consecutive ori-
ented diplanes that share an oriented peptide plane (Fig. 3).
Since the two diplanes have a common peptide plane, there
is an overlap between the degeneracy sequences. This can
be expressed as:

D01 ¼ D4;

D02 ¼ �D5:
ð4Þ

We refer to these as the continuity conditions. The continu-
ity conditions reduce the number of possible orientations
of the two adjacent diplanes to 32� 8ð¼ 256) from a total
of 32� 32ð¼ 1024) possibilities [11]. Note that the negative
sign in front of the second equation in (4) is a result of
using protein backbone vectors (a0; b0).

Next, suppose that we have a data set of n PISEMA
data points corresponding to a protein containing n resi-
dues. Since each data point is consistent with multiple ori-
entations for a peptide plane, there are totally
25 � ð23Þn�2 ¼ 23n�1 protein structures that satisfy the con-
tinuity conditions for this data set. Here, as before, we have
Fig. 3. An oriented structure consisting of three peptide planes obtained
by gluing two oriented diplanes with sign degeneracy sequences D and D0.
The diplanes share a peptide plane (shaded gray). All the orientations are
with respect to B0.
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assumed that each data point lies in either region A or
region B of the powder pattern (Fig. 1). For a point in
region C or D, the total number of structures increases
by a factor of two. For each point that lies in region E of
the powder pattern, the total number increases by a factor
of three.
3. Discussion

3.1. Torsion angles

The (/;w) torsion angles (see Fig. 2) between the two
peptide planes of a diplane are internal angles that define
the structure of the diplane. The torsion angles do not pro-
vide information on the orientation of the diplane relative
to B0. However, these angles can be determined from two
PISEMA data points, which themselves contain this orien-
tation information [21–24]. Because of degeneracies, there
emerge many possible torsion angles. When gluing together
two diplanes, one must ensure that the degeneracies are
chosen so that the diplanes satisfy the continuity condi-
tions. These conditions would be satisfied automatically if
the torsion angles retained orientation information relative
to B0, but this is not the case. We next discuss how our con-
tinuity conditions are incorporated into the torsion angle
formulas.
3.1.1. Torsion angle formulas

We use torðv1; v2; v3) to represent the torsion angle
formed from the vectors v1; v2 and v3. The following for-
mula [22] is used for computing the torsion angle if
v1; v2 and v3 are vectors of length 1:

torðv1;v2;v3Þ¼ arg �v1 � v3þðv1 � v2Þðv2 � v3Þþ iv1 � ðv2� v3Þð Þ:
ð5Þ

From this it follows that

torðv1; v2; v3Þ ¼ torðv1; v2;wÞ þ torð�w; v2; v3Þ; ð6Þ

where w is any vector. Expression (6) is especially useful in
ssNMR when we take w ¼ B0, since in this case we can
only measure orientation angles of bond vectors with re-
spect to the external magnetic field vector. Thus, (6) pro-
vides an expression for the backbone torsion angles in
terms of torsion angles involving B0.

The triple product in (5) can be written in terms of the
Gramian determinant. Let

gðx; y; zÞ ¼
1 x y

x 1 z

y z 1

�������
������� ¼ 1� x2 � y2 � z2 þ 2xyz: ð7Þ

Then

gðv1 � v2; v2 � v3; v3 � v1Þ ¼ det½ðv1; v2; v3Þtðv1; v2; v3Þ�

is the Gramian determinant [10,22] (where the vectors
v1; v2; v3 are taken to be column vectors and the matrix
(v1; v2; v3Þt is the transpose of the matrix (v1; v2; v3). For unit
vectors v1; v2; v3,

v1 � ðv2 � v3Þ ¼ e½gðv1 � v2; v2 � v3; v3 � v1Þ�1=2
; ð8Þ

where e is the chirality of the cross product. Written in this
way, the scalar triple products can be computed in terms of
known dot products.

3.1.2. Torsion angles for an oriented diplane

We now derive the torsion angle formulas for a diplane
as a function of the diplane’s degeneracies.

The / and w torsion angles for a diplane are given by:

/ ¼ torðb; c; a0Þ w ¼ torðc; a0; b0Þ: ð9Þ
We assume the x torsion angle of each peptide plane of the
diplane is 180�. Using (6),

/ ¼ /1 þ /2 w ¼ w1 þ w2; ð10Þ
where

/1 ¼ torðb; c;B0Þ /2 ¼ torð�B0; c; a
0Þ; ð11Þ

w1 ¼ torðc; a0;B0Þ w2 ¼ torð�B0; a
0; b0Þ: ð12Þ

Using (5),

/1 ¼ argð�B0 � bþ ðB0 � cÞðb � cÞ þ iB0 � ðb� cÞÞ;
/2 ¼ argðB0 � a0 � ðB0 � cÞðc � a0Þ � iB0 � ðc� a0ÞÞ;
w1 ¼ argð�B0 � cþ ðB0 � a0Þðc � a0Þ þ iB0 � ðc� a0ÞÞ;
w2 ¼ argðB0 � b0 � ðB0 � a0Þða0 � b0Þ � iB0 � ða0 � b0ÞÞ:

ð13Þ

The bond orientation cosines and the scalar triple products
involving backbone bond vectors of a diplane with B0 in
(13) can be written in terms of the degeneracies using the
peptide plane geometry and (8) as:

B0 � b ¼ D1lb and B0 � c ¼ D1lc;

B0 � a0 ¼ D4la0 and B0 � b0 ¼ D4lb0;

B0 � ðb� cÞ ¼ D2 gðB0 � b; b � c; c � B0Þ1=2
;

B0 � ðc� a0Þ ¼ D3 gðB0 � c; c � a0; a0 � B0Þ1=2
;

B0 � ða0 � b0Þ ¼ D5 gðB0 � a0; a0 � b0; b0 � B0Þ1=2
;

ð14Þ

where

la ¼ p cos 123� � q sin 123�;

lb ¼ p cos 58� � q sin 58�;

lc ¼ p cos 117� � q sin 117�;

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ mjj

3mjj

s
;

q ¼
Bp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðr� r22Þ þ fp2

q
C

ð15Þ

with



Fig. 4. Backbone torsion angles obtained from the combination of
degeneracies corresponding to two adjacent diplanes of a protein. Table A
depicts all possible torsion angles (c; d) for the first diplane. Table B shows
all possible torsion angles (a;b) for the second diplane. Out of 32 possible
torsion angles in each table, 16 are unique. Suppose the choice of torsion
angles of the first diplane is from one of the columns of table A
(highlighted by different shades of gray). Then, the continuity conditions
restrict the choice of the torsion angles for the second diplane to a row of
table B highlighted by the matching shade of gray. The arrow indicates
one such possibility, i.e., if the torsion angles for a diplane are from the
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f ¼ B2 � AC;

A ¼ r11 sin2 bþ r33 cos2 b� r22;

B ¼ ðr11 � r33Þ sin b cos b;

C ¼ r11 cos2 bþ r33 sin2 b� r22:

ð16Þ

The equations in (15) and (16) were derived in [17] assum-
ing ideal peptide plane geometry [26]. Here, (r11; r22; r33)
are the principal values of the 15N chemical shift tensor
written in the order of increasing magnitude, b is the angle
between the NH bond and the principal axis vector
r33(� 17�[17]), and mjj is the NH dipolar coupling constant.
In (14), la; lb and lc are functions of the PISEMA data
point (r; m) as well as the peptide plane geometry. Similar
functions corresponding to the next PISEMA data point
(r0; m0) are denoted as la0 ; lb0 and lc0 . The negative sign in
(14) is due to the fact that the direction of b� c is opposite
to the direction of a� b.

There are 32 torsion angle combinations corresponding
to the 5 degeneracies (D1;D2;D3;D4;D5):

/1¼ argð�D1lbþD1lcðb � cÞþ iD2½gðlb;lc;b � cÞ�
1=2Þ;

/2¼ argðD4la0 �D1lcðc �a0Þ� iD3½gðD1lc;D4la0 ;c �a0Þ�
1=2Þ;

w1¼ argð�D1lcþD4la0 ðc �a0Þþ iD3½gðD1lc;D4la0 ;c �a0Þ�
1=2Þ;

w2¼ argðD4lb0 �D4la0 ða0 �b0Þ� iD5½gðla0 ;lb0 ;a
0 �b0Þ�1=2Þ

ð17Þ

with b � c¼ cos59� � :51;c �a0 ¼ cos70� � :34 and a0 �b0 ¼
cos65� � :42 from peptide plane geometry [19,24].

Although (17) implies that there are 32 possible torsion
angle combinations for the diplane, only 16 are actually
distinct. Because torsion angles alone cannot describe ori-
ented structures, ssNMR experimental data and the torsion
angle formulas are unchanged by replacing B0 with �B0.
Thus, the same torsion angles are produced if the signs of
all the degeneracies are flipped.
second column in table A then the torsion angles for the immediately
following diplane must be from the first row of table B.
3.2. Application of continuity conditions

As an application of the continuity conditions, the
tables in Fig. 4 show the possible torsion angles between
two adjacent diplanes. If the torsion angles for the first
diplane are taken from the second column in table A then
by the continuity conditions the choice for the second
diplane’s torsion angles must be from the first row in table
B (matching shade of gray). However, if the choice for the
torsion angles is from the third column in table A then the
choice for the torsion angle in table B must be from the
fourth row (matching shade of gray).

As an example of the use of continuity conditions in
computing the torsion angles between adjacent diplanes,
consider two adjacent diplanes of a protein corresponding
to three consecutive PISEMA data points each of which
lies in regions A or B of the powder pattern. For the pur-
pose of illustration, let us focus on a diplane corresponding
to the residues ALA2 - ALA3 - ALA4 of a protein. Let the
diplane following it correspond to the residues ALA3 -
ALA4 - ALA5. Suppose that the PISEMA data points cor-
responding to the residues ALA2 - ALA3, ALA3 - ALA4
and ALA4 - ALA5 are (171.79 ppm, 7.37 kHz),
(142.72 ppm, 9.1 kHz) and (45.27 ppm, 5.15 kHz),
respectively. Also, r11 ¼ 30 ppm; r22 ¼ 60 ppm; r33 ¼
205 ppm and mjj ¼ 11:335 kHz. Now, suppose we
choose the sign degeneracy sequence associated with the
first diplane, i.e., D, to be ð�1; 1; �1; �1; 1Þ, then from
(17), the (/;w) angles are (�52.64�, �50.25�). There are
15 additional choices for D that would produce unique tor-
sion angles. The sign degeneracy sequence of the second
diplane, D0, is restricted by the continuity conditions (4).
Because of this, the choice of D ¼ ð�1; 1;�1;�1; 1) limits
D0 to eight possibilities i.e., D0 ¼ ð�1;�1;�1;�1;�1), all
of which satisfy the continuity conditions for adjacent
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diplanes. If D0 ¼ ð�1;�1; 1; 1; 1) is used, then the (/;w)
angles of the second diplane come out as (-75.7�, -89.5�).

4. Conclusions

In this paper, the continuity conditions for adjacent
diplanes of a protein have been quantified. The degenera-
cies associated with a diplane have been incorporated into
equations for torsion angles, and the continuity conditions
were rewritten so that they could be used with the torsion
angle formulas. These formulas are in a convenient form
for algorithms such as PIPATH [25] which derive plausible
protein structures directly from PISEMA data. The formu-
las in fact form an essential aspect of the PIPATH algo-
rithm in the process of deriving protein structures from
uniformly labelled two-dimensional ssNMR data. The for-
mulas make the whole process of protein structure building
quite simple. It is important to note that the torsion angle
formulas provide only an initial model of a protein. Fur-
ther refinement of the model [20] using both stereochemical
restraints and the NMR data needs to be carried out to
obtain final feasible model structure/ structures of a protein
molecule. Our approach to computing the torsion angles is
very general and can be applied effectively to determine the
backbone torsion angles of any secondary protein struc-
ture. In particular, we do not require the secondary struc-
ture to be an a-helix.

To find the structure of a protein by ssNMR experi-
ments, such as PISEMA, the data must first be assigned
[25]. The problem here is to match each resonance peak
in the experimental data with a residue in the amino acid
sequence of the protein or peptide under investigation. In
[27], the assignment problem and the protein structure were
solved simultaneously when the secondary structure of the
protein was known. In [25], a-helical assignments are
obtained before solving the protein structure. Often, only
partially assigned data are available. In these situations,
using the spectral frequencies as well as sign degeneracies
the orientation of peptide planes corresponding to the
assigned resonances can be determined. These lead to solv-
ing the isolated segments of a protein. To combine various
isolated segments of a protein along with unassigned reso-
nances, diplanes must be glued. An important implication
of the present work is that diplanes not satisfying the con-
tinuity conditions cannot be glued together, and thus are
not adjacent to each other.

Wang and Donald showed [30] that the protein back-
bone of secondary structures within a large protein can
be built in a sequential approach (a.k.a. iterative technique)
using residual dipolar coupling (RDC) data obtained from
two aligning media. In particular, they computed the N–H
bond vector for each specifically labelled residue of a pro-
tein. Since they obtained two data points for each residue,
they were able to minimize a function that splits the differ-
ence between the 2 aligning media. This vector established
the reference frame for further computations. They then
computed all the subsequent N–H vectors by using the iter-
ative technique. In the gluing approach to protein structure
modelling the molecular backbone structure of a protein is
obtained by gluing together the consecutive diplanes, as in
the PIPATH algorithm. The PIPATH algorithm allows for
building of peptides in arbitrary residue order as opposed
to a sequential order. The gluing of adjacent diplanes intro-
duces ‘‘continuity conditions’’ that are automatically satis-
fied when using the sequential technique.

To build an initial model of a protein structure it is nec-
essary to compute the backbone torsion angles. We derive
torsion angle formulas that incorporate the continuity con-
ditions. This is important because the formulas make the
process of building structures using gluing method simpler.
Moreover, they form a key element of the PIPATH algo-
rithm for building structures using uniformly labeled two-
dimensional ssNMR data.

The full potential of ssNMR derived structure is only
achieved when all of the sign degeneracies are completely
resolved. However, many degeneracies may lead to minor
modifications of the structure, such that a moderate resolu-
tion structure is achievable without resolving all of the sign
degeneracies [28]. Furthermore, because of the absolute
nature of these orientational restraints, errors from one
peptide plane (e.g. degeneracy) do not propagate through-
out the structure [23]. For a protein comprising n residues,
the continuity conditions significantly reduce the number
of sign degeneracies that need to be resolved. This number
is typically reduced further by incorporating additional
structural information. This can be achieved, for example,
by studying the dipolar interactions of 15N–1H, 15N–13C
and 13Ca-1H for each peptide plane of the diplane [15] or
by studying the dipolar interaction of 15N–1H, 15N–13C
and chemical shift of 15N. The 13Ca-2H quadrupolar split-
tings can as well be used as effective filters to reduce the
degeneracies due to the central alpha-carbon between the
peptide planes of a diplane [23].

For helical proteins, the symmetry properties of PISA
wheels can be utilized to resolve the peptide plane sign
degeneracies [13,18]. The (/;w) torsion angles can be calcu-
lated once the orientation of the corresponding peptide
planes are predicted from the helical tilt and rotation
angles. In this case, the position of each data point on
the helical wheel determines the peptide plane orientation.
The continuity conditions between adjacent diplanes of a
protein are satisfied automatically here. However, when
PISA wheel patterns are not clear, the peptide plane degen-
eracies reappear. In such situations, we should glue
together only those diplanes that satisfy the continuity
conditions.

In [23], the 15N–1H, 15N-13C dipolar couplings and 15N
chemical shifts for peptide planes of gramicidin A were
used to compute the possible orientations for each diplane
of the protein. As a result of measuring the Ca-2H quadru-
polar couplings for the Ca between adjacent peptide planes,
the number of possible orientations for each diplane were
reduced from 16 to 4. The model structure of gramicidin
A was then built by combining diplanes that share peptide
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planes that are identically aligned with an external vector.
This guaranteed that the continuity conditions between
diplanes were satisfied. Furthermore, it should be noted
that the remaining degeneracies were all consistent with a
single fold of the polypeptide and a single set of hydrogen
bonds [28]. The continuity conditions were explained qual-
itatively in figures 2 and 4 of [23]. In the current work we
have derived the continuity conditions in terms of the sign
degeneracies associated with each diplane. This kind of
quantification of the continuity conditions is quite essential
when building structures using the computer algorithms
such as PIPATH [25].
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