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Mathematical Aspects of Protein Structure Determination
with NMR Orientational Restraints
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The field of structural biology is becoming increasingly important as new tech-
nological developments facilitate the collection of data on the atomic structures
of proteins and nucleic acids. The solid-state NMR method is a relatively new
biophysical technique that holds particular promise for determining the structures
of peptides and proteins that are located within thecell membrane. This method
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providesinformation on the orientation of the peptide planes relative to an exter-
nal magnetic field. In this article, we discuss some of the mathematical methods
and tools that are useful in deriving the atomic structure from these orientational
data. We first discuss how the data are viewed as tensors, and how these tensors
can be used to construct an initial atomic model, assuming ideal stereochemistry.
We then discuss methods for refining the models using global optimization, with
stereochemistry constraints treated as penalty functions. These two processes, ini-
tial model building followed by refinement, are the two crucial steps between data
collection and the final atomic model.

c© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

This article discusses some recent developments in protein structure determi-
nation from nuclear magnetic resonance (NMR) data, particularly with regard
to solid-state NMR of aligned samples and the observation of anisotropic NMR
observables such as dipolar couplings and chemical shifts. These methods give
orientational restraints rather than the distance or torsional restraints familiar from
solution NMR.

Solid-state NMR is particularly promising as an aid for solving membrane
protein structures using techniques such as uniformly aligned membrane
protein samples in lipid bilayers (Cross and Quine, 2000). Membrane pro-
teins form about 30% of many genomes (Wallin and Von Heijne, 1998), but
only 0.5% of known structures. This paucity of structural information is
due largely to the difficulty in obtaining membrane protein crystals for x-ray
crystallography and in obtaining isotropic solutions for solution NMR. The
techniques most appropriate for membrane proteins do not have the same
long history of methods development, being newer techniques than crystallo-
graphy.

This article has two parts. We first describe the mathematical tools useful in
the interpretation of anisotropic NMR data. We also describe an algorithm that
can help in the construction of an initial molecular model from this data. Most of
these mathematical tools are useful in the analysis of both solution and solid-state
NMR data. In the second part of the article we discuss computational methods that
can be used to improve on or refine the initial model. Atomic refinement is com-
monly applied by x-ray crystallographers as a means of incorporating the x-ray
diffraction data into the model building process. This computational methodology
can be adapted to solid-state NMR. The computations involve nonlinear restrained
optimization in which a structural model is derived that is consistent with both
the experimental data and witha priori understanding of the molecular geom-
etry of the components of macromolecules, based on studies of simpler model
systems.
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2. STRUCTURE OF PROTEINS AND NMR RESTRAINTS

In this section we describe an algorithm for obtaining a structure of a long poly-
mer or protein from the orientations of a sequence of bonds. This discussion is use-
ful for establishing the mathematical framework for using orientational restraints.

2.1. Protein structure and discrete curves. A protein structure can be repre-
sented as a collection of atoms together with their coordinates in three-dimensional
space,R3. This maybe a list of all atoms in the protein, or a list of the ones that
can be observed. Thus, ifN atoms are listed with coordinates we have a vector
in (R3)N . Two structures are the same if one can be transformed into the other
by a sense-preserving Euclidean motion. IfE is the group generated by rotations
and translations, it can be thought of as acting on all the coordinates listed, and a
structure is an element of(R3)N /E.

The protein molecule is a sequence of amino acids of 20 different kinds. The pep-
tide bond links into a polymeric backbone individual amino acids with 20 types of
side-chains. It is convenient to think of a protein as a collection of discrete curves.
This is useful both in understanding the torsion angle description of protein struc-
tures and the method of using orientational restraints and dynamics (seeSection
3.3.2) to determine protein structures.

A discrete curve is a sequence of pointsp0, . . . , pn in three-dimensional space.
These points can be thought of as atoms and the line segments joining atoms in the
sequence can be thought of as covalent bonds. The backbone of a protein is a dis-
crete curve consisting of points representing the atoms –C′–N–Cα–C′– proceeding
from the N-terminus to the C-terminus. By putting the atoms in sequential order,
side-chains can also be made into a discrete curve. Thinking of a protein as a curve
allows us to abstract some ideas from differential geometry to study the structure.

2.1.1. Frenet frames. A Frenet formalism for discrete curves will be described
briefly. The idea of a Frenet frame, or moving frame, for differentiable space curves
can be modified for use with discrete space curves. Let

s j = |p j+1 − p j |

and define a unit tangent vector atp j , j = 0, . . . , n − 1, by

t j = p j+1 − p j

s j
. (1)

Thepoints of the curve can be reconstructed up to translation from the sequences
{t j } and{s j } by

pk − p0 =
k−1∑
j=0

s j t j . (2)
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Figure 1. Atoms forming the peptide plane, and the vectorst j andn j of the Frenetframe
that span the plane.

If t j−1 andt j are not parallel, binormal and normal vectors can be given by

b j = t j−1 × t j

|t j−1 × t j | , n j = b j × t j (3)

and a right-handed orthogonal frame by

F j = (t j , n j , b j ). (4)

This will be referred to as the Frenet frame atp j . (Vectors are column vectors, and a
frame is a sequence of three linearly independent vectors considered as columns of
a nonsingular 3× 3 matrix. Orthogonal frames correspond to orthogonal matrices
and right-handed orthogonal frames to rotation matrices.)

The Frenet frames can be thought of as molecular frames along the molecule.
The planeformed by the tangent and the normal vector at a point contains the
point together with the previous and the subsequent points. At a nitrogen atom in
the protein backbone, the vectorst andn span the peptide plane (Fig. 1) andb is a
peptide plane normal.

The Frenetframes are also related to the torsion angles used in the study of
molecular structure. The relationship of one Frenet frame to the next is given by

F j+1 = F j R1(τ j )R3(θ j+1) (5)

whereθ j = arccos(t j−1 · t j ) is the exterior bond angle atp j , andτ j is the angle of
torsion about the bond directiont j (Fig. 2). Here

R1(θ) =

 1 0 0

0 cosθ −sinθ
0 sinθ cosθ


 R3(θ) =


 cosθ −sinθ 0

sinθ cosθ 0
0 0 1


 (6)

are rotation matrices. Thus the discrete curve can be reconstructed up to a
Euclidean motion from the sequences{s j } of bond lengths,{t j−1 · t j } of bond
angle cosines, and{τ j } of torsion angles.
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Figure 2. The covalent bond angleθ2 at p2 and the angle of torsionτ2 about the bond
direction t2.

2.1.2. Standard protein geometry. For finding and describing protein struc-
tures with limited structural data it is often assumed that bond lengths and angles
have standard (or ideal) values depending on the type of bond (seeSection 3.1.1).
With bond angles and bond lengths given, the above discussion shows how the
structure of the protein backbone can be determined given a torsion angle for each
bond.

2.2. Restraints from NMR. Since about 1957, the technique of nuclear magnetic
resonance (NMR) has been used to find the structure of peptides and, more recently,
of proteins. Today, there are two different methods, solution NMR and solid-state
NMR. In the solution NMR method the molecules are tumbling in the solvent dur-
ing the experiment at a rate that is fast on the NMR timescale (Evans, 1995); in the
solid-state NMR method the molecules are rigid or they are restricted to anisotropic
motion. This dichotomy between isotropic and anisotropic motion is not absolute;
there is always some motion of the molecule and the motion may be more or less
restricted. An intermediate case is exemplified by the situation where residual
dipolar couplings are measured by means of solution NMR, as discussed later.

The difference between the NMR techniques of structure determination is in the
type of geometric information that can be obtained from the experiment. The
solution NMR method predominantly measures distance restraints and the solid-
state NMR method predominantly measures orientational restraints. A distance
restraint is an equation or inequality involving the distance between two atoms in a
molecule. An orientational restraint is an equation or inequality involving an angle
between the external magnetic field direction and the vector between two atoms in
the molecule. Often the atoms are covalently bonded and this angle is referred to
as a bond orientation angle. A hybrid distance/orientational restraint is given by
residual dipolar couplings in the solution NMR method.

The difference between orientational restraints and distance restraints can be
thought of in terms of groups of Euclidean motions. Distance information is the
only type of information invariant under the full groupE of rigid body motions.
Let B be theunit direction of the magnetic field (usuallyB has magnitude equal to
the strength of the field), and letEB be the subgroup leavingB fixed. The groupEB

can also be thought of as the group generated by translations and rotations about
the axisB. Orientational restraints are invariant under the groupEB, but not under
the full groupE.
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2.2.1. Distance restraints. The basic principles of distance geometry can be
expressed in terms of a distance matrix. For a sequence of pointsp0, . . . , pn, the
distance matrixD is defined to be the matrix with entries|pi − p j |2. For the
purpose of finding the structure, we may assume thatp0 = 0. We also define
the gram matrixG for the sequence of vectorsp1, . . . , pn to be the matrix with
entriespi ·p j . The identity|pi −p j |2 = |pi |2−2pi ·p j +|p j |2 shows that the gram
matrix can be computed from the distance matrix using row and column operations.
A set of coordinates for the points can be obtained by using the eigenvalues and
eigenvectors of the symmetric matrixG to write

G = MtM (7)

whereM is a 3× n matrix. The columns ofM are then coordinates for the points
p1, . . . , pn. To write G as the ‘square’ of a 3× n matrix M as in (7), G must be
positive definite and rank 3 and this restricts which matrices can be distance matri-
ces (Havel and Dress, 1993). So without perfect data, the gram matrix computed
from the data might have rank greater than 3, which would result in the coordinates
of the atoms being in some higher dimensional space.

2.2.2. Orientational restraints. While in principle it ispossible to determine
the structure using complete distance information, in practice such information is
rarely, if ever, available. The data is supplemented with tables of average bond
angles and lengths in peptides.

Mathematically, the method for obtaining coordinates from orientational
restraints is similar to that for obtaining distance restraints (Brenneman and
Cross, 1990; Ramamoorthyet al., 1995) in that matrices of dot products are used.
A complete gram matrix is not available because dot products are available only
for selected vectors. Average bond angles and lengths supplement the information
in the matrices.

Orientational restraints are easiest to obtain in the solid-state NMR method
for vectors joining covalently bonded atoms. To compute a structure from these
restraints, consider a discrete curve and suppose that the valuess j , representing
bond lengths, andt j−1 · t j , representing the negatives of the cosines of bond
angles, are known. If orientationsB · t j (cosines of angles of bonds with the
chosen direction of the magnetic field) are known and none of these values are
±1, then there are only a finite number of structures possible for the curve. It is
sufficient to find coordinates for the unit vectorst j . These can be found recursively
(Quine, 1999). Suppose, for example, thatB, t j−1, B · t j , andt j−1 · t j are given;
then

t j = 1

(1 − κ2
j−1)

((β j − κ jκ j−1)t j−1 + (κ j − β jκ j−1)B + ε j
√

g j t j−1 × B) (8)
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Figure 3. Illustration of (8). The sphere represents the set of unit vectors. The equations
κ2 = B · t2 andβ2 = t1 · t2 indicate that givent1, the vectort2 lies on both of two circles
aboutB andt1. (a) If g2 < 0 the circles donot intersect and thereis no solution. (b) If
g2 = 0 then thecircles intersect at one point and there is only one possibility fort2. (c) If
g2 > 0 then there are two possibilities fort2 distinguished by chiralityε2. The vectort(1)

2
corresponds toε2 = −1 and the vectort(2)

2 corresponds toε2 = 1.

where

κ j = B · t j β j = t j−1 · t j ε j = ±1

and where

g j = det


 1 κ j−1 κ j

κ j−1 1 β j

κ j β j 1


 .

Equation (8) determines the vectort j up to two possibilities depending onε j

(Fig. 3).
Since there is a choice ofε = ±1 at each stage, and since these values cannot

be determined from the values ofB · t j , there are 2n−1 structures for this curve
compatible with the constraints. Since

ε j = −signB · (t j−1 × t j ), (9)



1712 J. R. Quine et al.

the structural elucidation requires the determination of chiralities. Knowledge of
the valuesB · t j andε j is equivalent to the knowledge of the coordinates ofB in
each Frenet frame and this determines the structure using (2), (9), and (8).

Sometimes the coordinates ofB in a Frenet frame can be determined by obtaining
orientations of other vectors whose coordinates are known in the Frenet frame. At
an alpha carbon, for example, the four bond directions are known to have approx-
imate tetrahedral geometry. Choosing the alpha carbon and any three neighboring
atoms, i.e., any three of the four bonds, the sign of the scalar triple product of three
bond directions is known from the chirality (usuallyL) of the aminoacid. In this
case any of the four vectors can be written uniquely in the Frenet frame and so the
coordinates ofB in the Frenet frame are known from the dot products ofB with
any three of the four alpha carbon bond vectors.

The problem of obtaining chiralities is analogous to the phase problem in x-ray
crystallography, where a set of phases must be chosen and used with the diffraction
intensity data to obtain a structure.

Notethat g j is the determinant of the gram matrix of the sequence of vectorsB,
t j−1, t j , and as such should be non-negative. Problems in solving for the structure
occur if inconsistencies in the data cause this determinant to be negative. This is
similar to the situation in distance geometry when imperfect distance constraints
give gram matrices which are not of rank 3.

The expression 1− (B · t j−1)
2 in the denominator of (8) alsocauses problems

in this method of solving structures from orientational restraints. The recursive
solution works only if none of the tangent vectors of the discrete curve are parallel
to B, in which case there can be an infinite number of structures consistent with
the data. This is because changing the single torsion angle around a bond vector
parallel toB will give a curve with the same sequence of values{s j }, {B · t j }, and
{t j−1 · t j }. The algorithm is also numerically unstable if any of the valuesB · t j is
close to±1, that is, if any of the vectorst j are nearly parallel toB.

2.3. Obtaining orientational restraints. Orientational restraints are obtained
from the solid-state NMR method and can also be obtained from the solution
NMR method from residual dipolar couplings. In general, an NMR experiment
detects the radio-frequency precession of nuclear spins in a molecule (Fig. 4).
In quantum mechanics, this frequency represents a discrete difference in energy
levels and the energy levels are eigenvalues of a Hamiltonian matrix. The
strongest interaction affecting the energy is given by the Zeeman Hamiltonian,
H = B0γ Iz, whereB0 is the intensity of the magnetic field,γ is a gyromagnetic
ratio depending only on the type of the atom, andIz is a spin matrix with the
z axis being in the direction of the magnetic field. The Zeeman Hamiltonian
represents the effect of the magnetic field on the nuclear spin. Using Schr¨odinger’s
equation with the Zeeman Hamiltonian shows that in the absence of other inter-
actions the spin of a nucleus precesses at a frequencyB0γ radians per second,
the Larmor frequency.
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Figure 4. NMR experiments detect the radio-frequency precession about a magnetic field
B0 of the bulk magnetizationM of nuclear spins of atoms in a molecule.

What makes structure determination possible is that the spins in the molecule
interact, so the observed frequency differs from the Larmor frequency. In quantum
mechanics the interaction arises from other Hamiltonians added to the Zeeman
Hamiltonian. These Hamiltonians are functions of the orientation of the molecule
with respect to the magnetic field directionB. Thedependence of these interactions
on the orientation can be detected only if the molecules maintain some average
orientation with respect toB as in the solid-state NMR method. In the solution
NMR method the orientational dependence is typically averaged out due to
isotropic tumbling of the molecules.

The orientational restraints discussed can be thought of as tensors because they
are given as a quadratic expression in the coordinates of the unit magnetic field
direction. Any quadratic expressiona11x2 + a22y2 + a33z2 + 2a12xy + 2a23yz +
2a13xz can be written as a symmetric matrix with entriesai j . As a tensor, it can
be discussed in terms of its principal values and principal axis frame, and the latter
can be expressed in terms of the molecular (Frenet) frames we have discussed.

2.3.1. The dipolar interaction. The most common interaction used to obtain
orientational restraints is the dipolar interaction. The effect of a spin 1/2 atom
on another, for example, results in splitting the Larmor frequency into two fre-
quencies, a single peak becoming a doublet (Fig. 5). The difference of these two
frequencies is a function of the angle betweenB and the vector joining the two
atoms. This difference, representing a change in energyν, is given by

ν = ν‖
2

(3(u · B)2 − 1) (10)

whereu = r/r is the unit vector in the direction of a vectorr joining the centers
of the two atoms,ν‖ = Cγ1γ2/r3, γ1 andγ2 are the gyromagnetic ratios of the two
atoms, andC is a constant. Only the absolute value|ν| of the dipolar coupling is
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Figure 5. A 2D PISEMA spectrum (superimposed on a powder pattern). The vertical 1D
spectrum shows the dipolar splitting. The separation between the peaks is 2ν. Theposition
of the peak on the horizontal spectrum indicates the chemical shiftσ .

typically observed in solid state experiments. Problems in determining the sign of
ν are discussed inSection 3.4.1.

The experimentally measured value of|ν| is the simplest example of an orienta-
tional restraint. In many instances dipolar interactions between bonded atoms are
measured where the distancer between them is known. Thusν‖ in equation (10)
is typically assumed constant, and the equation is solved up to a finite number of
possibilities foru · B, and the orientation of one bond direction with respect to the
magnetic field is constrained to a finite number of possible values.

The dipolar restraint can be expressed more generally in terms of a tensor. Let
FP be a principal axis frame for the tensor, an orthonormal frame with the third
vector, thez direction, in the directionu of a covalent bond along which a dipolar
interaction is measured. If(x, y, z) are the coordinates ofB in this frame, then the
splitting (10) is equal toν‖

2 (3z2−1). SinceB is a unit vector, the splitting is equal to
ν‖
2 (2z2−x2− y2) and this can be thought of as the quadratic tensor given in its prin-
cipal axis frameFP by the diagonal matrixν‖

2 diag(2,−1,−1). This is a traceless
tensor and the corresponding function is harmonic, the zonal spherical harmonic.

2.3.2. The chemical shift. The deviation from the Larmor frequency due to the
spins of neighboring orbiting electrons is called the chemical shift. The chemical
shift can also be expressed as a tensor, a quadratic expression inB. In contrast to
the dipolar tensor it is directly proportional to the intensity of the magnetic field.
The principal values are not easily computed from quantum mechanics and must
be experimentally determined (Oaset al., 1987; Brenderet al., 2001; Lee et al.,
2001; Tenget al., 1992).

2.3.3. NMR tensors and the Frenet frame. The structural significance of the
observed values of the NMR tensors depends on knowing, in addition to the
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Figure 6. The principal major axisσaa for the15N chemical shift tensor at atomA is often
in the plane of the three bonded atoms and is determined by an angleβ from oneof the
unit bond vectors. By experimental characterization, one other major axisσbb is generally
in the plane with the third major axis parallel tou1 × u2 soβ characterizes theFP with
respect to the Frenet frame.

principal values of the tensors, the relationship of the principal axis frames to the
Frenet or molecular frame.

For the dipolar tensor, the unique principal axis is in the direction of a bond
vector, and this bond vector can be expressed in the Frenet frame using the local
geometry of the molecule.

The chemical shift tensor can also be expressed as a tensor in terms of a Frenet
frame F. The tensor is given by specifying the principal values and writing the
principal axis frameFP asFP = FR for some fixed rotation matrixR. Due tothe
spatial geometry of the orbiting electrons in a peptide plane, this rotation matrix for
backbone atoms can often be given as a matrix of the formR3(β) for some angleβ
(Fig. 6). Both R and the principal values are measured by powder experiments
where a sample is studied with the molecules in random orientations. Often from
rotation patterns using a single crystal it can be deduced thatβ and the principal
values are constant for a given type of atom, e.g., a backbone nitrogen in a protein
structure (Mai et al., 1993).

2.3.4. 2D NMR, PISEMA. Two-dimensional methods using NMR such as
PISEMA allow the measurement of both the anisotropic chemical shift and the
dipolar splitting from a single signal (Ramamoorthy and Opella, 1995; Tian et al.,
1998; Ramamoorthyet al., 1999). This also provides added information in deter-
mining whetherν = |ν| or ν = −|ν|. This sign indeterminacy is often a problem
in getting full structural information from orientation restraints. From (10) it
follows thatν is between− ν‖

2 andν‖ and so if ν is greater thanν‖
2 thenν = |ν|.

Methods such as PISEMA give added information on the sign indeterminacy. The
possible values(σ, ν) of the chemical shift and dipolar splitting are given as an
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Figure 7. The powder pattern for the PISEMA experiment is sketched as the union of two
ellipse-shaped regionsP and P∗. Thechemical shift, dipolar splitting pair(σ, ν) must be
in P. If (σ,±|ν|) are not inthe intersectionI of P andP∗ then the sign ofν is determined
by this fact.

ellipse-shaped set,P, related to the powder pattern (Fig. 7). We also consider the
reflection P∗ of P consisting of all possible values of(σ,−ν). If the resonance
does not lie in the intersection of these sets, then the sign ofν can be determined.

Another useful technique for resolving degeneracies with PISEMA is using the
characteristic two-dimensional patterns made by protein helices. This is related to
the concepts ofPISA wheels (Marassi and Opella, 2000; Dennyet al., 2001) and
dipolar waves (Mascioni and Veglia, 2003; Mesleh and Opella, 2003).

2.4. Tensor averaging. All samples experience some form of motion. At one
extreme, isotropic motion, the observed tensors are averaged over all possible ori-
entations and the observed value is

Av T = 1

4π

∫
B

BtTB d A = 1

3
Trace(T),

whereB is considered as a point on the sphere of unit vectors,d A is area measure
on the sphere, andT is the observed tensor. (Although the tensor is taking a random
orientation in the lab frame, it is easier to think ofT as fixed andB at a random
position in the principal axis frame ofT.)

2.4.1. Residual dipolar couplings. In the solution NMR method the observed
value of the dipolar coupling tensor is zero since it is a traceless tensor. Suppose,
however, that the motion is not perfectly isotropic, possibly due to diamagnetic
susceptibility of the molecules or to other large molecules hindering the motion,
and that the preference of certain orientations can be given by a weighting with a
symmetric quadratic tensorS, so that the observed value of the tensorT is

AvST = 1

4π

∫
B
(BtTB)(BtSB) d A,
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(seePrestegardet al., 1999). Computing in the principal axis frame ofS, suppose
S = diag(χ1, χ2, χ3) andT = (ti j ); then

AvS T = 1

5

(
t11

(
χ1 + χ2 + χ3

3

)
+ t22

(
χ2 + χ3 + χ1

3

)
+ t33

(
χ3 + χ1 + χ2

3

))
.

(11)
If the tensorT is traceless(t11+t22+t33 = 0), thenfrom (11) any scalar tensor can

be added toS without changing the average. SoS can be assumed to be traceless
and (11) becomes

AvS T = 2

15
(t11χ1 + t22χ2 + t33χ3). (12)

Applying this to the dipolar tensor (10) it follows that

AvS ν = ν‖
5

(u2
1χ1 + u2

2χ2 + u2
3χ3) (13)

where(u1, u2, u3) are the coordinates of the bond direction vectoru in the principal
axis frame ofS. Writing in spherical coordinates,

(u1, u2, u3) = (sinθ cosφ, sinθ sinφ, cosθ)t

the average tensor can also be written as

AvS ν = ν‖
10

((χ1 − χ2) sin2 θ cos 2φ + χ3(3 cos2 θ − 1)). (14)

The result of the above discussion is that the observed dipolar tensor under this
form of non-isotropic motion is not zero as is typical of solution NMR, but is given
by the absolute value of a traceless tensor AvS ν with the principal axis frame the
same as that ofS. Theobserved absolute value of AvS ν is referred to as aresidual
dipolar coupling.

Residual dipolar couplings give important orientational restraints and informa-
tion about the direction vectoru of a bond, but the orientation is with respect to
the principal axis frame ofS. This frame is not knowna priori but must be deter-
minedfrom the data, as must the principal valuesχ1, χ2, andχ3 (Cloreet al., 1998;
Tjandraet al., 2000). So, in addition to the structure, the traceless tensorS must be
found, which adds five new parameters to the ones that determine structure.

2.4.2. Magic angle spinning. In another tensor averaging procedure, called
magic angle spinning, the sample is spun at a high frequency about an axis making
an angleθ with the magnetic field. To compute the average letT = (ti j ) be the
coordinates of a symmetric tensor in a frame where thez axis is along the axis of
the spinning sample. LetB = (sinθ cosφ, sinθ sinφ, cosθ)t , then

AvφT = 1

2π

∫ 2π

0
Bt TB dφ = Trace(T)

2
sin2 θ + t33

2
(3 cos2 θ − 1). (15)
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If the tensor is traceless and the sample is spun at the magic angle where 3 cos2 θ −
1 = 0, then the observed value of the tensor is 0. In the case of the dipolar splitting,
since the tensor is traceless, no splitting is observed in magic angle spinning, and
in this way other interactions can be more readily observed.

3. FORCE FIELDS AND ATOMIC REFINEMENT

The method described above for using orientational information to obtain atom
locations is useful in the determination of an initial protein structure. To improve
on this it is appropriate to refine the structure using all available data and all stere-
ochemical information asrestraints rather thanconstraints. That is, rather than
strictly enforcing agreement of the model with the experimental data, one con-
structs a potential energy function consisting of a sum of stereochemical force
fields andpenalty functions for deviation from experimental data. Refinement then
consists of minimizing the energy function using a combination of global and local
minimization algorithms. In this section we first describe the components of the
energy function, and then the optimization strategies commonly applied to locate
the global minimum, which corresponds to the native conformation of the model
protein (Anfinsen, 1973). We then discuss how orientational information from
solid-state NMR can be used in refinement, and some of the mathematical proper-
ties of the orientational penalty functions.

3.1. Stereochemical force fields. Atoms within a protein are affected by two
types of interatomic forces: those due to covalent bonding and those due to
nonbonded interactions. Although these forces can be described with quantum
mechanical formulations, the vast majority of protein structure determinations
are made using simpler classical formulations. A number of different force field
sets have been developed for proteins and nucleic acids, parametrized for specific
sets of amino acids or nucleotides. We will focus on the CHARMM force field
set (Brooks et al., 1983), since this is used in the popular atomic refinement
software packages X-Polar and CNS (Brünger, 1992a,b; Brünger et al., 1998).
This was also used in the computer software TORC, developed for refinement
using orientational data (Ketchemet al., 1997).

3.1.1. Bonded interactions. Covalent bond lengths and angles are quite rigid
and predictable. Lengths range from≈1 Å for bonds involving H to≈1.5 Å for
all other bonds. Angles depend on the hybridization and thus the valence of the
atoms, with angles of≈109◦ for tetrahedral arrangements (e.g., bonds at Cα) and
angles of≈120◦ for trigonal–planar arrangements (e.g., bonds at carbonyl C and
amide N) (MacKerellet al., 1998). The deviation from mean values is small, with
a standard deviation of less than 0.02̊A for bond lengths and≈2◦ for bond angles
(Hendrickson, 1985). To restrain bond lengths and angles harmonic force fields are
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used, penalizing deviation from mean ‘ideal’ values:

Ebonds=
∑
bonds

Kb(b − b0)
2 (16)

Eangles=
∑

angles

Kθ (θ − θ0)
2, (17)

where summation is over all covalent bonds,b0, θ0 are the ideal bond lengths and
angles, andKb, Kθ are force constants. Values of these parameters depend on the
types of atoms and their locations in the protein main chain or side-chains. The
harmonic restraints are analogous to the restoring energy for two masses coupled
by a spring.

Torsion angles describe the ‘twisting’ of two bonds about a third. Consider four
atomsp1, . . . , p4 joined sequentially through covalent bonds (Fig. 2). Let a =
p2 − p1, b = p3 − p2, c = p4 − p3. Then the torsion angle aboutb is the dihedral
angle between the plane spanned bya, b and the plane is spanned byb, c. Thus, it
is the angle between vectors normal to these planes,a × b andb × c, respectively.
A convenient formula for computing dihedral angles uses the argument of a 2D
vector (x, y), written as arg(x, y) with −180◦ < arg(x, y) < 180◦. This is the
angle made by the vector with the positivex axis. The torsion angle aboutb is then

τ = arg(−|b|2a · c + (b · a)(b · c), |b|a · (b × c)). (18)

The torsion angle energy term is periodic, reflecting different hybridizations
about the bonded atoms:

Etorsion =
∑

τ

Kτ cos(nτ − δ), (19)

wheren is an integer, andKτ , n, δ depend on the atoms forming the torsion angle.
Torsion angles formed by atoms in aromatic groups are restrained by a harmonic
energy function to maintain planarity, and a harmonic energy function is used to
enforce chirality about the peptide bond. These are sometimes calledimproper
angles:

Eimproper =
∑

improper

Kimp(τ − τ0)
2, (20)

whereτ0 is the ideal torsion angle value.

3.1.2. Nonbonded interactions. In addition to covalent interactions, protein
atoms interact through van der Waals and electrostatic forces. The van der Waals
interaction between two atoms is repulsive for short distances due to overlap of
their electron clouds, and attractive for larger distances due to mutual induction of
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electrostatic dipoles formed from local fluctuations of electron density. The force
between the atoms is zero at the van der Waals contact distance, which has been
measured or determined from quantum calculations for different combinations
of atoms. The van der Waals interaction is often described by a Lennard-Jones
potential:

EvdW =
∑
vdW

(
A

r12
− B

r6

)
, (21)

wherer is the interatomic distance andA, B are determined by the types of atoms
involved in the interaction.

Charged atoms produce electrostatic interactions with neighboring atoms,
described by

Eelec =
∑
i, j

qi q j

εri j
, (22)

whereqi , q j are charges on two neighboring atoms andri j is the distance between.
The dielectric constantε is typically assumed to be constant, but in fact it varies
throughout the protein due to the nonuniform chemical environment. Partly for
this reason, and partly due to difficulties in assessing atomic charges, the electro-
static force field is often omitted, and the van der Waals interaction alone is used
to describe nonbonded interactions. The omission of an explicit electrostatic force
field may have serious consequences in a low dielectric constant environment, such
as within a lipid layer. In such cases, charged atoms are thought to play a particu-
larly important role in the tertiary structure.

3.2. Penalty functions. In principle, the sum of the stereochemical force fields

Echem = Ebonds+ Eangles+ Etorsion+ Eimproper+ EvdW + Eelec (23)

is sufficient to describe the interatomic interactions, and minimization of this
potential energy function should give the native conformation of the protein.
However, ourknowledge of interatomic forces within a protein is incomplete, and
experience has shown that the stereochemical force fields alone are insufficient to
describe the protein. Instead, accurate atomic structures are determined using data
from x-ray crystallography or an NMR method. These data are used to restrain
atom locations by introducing the penalty function

Edata=
∑
data

(sc − so)
2, (24)

whereso is an experimental observable andsc is the corresponding quantity calcu-
lated from the model. Summation is over all data. This penalty term is weighted
by a factorw and added toEchem, completing the potential energy function:

E = Echem+ wEdata. (25)

The process of minimizing this function is calledatomic refinement.
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The choice of the weightw applied to the experimental data is problematic.
Largew puts more emphasis on the data, which is incomplete and subject to error,
often leading to bad stereochemistry. Smallw emphasizes the stereochemical force
fields, which are only approximations to the interatomic forces. A good refinement
requires an appropriate balancing of stereochemical and experimental restraints.
The approach taken in recent years is to remove a small fraction of the data from
the refinement process, and to use this as a test set (Brünger, 1992a,b). Multiple
refinements are then performed, using a range of values forw. The weight that
gives the best agreement between the model and the test set is then used for the
final refinement; one discards other refinements.

3.3. Optimization techniques.

3.3.1. Cartesian refinement. A major obstacle to atomic refinement is global
minimization of (25), since the landscape defined by this function is studded with
local minima. When local minimization algorithms such as steepest descent or
conjugate gradient are used, the structure often gets trapped in local minima far
from the global minimum, so these may be of limited use in atomic refinement.
The method used most often is molecular dynamics with simulated annealing. The
dynamics is described by Newton’s second law:

mi
d2xi

dt2
= −�i E (26)

wheremi and xi are the mass and location of atomi , respectively. Simulated
annealing (Kirkpatricket al., 1983) introduces a computational temperature, which
is a measure of kinetic energy. At high temperature there is a great deal of kinetic
energy, allowing the system to escape local potential energy minima. At low tem-
perature the conformational search is more restricted by potential energy barriers.
There areseveral approaches to temperature control (Brünger and Rice, 1997), one
of which will be described here.

Thecomputational temperature is defined as

T = 2Ekin

3nkb
(27)

wheren is the number of atoms,kB is Boltzmann’s constant, andEkin is the kinetic
energy of the system:

Ekin =
n∑

i=1

1

2
mi

(
dxi

dt

)2

. (28)

With thevelocity scaling approach to temperature control, the atom velocities are
periodically and uniformly scaled so that the computational temperature of the
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system matches a target temperature(Ttgt):

vi = dxi

dt

√
Ttgt/T , (29)

wherevi is the new or scaled velocity of atomi . After scaling, the integration
of (26) is restarted with the current atom positions and the scaled velocities. In
simulated annealing, the target temperature is started at a high value (hundreds or
thousands of kelvins) and slowly lowered. The annealing schedule describes the
starting temperature and the rate at which temperature is lowered. The success of
annealing depends largely on the schedule, and different annealing schedules seem
to work best for different proteins. Following annealing, one typically applies a
local minimization method such as the conjugate gradient one to move the system
into the nearest local minimum.

3.3.2. Torsion angle refinement. The chiefdisadvantage of Cartesian molecu-
lar dynamics is the large number of independent variables, three times the number
of atoms. Since proteins typically contain more than 1000 and often more than
10,000 atoms, this leads to two problems. First the large system is computationally
expensive to integrate. Second, and more importantly, the ratio of data to vari-
ables can be small. This can lead to overfitting of the model to the available data,
analogous to the overfitting of a high-degree polynomial to a small number of data
points. The key to overcoming these problems is the observation that covalent bond
lengths and angles are relatively inflexible, unlike the torsion angles that define the
secondary and tertiary structures of the protein. This observation led to the devel-
opment oftorsion angle dynamics, where the equations of motion are written in
terms of torsion angles rather than Cartesian coordinates (Diamond, 1971; Mazur
and Abagyan, 1989; Rice and Brünger, 1994). The equations of motion become
(Vaidehi and Goddard, 2001)

M(τ )τ̈ + C(τ , τ̇ ) = F(τ) (30)

for the q × 1 vector of torsion anglesτ , typically about 1/10 of the total num-
ber of Cartesian degrees of freedom (Rice and Brünger, 1994). HereM is the
q × q mass matrix,C is theq × 1 Coriolis force vector, andF is theq × 1 vector
of interatomic forces. Althoughq is small compared to the Cartesian degrees of
freedom, (30) is still a large system with a dense mass matrix. Thus, even with
the simplification introduced with torsion angle dynamics, atomic refinement with
molecular dynamics is a computationally expensive procedure. However, another
advantage of torsion angle refinement is that the radius of convergence to the global
minimum appears to be larger than that for Cartesian refinement (Brünger and Rice,
1997).
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3.4. Refinement with orientational data. The orientational data provided by
solid-state NMR (ssNMR) measurements can be used as restraints in the potential
energy function (25), allowing for refinement with this type of data alone or in com-
bination with other data types.One software package, TORC, uses a Monte Carlo
approach with simulated annealing for the refinement (Ketchemet al., 1997). This
program has the advantage that chirality moves are built in, which may be desir-
able when refining with orientational data. More recently, software was developed
(Bertram et al., 2000) in the form of a module for the CNS refinement package
(Brüngeret al., 1998), allowing Cartesian or torsion angle refinement implemented
with molecular dynamics. This software is faster than TORC, and hasthe extra
advantage that it can be used to simultaneously refine against ssNMR data in con-
junction with other data types.

For the one-dimensional ssNMR method, the dipolar coupling and chemical shift
restraints are treated independently. More recently, correlated chemical shift and
dipolar data has been used in the ssNMR method (Ramamoorthy and Opella, 1995;
Tianet al., 1998; Dennyet al., 2001). Recently developed software uses this corre-
lated data in refinement (Bertramet al., 2003). One benefit of the two-dimensional
ssNMR method is that many of the dipolar sign degeneracies can be resolved by
correlation with the chemical shift. We will first discuss the 1-D ssNMR restraints,
then discuss how 2-D ssNMR could be used to construct better restraints.

3.4.1. One-dimensional solid-state NMR restraints. Anisotropic chemical
shift measurements (denoted here byσo) can be used to restrain the refinement by
adding the harmonic penalty function

Ecs =
∑

cs

(σc − σo)
2, (31)

whereσc is the chemical shift computed directly from the model, and summation is
over all13C and15N anisotropic chemical shift measurements. A harmonic penalty
function can also be used to restrain against dipolar coupling measurements. Sum-
mation is over all measurements, and thei th term in the penalty function is

Edp,i =
{

(|νc| − νo)
2 if νo ≤ ν‖

2

(νc − νo)
2 if ν‖

2 < νo ≤ ν‖,
(32)

whereνc, νo are thei th calculated and observed dipolar couplings, defined by

νc = ν‖
2

(3 cos2 θc − 1) (33)

νo =
∣∣∣ν‖

2
(3 cos2 θo − 1)

∣∣∣ , (34)

and whereθ is the angle between the magnetic field vector and the appropriate
covalent bond vector. This angle can be computed directly from the model to
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give θc, but the angle θo can only be inferred from the dipolar coupling measure-
mentνo. Thus, there are two degeneracies involved in the determination ofθo: a
sign degeneracy due to the absolute value in (34), and aquadratic degeneracy due
to the squaring of the cosine. The absolute value in (32) is a reflection of the sign
degeneracy, since observed dipolar couplings are always positive (34), while the
spherical harmonicνc ranges from− ν‖

2 to ν‖. If νo ≤ ν‖
2 , then the model agrees

with the data if|νc| = νo, or if νc = ±νo. If ν‖
2 < νo ≤ ν‖, then for agreement with

the dataνc = νo and there is no degeneracy.
For nuclei with spin greater than 1/2, such as deuterium, the distribution of

charged particles generates an electric quadrupole moment. Quadrupolar inter-
actions produce quadrupolar splittings of NMR peaks, similar to those produced
by dipolar interactions. The restraining function is often similar to that for dipolar
coupling, with the quadrupolar coupling constant(3

4QCC) replacingν‖:

Eqd,i =
{

(|νc| − νo)
2 if νo ≤ 3

8QCC

(νc − νo)
2 if 3

8QCC< νo ≤ 3
4QCC.

(35)

3.4.2. Correlated orientational restraints. As described inSection 2.3.4, if the
anisotropic chemical shift and dipolar coupling measurements are correlated, many
of the sign degeneracies in dipolar coupling can be resolved. One way to make
this correlation is to obtain both measurements from the same signal, the method
known as PISEMA. Alternatively, one can obtain separate measurements ofσ and
ν corresponding to the same nitrogen atom, and then form the ordered pair(σ, ν).
Regardless of how the ordered pair is obtained, one can plot the pair as a point
in the σν plane. If the point falls in the primary ellipseP, but not the reflected
ellipse P∗ (seeFig. 7), thenνo = |νo|. If i t falls in the reflected ellipse, but not
the primary ellipse, thenνo = −|νo|. Only if it falls in the intersection of the two
ellipses does the sign degeneracy remain unresolved. Thus, an improved dipolar
coupling restraint is

Edp,i =
{
(|νc| − νo)

2 if unresolved
(νc − νo)

2 if resolved.
(36)

We will see that resolving the dipolar degeneracy greatly simplifies the dipolar
energy landscape.

3.4.3. Dipolar energy landscape. The energy landscape for a protein is
extremely complex, and direct visualization is not possible. However, since the
dipolar coupling energy has a simple angle dependency, one can gain insight into
how this type of restraint affects refinement by performing a simple graphical
examination of the dipolar energy function or landscape. The quadrupolar energy
landscape is similar. It is convenient to interpretEdp as a family of curves
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Figure 8. Three members of the family of dipolar coupling energy curves [equation (36)],
corresponding toθo = 10◦, 30◦, and70◦. In each caseν‖ = 2.

parametrized byθo, the actual angle between the magnetic field vector and the
appropriate covalent bond vector. For a givenθo one can computeνo using (34),
and from this the dipolar coupling energy [using (32)] as a function ofνc or θc.
Energyalso depends onν‖. Thus, Edp = Edp(θc; θo, ν‖), whereθo and ν‖ are
parameters. In what follows we assume that the dipolar and chemical shift data
have not been correlated, and use the restraint (32).

Three members of theEdp family of curves are shown inFig. 8, corresponding
to θo = 10◦, 30◦, and70◦, each withν‖ = 2. The curveEdp(θc; 10, 2) has two
zeros, atθc = 10◦ andθc = 170◦.

The curveEdp(θc; 30, 2) also has two zeros (30◦ and 150◦), but now there is more
concavity near each. This will lead to stronger restraint on the angle during refine-
ment, sincethe angle is now penalized more severely for small deviations from the
energy minima. Finally, the curveEdp(θc; 70, 2) has four zeros (≈42◦, 70◦, 110◦,
and≈138◦). Thus, even though the actual angle made with the magnetic field is
θo = 70◦, the model can make angles of≈42◦, 70◦, 110◦, or ≈138◦ and satisfy
the dipolar data equally well, due to the degeneracies inherent in the uncorrelated
dipolar coupling measurement.

As shown inFig. 8, with smallθo angles there are two minima ofEdp. For these
anglesνo > ν‖. Thereis a bifurcation atθo ≈ 35◦, whereνo = ν‖. Sincethis
bifurcation reflects the sign degeneracy, we denote this angle asθsign:

θsign = arccos(
√

2/3). (37)

Fig. 9(a) shows two members of theEdp family for θo on either side ofθsign. At
θsign a new minimum emerges atθc = 90◦, and splits into two minima symmetric
about 90◦ for θo > θsign. Thus, forθo = 36◦ there are four minima.

Another bifurcation occurs whenνo = 0, themagic angle, θmagic:

θmagic = arccos(
√

1/3) ≈ 54.7◦. (38)

At the magic angle the leftmost and rightmost pairs of minima coalesce, only to
split again for larger values ofθo [Fig. 9(b)]. The qualitative change in the energy
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Figure 9. (a) Two members of theEdp family of curves, on either side of the bifurcation at
θsign ≈ 35◦. (b) TheEdp curve at the magic angle bifurcation,θmagic ≈ 54.7◦, and two
other members of theEdp on either side of the bifurcation.

function is rather mild at the magic angle bifurcation, in contrast to the bifurcation
at θsign.

The structure of minima for theEdp family of curves and the bifurcation points
are best illustrated with circle diagrams (Fig. 10). For θo = 10◦ there are two
minima, represented by filled circles in the top left circle diagram.θ is the angle
between the vertical line (magnetic field direction) and a point on the unit circle.
The minimum connected by a line to the center is at the actualθ angle,θo. For
largerθo, the minima move along the circle towards 90◦. At θsign a new minimum
is born, and has bifurcated byθo = 36◦. Thenew and old minima approach one
another for largerθo, and at the magic angle they coalesce. For largerθo the minima
move pastone another and atθ = 90◦ there is yet another coalescence.

Taken together,Figs. 8–10 illustrate that the dipolar coupling energy landscape
is quite complex when the sign degeneracy in the dipolar coupling is not resolved.
However, when the degeneracy can be resolved, perhaps by correlating data, the
landscape becomes much simpler. This is illustrated inFig. 11, wherenow the
equation for the energy function is

Edp = (νc − νo)
2. (39)

As in Fig. 8 curves are plotted forθo = 34◦, 36◦, 45◦, 55◦, and65◦. While the
curves forθo = 34◦ and 55◦ are identical to those inFig. 8, all other curves
differ. When the sign of the dipolar coupling is resolved there are no derivative
discontinuities as inFig. 8. While the Edp(θc; 65, 2) curve is relatively flat for
θc ∈ (30◦, 150◦) when the degeneracy has not been resolved, it is flat over the
muchsmaller interval(60◦, 120◦) when the degeneracy has been resolved. In terms
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Figure 10. Unit circle diagrams illustrating the location of minima for several members of
the Edp family of curves.

Figure 11. Dipolar coupling energy curves when sign ambiguities have been resolved. The
curves deform continuously asθo is increased through (a)θsign ≈ 35◦ and through (b)
θmagic ≈ 54.7◦. Compared toFig. 9, the curves are more suitable for restraining theθ

angle during refinement.

of Fig. 10, the extra pair of minima born atθsign will not occur if the sign degener-
acy is resolved.

In summary, there are two reasons that it is important to resolve sign degeneracies
in the dipolar coupling. First, there are fewer local minima in the energy function,
directly reflecting resolution of degenerate solutions. Second, when degeneracies
are resolved the energy landscape is less complex and is better suited to restrain-
ing the bond angles during refinement. Correlating the chemical shift and dipolar
measurements is an effective way to resolve many of the degeneracies.
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4. CONCLUSIONS

The use oforientational information from solid-state NMR has great potential for
the structure determination of membrane proteins. This technique is still quite new,
but already great experimental and theoretical progress has been made (Cross and
Quine, 2000; Quine and Cross, 2000). We have discussed many of the mathemat-
ical issues involved in the interpretation of NMR data, and how this orientational
data can be used to describe the atomic structure of the protein backbone. An
algorithm was discussed for creating an initial atomic model, assuming standard
stereochemistry of covalently bonded atoms, and the process of atomic refinement
using orientational data was described. Further development of these two proce-
dures, initial model building and subsequent atomic refinement, will help assure the
best use of solid-state NMR data as it becomes available for the many membrane
proteins whose structure has not yet been determined. The development of two-
dimensional NMR is an extremely important recent step for the solid-state NMR
method, and correlating orientational measurements is, as we show here, important
from a computational perspective.
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