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Abstract

An optimized algorithm for finding structures and assignments of solid-state NMR PISEMA data obtained from o-helical membrane
proteins is presented. The description of this algorithm, pipaTH, is followed by an analysis of its performance on simulated PISEMA data
derived from synthetic and experimental structures. pIPATH transforms the assignment problem into a path-finding problem for a directed
graph, and then uses techniques of graph theory to efficiently find candidate assignments from a very large set of possibilities.
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1. Introduction

Membrane proteins exhibit characteristic resonance pat-
terns in two-dimensional solid-state NMR (ssNMR) exper-
iments. In particular, the polar inversion spin exchange at
magic angle (PISEMA) experiment [1] on transmembrane
proteins gives distinctive polarity index slant angle (PISA)
wheels [2], a direct result of a high degree of a-helicity.
These patterns are very useful for determining features of
the secondary structure, such as helix tilt and rotation
angle [3,4].

PISEMA data are typically obtained from proteins or
peptides that have been uniformly labeled, or possibly
selectively labeled according to residue type. It is highly
desirable to assign the resonance data from such a labeled
protein, that is, to match each resonance peak with a resi-
due within the amino acid sequence. This assignment prob-
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lem is formidable since there there is only one correct
assignment that must be chosen from a large number of
potential assignments. Yet, even without a correct assign-
ment, there is still vital structural information in the data
2]

Here, we present an algorithm to efficiently extract ini-
tial models and plausible assignments from PISEMA data
sets of uniformly labeled peptides. There are many similar
structures which can be constructed to match the data set,
and our algorithm systematically orders these structures
based on a user-defined metric of a-helicity. Furthermore,
the algorithm is capable of finding the most a-helical (as
defined by the metric) assignment and structure that agrees
with the data.

Recently, Nevzorov and Opella described an algorithm
that generates plausible assignments by “‘structural fitting”
[5]. This algorithm builds atomic structures from random
assignments and computes model PISEMA data for each
residue as the structure is being built. These data are
compared with the experimental PISEMA spectrum to
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determine if the assignment is plausible. In this way, an
assignment of the data and an initial model are determined
simultaneously. The search is restricted to a-helical struc-
tures, thus eliminating many potential assignments. Fur-
thermore, the search algorithm can be computationally
expensive, with the bulk of the procedure’s computation
spent iteratively building structures.

We present an algorithm, pipATH, that provides plausible
assignments and associated structures without the compu-
tational cost of atomic structure construction during the
search process. This provides a substantial speedup in
search time, allowing for a more complete search and
application to larger PISEMA data sets. The input to
pipaTH is a PISEMA data set, and the output is a set of
potential assignments and their most a-helical structures.
The algorithm is thus intended as a first step toward model
building.

2. The PISEMA search space
2.1. PISEMA data and its degeneracies

The PISEMA experiment measures two physical quali-
ties of the target nuclei which provide orientation informa-
tion: the anisotropic chemical shift (o) and dipolar
coupling (v). For the protein backbone 'H-'"°N interaction,
a single data pair (o, v) is obtained for each labeled peptide
plane in the molecule. Plotting all data points on a (a,v)
coordinate system gives the PISEMA spectrum, which falls
within the powder pattern, bounded by the PISEMA ellipse
and triangle in the frequency plane [6,7] (Fig. 1). The pow-
der pattern is the locus of possible measurements and can
be determined by forming a “powder” sample containing
a large number of randomly distributed orientations.
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Fig. 1. A typical PISEMA powder pattern bounded by a primary and
reflected ellipse and a small extra-elliptical triangle near point Q. The
experimental data value (o, |v|/2) falls within one of the shaded regions
(A-E). The number of peptide plane degeneracies varies according to the
location of the data: points in regions (A) and (B) have 4, (C) and (D) have
8, and (E) has 12.

A PISEMA data set with N data points from a uniform-
ly labeled peptide has N! potential assignments. This is a
very large number, even for smaller transmembrane pro-
teins; e.g., data from a 15-residue peptide contain
1,307,674,368,000 (15!) potential assignments. This number
can be reduced by using secondary structural characteris-
tics that may be present in the data set, such as helicity.

An assignment is an ordering of the data points in the
frequency plane, and two consecutive elements of the
assignment correspond to two consecutive residues in the
protein, and the two associated peptide planes form a
diplane. Using any consecutive pair of points, a diplane
can be formed and its set of possible ¢ and ¥ torsion angles
can be determined. This is discussed in detail in [8], and is
briefly summarized in Appendix A.

More than one possible torsion angle pair exists for each
diplane because of orientational degeneracies contained in
the PISEMA data. The number of possible torsion angles
varies according to the location of the consecutive data
points in the PISEMA powder pattern. For example, a res-
onance within region A of Fig. 1 followed by another in
region C has 4 x 8 = 32 possible torsion angle pairs, one
for each combination of peptide plane degeneracies
between the two peptide planes. Depending on the regions
in which the data points lie, there will normally be 16 or 32
torsion angle pairs [8]. Higher degeneracies are possible,
but not probable since transmembrane helices often have
small helical tilt angles of 20° 4 10° [9,10], resulting in a
positive dipolar coupling with resonances predominately
in region A of Fig. 1 [11].

An assignment therefore has many possible structures
that can match its PISEMA data set. Specifically, for an
assignment of an N residue peptide, the number of struc-
tures is:

17 (1)

where 7 is the number of possible torsion angles connect-
ing residues r; and . in the assignment. Since there are N!
possible assignments, each with multiple structures, the
number of candidate structures that can match a given PI-
SEMA data set of size N is at most:

N! N—

num(4y) = Z

where A, denotes the PISEMA search space, or set of pos-
sible structures that agrees with the PISEMA data.

Two separate phenomena contribute to the extremely
large size of Ay. The first is the combinatorial nature of
possible assignments, and the second is the large number
of possible structures per assignment due to degeneracies.

1
Tu, (2)

=1

2.2. Reduction of the PISEMA search space

The set of structures that match PISEMA data, Ay, is
too large to examine exhaustively. Here, in an effort to
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reduce this problem to manageable size, we order the set
Ay according to degree of a-helicity.

The key assumption in our ordering of A4 is the regular-
ity of a-helices within the transmembrane environment.
There is evidence that transmembrane o-helices are more
stable than equivalent o-helices in aqueous environments
[14]. This increased stability should result in a higher
degree of helical regularity among transmembrane pro-
teins. A PISEMA experiment performed on a transmem-
brane a-helical structure should thus yield a highly
regular o-helix. With this assumption, it is possible to dis-
card a large number of possible yet improbable non-a-heli-
cal structures.

A tabulation of transmembrane o-helices currently
available in the Protein Data Bank (PDB) shows the mean
torsion angle and variance to be ¢ = —63.31° 4 10.94° and
W = —41.99° £ 11.42° (Table 1), which lie between the
canonical o-helix model values —65° < ¢ < —60° and
—45° < < —40° [14]. We define an o-helical subset of
Ay, denoted as 4y, as those structures that match the
PISEMA data and have (¢, ) within 10° of the ideal values
(% = —63°, Y* = —42°). However, even with this sizable
reduction, the search space Ay is still quite large and
searching the set of candidate structures is very time
consuming.

Nevzorov and Opella [5] employed a Monte Carlo
search technique to explore a set similar to A}. Here, we
describe a new algorithm, PIPATH, that uses graph theoreti-
cal techniques to more efficiently search A%, the set of a-he-
lical structures that match a PISEMA data set.

3. The pipaTH algorithm
3.1. The assignment graph

Let G=(N,E) be a graph with N vertices and E edges.
Each vertex corresponds to a single PISEMA data point
and each pair of vertices is connected by two directed edg-
es, making G a well-connected directed graph with
E=N(N-1).

Let P, be a path through the graph in which each vertex
is visited exactly once (a Hamiltonian Path) [15]. P, then
corresponds to a unique assignment of the data. Since a
data set of NV points has N! possible assignments, a well-
connected graph G = (N, E) has N! Hamiltonian paths. A
graph G with N vertices thus contains all possible assign-
ments of the data set. This graph is hereafter referred to
as the assignment graph (Fig. 2).

An edge e¢; connecting two vertices v; and v; in the
assignment graph is equivalent to a diplane. The set of

Table 1
Transmembrane proteins from the PDB used to calculate a-helical torsion angle statistics
PDB ID Protein TM o-helices ¢ v Res(A)
1C17 F1F0 ATP synthase 7 —64.1+9.2 —42.4+9.0 3.0
1C3W Bacteriorhodopsin 7 —66.1 £ 8.3 —40.2+7.6 1.9
1E12 Halorhodopsin 7 —64.3+5.9 —4124+75 1.8
1EHK Ba3 cytochrome-c oxygenase 14 —62.9+8.5 —41.0+10.4 2.4
1EZV Cytochrome BC1 complex 10 —653+72 —40.2+7.0 2.3
IFFT Ubiquinol oxidase 22 —63.24+224 —41.7+22.1 3.5
1FX8 Escherichia coli glycerol facilitator 6 —65.7+10.6 —40.7 +10.4 2.2
1H6I Aquaporin 6 —61.24+94 —44.6 £ 8.2 3.5
1IWG Multidrug efflux transporter 11 —62.1 + 184 —43.7+17.4 3.5
1JBO Photosynthetic reaction center 23 —64.6 + 8.1 —41.0+9.1 2.5
1JGJ Sensory rhodopsin II 7 —63.6 6.3 —42.14+7.6 2.4
IKQF Formate dehydrogenase N 5 —63.7+5.8 —43.0+7.1 1.6
1L7V ABC transporter 8 —54.7 +18.8 —43.9 £ 18.0 32
1L9H Bovine rhodopsin 7 —67.0+11.0 —39.5+11.7 2.6
1LGH Light harvesting complex 2 —64.4+5.1 —40.0 £ 6.5 2.4
IMSL Large mechanosensitive channel 2 —5594+10.4 —46.7+13.7 3.5
IMXM Small mechanosensitive channel 3 —65.3+10.9 —40.7 £ 13.9 3.9
10CC aa3 Oxidoreductase cytochrome-c 27 —62.7+8.5 —4234+95 2.8
10KC Mitochondrial ADP/ATP carrier 3 —65.0+4.3 —42.4+6.9 2.2
1P7B Inward rectifier Ka channel 3 —53.8+16.1 —49.8 +18.6 3.7
1PRC Photosynthetic reaction center 10 —63.0+8.5 —42.1+10.2 2.4
1Q16 Nitrate reductase A 5 —652+7.3 —430+7.5 1.9
1QLA Fumerate reductase complex 5 —63.5+6.5 —41.6 +10.2 22
1R3J KCSA potassium channel 2 —63.8+3.2 —4234+5.0 1.9
1RHZ SecYER channel 11 —55.5£ 133 —49.2+ 16.0 3.5
1SU4 Calcium ATPase 7 —67.5+13.0 —38.5+12.9 2.4
1VF5 Cytochrome B6F complex 14 —63.7+16.3 —42.6+£15.2 3.0
Total 234 —63.31° 4+ 10.94° —41.99° + 11.42°

Helices of length N > 20 were detected using the Kabsch and Sander algorithm [12]. Membrane traversal was verified using TMHMM, a transmembrane

hidden Markov model server [13].
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possible torsion angles between the peptide planes is deter-
mined by the (g,v) values at each vertex. This set of angles
is given in Appendix A. There is a large number of struc-
tures S(Py) corresponding to assignment Py, due to torsion
angle degeneracies.

To specify a structure S, < S(P,) that is consistent with
an assignment represented by path Py, one (¢, ) pair must
be chosen for each edge. The closeness of a (¢, ) pair to a
canonical a-helix (¢* = —65°, y* = —40°) can be measured
using a simple root mean squared deviation (RMSD):

A(,0) = /(6 — 67 + (v -y 3)
In pIPATH, we choose (¢*,*) that minimizes A®. This min-
imum value of A% is then used as a weight w;; for the edge e;;

w(ey) = min[4"{¢y},| = 47(¢*,¥*), (4)

where {¢y/}; is the set of possible torsion angles corre-
sponding to the edge ¢;, i.e., connecting vertices i and j.
With (¢*, ™) chosen in this way, any Hamiltonian path
P, in the assignment graph represents an assignment and
its edge weights reflect the closeness of the most a-helical
structure in S(P;), denoted as S, to a canonical o-helix.
It is important to note that w(e;) # w(e;;) since the internal
torsion angle equations are not commutative (Appendix
A), and thus the assignment graph G is a directed graph.

3.2. The continuity conditions

When building atomic models by joining diplanes
defined by torsion angles, there are geometric constraints
that limit the number of possible internal torsion angles.
The process of joining any two diplanes involves the gluing
a common internal peptide plane, which must have the
same orientation in both diplanes. This orientational
restriction propagates through the structure as it is being
built. We call these additional constraints continuity condi-
tions. They are discussed in [16,17] and are described in
detail in [8]. Continuity conditions exist whenever diplanes
are glued together, regardless of secondary structure.

[ ]
V]/
[ ]

[ J
\Z
Fig. 2. Assignment graph G = (4,12) with one path illustrated (bold
arrows) corresponding to the assignment (vy,v,,v3,04) of data points
(dy,d>,d5,dy) to a 4-residue peptide. The vertex and data point labels are
arbitrary but uniquely specify an assignment.

PIPATH uses the geometric relations between any two
PISEMA data points to compute an a-helical torsion angle
for its respective diplane. Since the continuity conditions
are dependent on consecutive diplanes, it is not possible
to apply the continuity condition to the assignment graph
because the ordering of the diplanes (the minimal path) is
the unknown being solved. However, once a path has been
found, the continuity conditions can be applied as a post-
process.

3.3. Solving for the minimal a-helical structure

Each path P, in the assignment graph G has a cost
C(Py) that reflects the a-helicity of the structure S} and
is computed by adding the edge weights of P (Fig. 3). A
useful quantity is the deviation from o-helicity for a given
structure S:

N-1
A°S = ZAQ(¢SawS)1(1+1)7 (5)

where (¢°, sz),»(iH ) are the internal torsion angles of struc-
ture S. For each structure S < S(Py), 4*S = C(Py), since
the edge weights of P, are the minimal torsion angle a-he-
lical deviations by definition (4). S} is the structure in
S(Py) in which the deviation from a canonical a-helix is
minimal, i.e., where 4°S} = C(P;).

Let P* be the path in G that minimizes C(P). The most
a-helical structure associated with P* is denoted S**. If
A*S** = C(P*), S** is the most o-helical structure in
A%, and P* is its associated assignment. If 4%S** > C(P*),
then the structure whose cost was C(P*) did not satisfy the
continuity conditions, and S** is the structure with the
lowest cost that does satisfy the conditions.

The goal of pipaTH is to find the most a-helical structures
which match the PISEMA data set. It does this by search-
ing and ranking structures based on the cost of paths
through the assignment graph. This requires finding the
Hamiltonian paths P with minimal cost C(P) in the assign-

A=y,

. N w9,

A2
Fig. 3. A path P, through assignment graph G = (4, 12). The cost of Py is

C(Pi) = AX(@* Y™+ AM (@™ Y )2z + A (@™, Y™ )30, where (¢*,97) is
the torsion angle pair for edge e; that is closest to a-helical.
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ment graph G. This is a well-studied problem in graph the-
ory. It is transformable to the Traveling Salesman Problem
and a variety of methods are available to solve this prob-
lem with reasonable computational cost [15]. The details
and implementations of this algorithm are described below.

3.4. Implementation and availability

The algorithm we use is formally described in Appendix
B. The input parameters are the primary sequence, the
PISEMA data and an o-helicity bound B. The program
calculates all possible assignments P, whose C(P;) < B.

The path-finding algorithm requires solving the Travel-
ing Salesman Problem. This is done using a branch-and-
bound technique [18,19] which limits the search space
based on the input a-helicity bound B. Careful choice of
B prevents long search times while allowing for sufficient
sampling of paths. In our implementation, B was initially
set to 0 and slowly increased until a prescribed number
of assignments (100) was returned.

PIPATH generates a list of plausible assignments that can
yield structures with high o-helicity. For each path, the
minimal a-helical structure that satisfies the continuity con-
ditions must be computed. Here, we use an analytic expres-
sion of the continuity condition [8] that -efficiently
determines whether consecutive torsion angles meet the
continuity condition.

The algorithm was implemented in the Python program-
ming language [20] and tested on a Linux PC operating at
2.2 GHz. Calculation time for pipaTH has a strong depen-
dence on peptide chain length N. For our tests of generat-
ing 100 o-helical structures, with N < 15, run times
averaged under 5 min. For longer peptides (15 <N < 25)
the average calculation times ranged to several hours.
The Python implementation is freely available at http://
www.math.fsu.edu/~bertram/software/sb. We request that
those who use this software reference this article.

4. Example

As an example of how pIPATH is used, we consider a set
of five PISEMA resonances as shown in Fig. 4A. These
data were generated by calculating the dipolar coupling
and chemical shift from an a-helix with 25° tilt and 5° tor-
sion angle deviation. The associated assignment graph is
shown in Fig. 4B. Each edge of this directed graph is
weighted according to (4), which is the minimal a-helical
deviation for two peptide planes connecting the corre-
sponding vertices. A large edge weight, such as
w(es3) = 30 indicates that it is unlikely that the peptide
plane associated with resonance 3 immediately follows that
associated with resonance 5. However, w(es;) =4 is small,
so that the peptide plane associated with resonance 1 is
more likely to follow that associated with resonance 5.
The assignment graph was restricted to include only those
torsion angles with A% < 30°.

PIPATH computes a-helical structures by finding Hamilto-
nian paths of minimal cost through the assignment graph.
The top 10 paths of the assignment graph shown in Fig. 4B
are listed in Table 2. Note that for path P;, 4*S* > C(P,).
This indicates that the path with smallest cost did not sat-
isfy the continuity conditions. In contrast, path P; generat-
ed a minimal structure with A*S* = C(P;) and thus
satisfied these conditions. For each path, the structure with
minimal o-helical deviation (S*) is constructed and its
RMSD from the original structure is calculated. In this
example, the assignment corresponding to P; yields a struc-
ture S* with deviation 4%S™ = 27. Since this is the minimal
a-helical deviation for those structures from paths with
C(P)<27 and all remaining paths have
A*S* > C(P;) > 27, S*(P5) is the most o-helical structure
within Ay and is denoted S**.

5. Algorithm performance
5.1. Performance

We first test the performance of PIPATH using simulated
data derived from synthetic model o-helices of varying
length, degree of a-helicity, and tilt. For each model, which
we call the “generating model”, the anisotropic '°N chem-
ical shift and "H-'°N dipolar coupling interaction are com-
puted for all backbone nitrogens to generate a PISEMA
resonance set [11]. The success rate of the algorithm is then
determined by comparing output structures with the syn-
thetic input models and measuring the root mean-square
deviation (RMSD).

Because piPATH computes all paths below an upper
bound B, it is possible to output many a-helical structures
for a given data set. In the following tests, we computed
multiple o-helical structures to characterize pIPATH perfor-
mance, and the figures show data for the 100 most a-helical
structures that PIPATH computes.

The performance of piPATH as a function of peptide
length N is shown in Fig. 5. Since RMSD magnitude
depends on the size of the structures being compared, we
use a normalized RMSD [21] whenever comparing PIPATH
behavior across peptides of different lengths. The RMSD
values were normalized relative to the smallest peptides
in our data set (N =5) using the formula:

rmsd
1+1In\/N/5

where rmsds is the normalized RMSD. For each length N,
an ensemble of 100 random a-helices were generated with
Gaussian noise in the tilt angle and the a-helicity. If noise
were not added to the a-helicity, it would be guaranteed
that the minimal PIPATH structure would match the original
structure. The mean and standard deviation of the helical
tilt were p = 20°, o = 10°, reflecting the naturally occurring
distribution for membrane proteins [9,10]. The helices

(6)

rmsds =
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Fig. 4. A sample PISEMA resonance data set (A) and its associated assignment graph (B) for a uniformly labeled 5-residue peptide. The data set shown in
the frequency plane has an arbitrary numbering 1 through 5. The assignment graph for the 5 resonance pairs is a directed graph with edge weights equal to

the minimal a-deviation of torsion angles between diplanes, as defined by (4). It has been pruned here to only include those edges with 4% <

weight w(e;) is located close to vertex i.

Table 2
The top 10 paths as determined by path cost C(P;) and their associated
minimal a-helical structures ™ for the assignment graph shown in Fig. 4

Path c(P) A%S* RMSD (A)
P, [2,3.4.5,1] 19 47 0.809
P, [3.4,5,1,2] 22 71 0.907
P [1,2,3.4,5] 27 27 0.015 S**
P, [5,1,2,3,4] 27 64 0.551
Ps [4.5,1,2,3] 29 78 0.999
P [2,3,4,1,5] 30 54 0.941
P, [1,5,2,3,4] 35 63 0.452
Py [5,2,3,4,1] 36 36 0.182
Py [3.4,1,5,2] 36 76 0.924
Py [4,1,5,2,3] 43 83 0.995

For each structure, the minimal o-helical deviation (4%) and its RMSD
from the original structure is calculated. Since the continuity condition can
only increase the a-deviation, 4%S* > C(P;). P; is the assignment which
generates the optimal a-helical structure (S**) which matches the data set.

within the ensemble had torsion angle means of ¢p* = —63°,
Y* = —42°, and a standard deviation of ¢ = 5° (Fig. 5).

Fig. 5 shows that top structures determined by PIPATH
closely match the structure used to simulate the PISEMA
data. For each length N, the top 100 structures output by
PIPATH are compared against the generated model using
normalized RMSD. Most of the top structures PIPATH gen-
erates are typically within 1 A of each other, and in Fig 5A
all have normalized RMSD within 1 A of the generating
model. The most a-helical structures (shown as open dia-
monds) are generally closer to the generating model.
Fig. 5 also shows pipATH performance is negatively impact-
ed by increasing peptide length, which is expected since the
size of the search space 4} is proportional to N. In addi-
tion, the performance of the algorithm is not as good when
the generating model has greater o-helical deviation (data
not shown).

30°. Edge

The dependence of pipATH performance upon helical tilt
was measured by fixing peptide length and o-helicity and
then varying the tilt angle from 0° to 90° (Fig. 6). PIPATH
performed best on structures with tilt angles less than
~30°; fortunately, naturally occurring o-helices in mem-
brane proteins have mean tilt of less than 30° [9,10]. PIPATH
performed worse on structures with tilt of 40-70°. This is
because ideal a-helices within this tilt range exhibit unre-
solvable dipolar splitting signs and have data values which
typically lie in region C of the powder pattern of Fig. 1 [2].
In this case, the undetermined sign of ¢, generates a second
set of torsion angles (Appendix A) which match the data
and thus increases the size of 43 .

We next tested piPATH on the high resolution structures
(<2.5 A) of the transmembrane a-helical data set (Table
1) by numerically generating PISEMA data for these struc-
tures, applying PiPATH on these data, and then calculating
the RMSD of pipaTH’s 100 most a-helical structures from
the generating structures (Fig. 7). Peptides of varying
lengths were generated by truncation of 20-residue o-
helices. PIPATH performance for these experimentally deter-
mined o-helices is similar to that for the synthetic a-helices
(Fig. 5).

5.2. Further reductions to PISEMA search space

The size of the o-helical search space, 4}, can be further
reduced by applying additional constraints. The most effec-
tive way to limit 4% is to use non-uniform labeling of resi-
dues. In general, the selective labeling of M residues of a
single amino acid type reduces the search space size from
num(4y) to num(4y_,,)M!, compared to num(4}_,,) for
specific labeling of M individual residues. Increasing M is
always advantageous, and consecutive labeling reduces
the total number of edges in the assignment graph, result-
ing in greater algorithmic efficiency. Thus, a selective label
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Fig. 5. pipaTH performance using simulated transmembrane o-helices as a
function of peptide chain length for different degrees of a-helicity. Torsion
angles have mean of ¢* = —63°, y* = —42° and standard deviation of 5°.
The black squares with error bars are the normalized RMSD mean and
deviation of the top 100 PIPATH structures returned by PIPATH as ranked by
assignment path cost. The diamonds represent the average of the most a-
helical structures that matches the PISEMA data.

RMSD from Original Structure

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
Tilt Angle w.r.t. Membrane Normal

Fig. 6. pieaTH performance as a function of helical tilt angle. At each tilt
angle, 100 random peptides (¢ = —63°, y = —42°, ¢ =5°) of length
N = 10 were tested. Each random peptide is then compared with the top
100 o-helical structures as computed by pipaTH. The black squares with
error bars are the RMSD mean and deviation of the top 100 structures.
The diamonds show the averages of the most a-helical structures of each
set.

which affects 4 residues is preferred over a specific labeling
of 3, and given a choice, labeling 2 residues that are consec-
utive in primary sequence is preferred over labeling 2 resi-
dues that are non-consecutive.

The search space can also be reduced by enforcing a
strict upper bound on deviation of torsion angles from
canonical values. This generates more regular o-helices,
but limits the detection of kinks in the structure. For exam-
ple, one may wish to include only those torsion angles with
A%*(¢p, ) <30° in the assignment graph.

The assignment space can be further reduced by elimi-
nating output structures that do not produce an expected
PISA wheel. For example, if part of a structure produces

G0t

5 10 15 20
Peptide Chain Length N

Fig. 7. pipaTH performance as a function of peptide length using 62
transmembrane a-helices from the PDB (see Table 1). PISEMA data were
calculated numerically for each structure, and the normalized RMSD was
calculated between the top 100 PIPATH output structures and the generating
structure. The black squares with error bars are the RMSD mean and
deviation of the top 100 pipATH structures. The diamonds represent the
average of the most a-helical structures.

1 all solutions
I handedness

handedness with A% < 30°

RMSD5

Peptide Chain Length N

Fig. 8. pipATH performance on the transmembrane o-helical data set
(Table 1) with additional constraints placed on output structures. The
white bar shows PIPATH success rate with no filtering on output structures.
The black bar removes all structures whose simulated PISEMA data does
not form a PISA wheel which rotates in a single direction in the frequency
plane. The striped bar removes all structures with no handedness and
which have a torsion angle pair with o-helical deviation >30°.

a right-handed PISA wheel while another section produces
a left-handed wheel, it may be appropriate to delete the
structure [14]. Fig. 8 shows the results of applying these
additional constraints to PIPATH performance.

6. Discussion

PIPATH uses principles from graph theory to find plausi-
ble initial models and assignments of PISEMA data. It pro-
duces an ordered set of structures and assignments ranked
by an o-helicity metric. The highest-ranked structures are
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those that are closest to a canonical a-helix. piPATH address-
es the same problems (initial modeling and assignment) as
the Nevzorov and Opella algorithm [5]. However, PIPATH
more efficiently searches for optimal a-helical structures.

Although piPATH treats data from each residue as a sin-
gle data point, a typical data set will have data peaks of
finite width. The issue of interpreting line shape as a source
of experimental error is examined in detail in [7]. There, it
is shown that typical error bars within the dipolar coupling
and chemical shift dimensions result in small torsion angle
variations. Larger variations are possible depending on
where the data lies on the frequency plane. Since PIPATH
relies on torsion angle calculations to measure o-helicity,
the algorithm is in most cases robust to a small amount
of experimental error.

It is well known that the PISEMA data set contains
much structural information that is available without
assignment. Our work with piPATH confirms this, as the
algorithm can generate a large number of structures with
different assignments, yet all match the data equally well
and are structurally similar. Indeed, for peptide chains of
length 20 or greater, there can be thousands of assignments
whose optimal o-helical structures deviate <0.5 A from
each other. The set of “top” structures produced by PIPATH
are relatively good matches to original structures from
which the PISEMA data was generated. Thus, the output
from PIPATH is a set of possible initial models for subse-
quent atomic refinement.

Additional experimental contraints, as long as they can
be expressed as orientational constraints, can be incorpo-
rated into piPATH. These new constraints will reduce the
number of available torsion angles, affecting the number
of degeneracies in Egs. (7) and (8) of Appendix A. This will
result in the reduction of the PISEMA search space and
presumably give better results.

The variability of output structures from PIPATH can be
controlled in several ways. Output structures can be biased
toward greater a-helicity by reducing the upper bound (B),
by eliminating edges in the assignment graph when A% is
too large, or by post-processing to enforce handedness in
the associated PISA wheel for the output structure. Further
culling of structures may be possible with additional struc-
tural information.
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Appendix A. Torsion angle equations
A complete derivation of the torsion angle equations is

given in [8,22]. Here, we give the equations with only a brief
description.

The set of possible torsion angles {¢y},; between resi-
dues connecting two consecutive PISEMA data points
(0,v); and (o, v); are given by the following:

¢):zwg(—dﬂ1+€UbKuégUhdh7M)U?
+arg (e’{us — €k, —ecg (€. €] iz, Kz)l/z)a (7)
Y = arg (—63#2 + €| 32, €8 (€} 11y, €] 1, Kz)l/z)
+mg@m—dMMréﬂwwmmWﬁa (8)

where €, €, are the degeneracies associated with data point
(o,v);, and e{, eé are the degeneracies for (g,v);. The con-
stants k;_3 and p;_4 are determined by the peptide geometry
and the resonance points, respectively. For a typical pep-
tide geometry [23] with torsion angle w = 180°,

K1 = cos 59°, K3 = C0S 65°. 9)

For a ">N chemical shift reference frame, offset by an an-
gle B (typically 17°) from the "H-'"N bond vector,

o
Ky = cos70°,

py = cos(—f +32°) - B. + cos(f + 58°) - B., (10)
p, = cos(f +27°) - B, +cos(f+ 117°) - B., (11)
iy = cos(B +33°) - B/ + cos(f + 123°) - B/, (12)
py = cos(—fB +32°) - B/ + cos(B + 58°) - B/, (13)

where B' = [B.,B,,B.], B’ = [B/,B], B]] are unit direction
vectors of the magnetic field in the chemical shift reference
frames of >N’ and "N residues, respectively. The principal
values of the '°N chemical shift tensors are assumed to be
constant. Note that the arguments to the cos functions dif-
fer from [8], where a dipolar reference frame is used, but
the u values are dot products and thus do not depend upon
reference frame.

The gramian function g(x,y,z), used in (7) and (8), is
defined as

I x y
gy =|x 1 z|=1-x—)" 2+ 20z (14)
y z 1

The gramian should never be negative. However, this
may occur if there are errors in the PISEMA data [24].
In such cases, we set g(x,y,z) =0. The arg function is
defined as

arg(x,y) = arctan(y/x). (15)

To generate the degeneracies, {€}, €}, ., €], €, } are permuted
over the values (1,—1), which gives 2°> = 32 torsion angle
pairs, 16 of which are unique.

If the sign of the dipolar coupling is not known for a
data point (e.g., the value falls within region C of Fig. 1),
two sets of torsion angles are computed, one for (o,v)
and one for (o, —v).
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Appendix B. The pipATH algorithm

DEFINITION: a-helical deviation 4% (¢, /) = (¢ — *)?
+ W~y
INPUT:

<IN}
dyt with M < N, d; = (0,v);

a primary peptide sequence {ry, ..
a PISEMA data set {d], ..
an upper bound B

OUTPUT: All structures S, and assignments
ay={r1 = d;, ... ,ry — d;} that match the input PISEMA
data and deviate from o-helicity by <B.

(1) Construct the assignment graph: a well-connected
directed graph G = (V,E)
(a) Add N vertices to V'
(b) For each vertex v; in G, arbitrarily associate one
unassociated resonance d;
(i) If M<N, N-—M vertices will
unassociated
(c) For each vertex pair add edge e; = (v;v)) to E
(d) Weight each edge ¢;:
(i) If v; and v; have associated resonances,

w(e,-j) = min[A“{tf)%-}L

where the minimum is computed over all possi-
ble torsion angles connecting d; to d;
(ii) If either v; or v; has no associated resonance,
w(ey) =0
(e) Prune edges
(i) For each consecutive specifically labeled reso-
nance pair d; — d;, remove associated edges e
where k #j and e;; where j# i
(ii) If applicable, remove each edge ¢;; correspond-
ing to impossible residue connections d; — d; as
determined by non-uniform selective labeling
(2) Find all Hamiltonian Paths of G with a cost <B
(3) For each path Py:
(a) Build most a-helical structure that satisfies conti-
nuity condition: delete path if 4*S; > B.
(4) Output all remaining paths P, and structures S.

remain
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