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We describe a model of synaptic transmitter release and presynaptic fa-
cilitation that is based on activation of release sites by single Ca2+ mi-
crodomains. Facilitation is due to Ca2+ that remains bound to release sites
between impulses. This model is inherently stochastic, but deterministic
equations can be derived for the mean release. The number of equations
required to describe the mean release is small, so it is practical to use
the model with models of neuronal electrical activity to investigate the
effects of different input spike patterns on presynaptic facilitation. We
use it in conjunction with a model of dopamine-secreting neurons of the
basal ganglia to demonstrate that transmitter release is greater when the
neuron bursts than when it spikes continuously, due to the greater fa-
cilitation generated by the bursting impulse pattern. Finally, a minimal
form of the model is described that is coupled to simple models of post-
synaptic receptors and passive membrane to compute the postsynaptic
voltage response to a train of presynaptic stimuli. This form of the model
is appropriate for neural network simulations.

1 Introduction

Several models have been proposed for synaptic transmitter release and
presynaptic facilitation, the process whereby impulse-evoked release is en-
hanced for up to several hundred milliseconds if preceded by one or more
conditioning impulses (Magleby, 1987). In the models of Zucker and Fogel-
son (1986) and Yamada and Zucker (1992), release sites and Ca2+ channels
are spatially separated, and facilitation is due primarily to residual free
Ca2+ left over from previous impulse-induced Ca2+ channel openings, so
the diffusion of free Ca2+ is important. In an alternative model (Stanley,
1986; Bertram, Sherman, & Stanley, 1996), each transmitter release site is
colocalized with a single Ca2+ channel. Release is then activated by the mi-
crodomain of Ca2+ surrounding the channel mouth, eliminating the need
to perform Ca2+ diffusion calculations. This model is intended to describe
release evoked by short depolarizations, such as action potentials, during
which the opening of multiple Ca2+ channels in the neighborhood of a re-
lease site is unlikely.
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In the single-domain model, each release site has four independent Ca2+
binding sites or gates, each of which must be bound for release to occur. Ki-
netics of the gates are graded from slow unbinding, high affinity to fast un-
binding, low affinity. Facilitation is due to the accumulation of Ca2+ bound
to one or more of the gates rather than to residual free Ca2+. This model
was motivated by the findings that release sites can be activated by the Ca2+
microdomain under a single channel (Stanley, 1993) and that there is a step-
like frequency dependence of facilitation associated with a steplike decline
of Ca2+ cooperativity (Stanley, 1986). There is also considerable evidence
that residual free Ca2+ does not play an important role in facilitation (Stan-
ley, 1986; Blundon, Wright, Brodwick, & Bittner, 1993; Winslow, Duffy, &
Charlton, 1994), although it does appear to play a role in other forms of en-
hancement that last for several seconds (augmentation) or several minutes
(posttetanic potentiation) following a high-frequency conditioning tetanus
(Delaney, Zucker, & Tank, 1989; Delaney & Tank, 1994).

2 The Mathematical Model

The binding of Ca2+ to the jth gate obeys a first-order kinetic scheme:

Uj + Ca
k+j
­
k−j

Bj , j = 1, 2, 3, 4, (2.1)

where Bj and Uj are the normalized (Bj + Uj = 1) concentrations or prob-
abilities of bound and unbound gates and Ca is the concentration of free
Ca2+ at the release site. The binding rates (k+j , in msec−1µM−1) and unbind-

ing rates (k−j , in msec−1) were chosen to produce steps in the facilitation

curve: k+1 = 3.75 × 10−3, k−1 = 4 × 10−4, k+2 = 2.5 × 10−3, k−2 = 1 × 10−3,
k+3 = 5×10−4, k−3 = 0.1, k+4 = 7.5×10−3, k−4 = 10. The k−j vary from small to
large, resulting in a wide range of unbinding time constants (1/k−j ): 2.5 sec,
1 sec, 10 msec, and 0.1 msec, respectively. The temporal evolution of Bj is
described by

dBj

dt
= −(k−j + k+j Ca)Bj + k+j Ca , j = 1, 2, 3, 4. (2.2)

The opening and closing of a Ca2+ channel is a stochastic process, with
transition rates that depend on membrane voltage (V). The quantity Ca is
therefore a random variable. In Bertram et al. (1996), a Monte Carlo pro-
cedure was used to handle the effects of stochastic channel activity on
release. Although effective, this approach is computationally demanding,
and a better approach was subsequently developed (Bertram & Sherman,
in press). Here, Fokker-Planck-type partial differential equations were de-
rived for the probability distributions of bound gates under open and closed
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Ca2+ channels. Ordinary differential equations for the expected values of
these distributions—that is, the mean concentrations of bound gates of each
type—were then derived. Although the four gates are physically indepen-
dent, they are statistically correlated through their common dependence on
the domain Ca2+ concentration. Therefore, expected or mean release is not
simply the product of the mean bound concentrations of each gate type;
it depends on the mean concentrations of all gate configurations, resulting
in a system of 30 differential equations. However, it was shown that the
correlation among gates is removed and the number of equations neces-
sary to compute release reduced to 4 if it is assumed that the gates respond
to the average domain Ca2+ concentration—the domain Ca2+ concentration
averaged over the entire population of Ca2+ channels. Using perturbation
analysis, it was shown that the error introduced by this approximation is
typically small.

Taking the expected values of both sides of equation 2.2, and replacing
E[Ca Bj] by E[Ca] E[Bj] (the average domain Ca2+ approximation), we get

dσj

dt
= −(k−j + k+j Ca) σj + k+j Ca , j = 1, 2, 3, 4, (2.3)

where σj is the expected value of Bj and Ca = E[Ca] is the average domain
Ca2+ concentration, equal to the product of the fraction of open channels (m)
and the domain Ca2+ concentration at an open channel (Caopen). The latter
is assumed to be proportional to the Ca2+ influx through an open channel
(i(V)): Caopen = −A i(V). Assuming that the Ca2+ channel has a single open
and a single closed state, the fraction of open channels satisfies

dm
dt
= αm (1−m)− βm m (2.4)

where αm, βm are the channel opening and closing rates, respectively. Ex-
pected release is then

E[R] = σ1 σ2 σ3 σ4. (2.5)

The fourth gate, unlike the others, has fast unbinding kinetics, so that σ4

changes rapidly with changes in Ca. Thus, the number of differential equa-
tions needed to compute E[R] is further reduced by one by assuming that
σ4 is in equilibrium with Ca.

3 Example: The Dopamine Neuron

Our release model can be used with any model of membrane voltage or
even with experimental voltage recordings. As an example, we use it in
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conjunction with a model of in vitro electrical activity of the dopamine
neuron of the basal ganglia (Li, Bertram, & Rinzel, 1996). A periodic bursting
pattern, high-frequency spiking followed by a long period of silence, is
produced (see Fig. 1B) in the presence of the glutamate agonist N-methyl-
D-aspartate (NMDA). In the absence of NMDA, the cell spikes continuously
at a lower frequency (see Fig. 1A). Mean release evoked by the continuous
spiking pattern shows some facilitation (see Fig. 1E), due to the slow growth
of σ1 and σ2 (see Fig. 1C). However, facilitation generated by the bursting
pattern is much greater (see Fig. 1F), consistent with in vivo experimental
findings (Gonon, 1988). In this case σ3 increases during the first portion of
the active phase, while σ1 and σ2 increase throughout the active phase (see
Fig. 1D), facilitating release within an active phase. Between active phases
σ3 decays back to its baseline value, but the burst period is short enough
(800 msec) that the active-phase increases in σ1 and σ2 are not entirely lost.
Therefore, σ1 and σ2 accumulate over several bursts, and release evoked by
later bursts is greater than that evoked by earlier ones.

4 A Minimal Model

To demonstrate how the transmitter release model can be used in neural net-
work simulations, it is simplified to a form that can be used with integrate-
and-fire neurons. This model is coupled to simple models of postsynaptic
transmitter receptors and passive membrane to generate a postsynaptic
voltage response. Following Destexhe, Mainen, & Sejnowski (1994a) we as-
sume that each impulse leads to the release of a square pulse of transmitter of
1 msec duration. In contrast to Destexhe et al., we assume that the size of the
transmitter pulse evoked by each stimulus is not constant. The magnitude
of the initial pulse is T(1), while the magnitude of each subsequent pulse is
the product of T(1) and the presynaptic facilitation. Facilitation is computed
by solving equation 2.3 for σ1, σ2, and σ3 (or just one of the three for the
simplest model that exhibits facilitation) assuming that each presynaptic
stimulus leads to a square pulse of Ca lasting 1 msec. (With 10 mM external
Ca2+, Ca summed over an impulse is 63 µM, using the Hodgkin-Huxley
equations [Hodgkin & Huxley, 1952] to generate the impulse. This value
may be used as the magnitude of the Ca pulse, scaled linearly to reflect any
changes in the external Ca2+ concentration.) Facilitation contributed by the
jth gate is then the ratio of σj at the end of the nth pulse to the value at the
end of the first pulse.

We assume that the facilitating transmitter pulses act on a simple two-
state postsynaptic receptor (Destexhe et al., 1994a), with the fraction of
bound receptors (a) given by

da
dt
= αa T (1− a) − βa a, (4.1)
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Figure 1: Expected release (see equations 2.3–2.5) evoked by a dopamine neu-
ron model. In the presence of NMDA, the cell generates bursts of action po-
tentials (B); otherwise, it spikes continuously (A). Release is much greater
when the cell bursts (E, F; notice the different scales) due to the greater ac-
cumulation of bound gates (C, D; σ3 has been multiplied by 30). The single-
channel Ca2+ current is given by a Goldman-Hodgkin-Katz expression, i(V) =
1.45V[Caex/(1 − exp(0.07V))], where Caex = 1 mM is the external Ca2+ concen-
tration. We use A = 0.1 µM fA−1 and αm = 3.1 eV/10, βm = e−V/26.7 to compute
Ca. Both αm and βm are based on squid giant synapse data (Llinás, Steinberg, &
Walton, 1981) modified for the higher temperature at which dopamine neurons
typically operate (37◦F).
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where T is the transmitter concentration and αa and βa are the binding
and unbinding rates, respectively. Postsynaptic membrane voltage (Vpost)
is computed with the passive membrane equation

dVpost

dt
= −(Imem + Isyn) /Cmem (4.2)

where Cmem is the membrane capacitance, Imem = ḡmem (V − Vmem) is the
passive membrane current, and Isyn = ḡsyn a (V − Vsyn) is the synaptic cur-
rent. Note that since both Ca and T appear as square pulses in equations 2.3
and 4.1, the equations have piecewise exponential solutions (see Destexhe
et al., 1994a).

In Figure 2 this minimal model is used to compute the postsynaptic
voltage response to a short 100-Hz stimulus train. The synapse facilitates
throughout the train, producing consistently larger transmitter pulses (see
Fig. 2A) and postsynaptic voltage depolarizations (see Fig. 2B). Combined
with the relatively slow membrane dynamics, this leads to a substantial rise
in the average postsynaptic voltage (see Fig. 2B, solid curve). In contrast,
when facilitation is excluded by assuming that the size of each transmitter
pulse is the same, the average postsynaptic voltage exhibits only a small rise,
associated with the slow membrane dynamics (see Fig. 2B, dashed curve).

5 Discussion

Computational models of synaptic transmission typically concentrate on
postsynaptic mechanisms, assuming explicitly or implicitly that the amount
of neurotransmitter released by each impulse is the same (Rall, 1967; Des-
texhe et al., 1994a). However, a key feature of the transmission process is that
the number of transmitter molecules released by an impluse depends on the
history of presynaptic electrical activity. The model discussed here is one
of several intended to describe presynaptic transmitter release and short-
term presynaptic enhancement (Zucker & Fogelson, 1986; Parnas, Dudel, &
Parneas, 1986; Yamada & Zucker, 1992). In addition to the differences dis-
cussed earlier, these other release models differ from the present one in the
structure of their release sites. In Zucker and Fogelson (1986), it was assumed
that the kinetics of Ca2+ binding to a release site are instantaneous, so that
the rate of release is proportional to some power of the Ca2+ concentration
at the release site. This model was later modified to include finite kinetic
rates (Yamada & Zucker, 1992), but because the modified model includes
only one slow Ca2+ binding site, facilitation depends largely on residual-
free Ca2+, contrary to a growing body of experimental data (Stanley, 1986;
Blundon et al., 1993; Winslow et al., 1994). In addition, this model does not
account for the multiple time scales of facilitation observed experimentally
(Stanley, 1986; Magleby, 1987). Finally, the model by Parnas et al. (1986)
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Figure 2: The minimal model of presynaptic facilitation is combined with sim-
ple models of postsynaptic binding and passive membrane to describe the post-
synaptic voltage response to a short 100-Hz impulse train (see equations 2.3,
4.1, and 4.2). (A) Each stimulus elicits a 1-msec square pulse of transmitter
(T). The magnitude of the first pulse is assumed to be 0.1 mM. The magni-
tude of subsequent pulses grows as the synapse facilitates. (B) The increased
magnitude of T results in an increased postsynaptic voltage response with each
stimulus, leading to a significant rise in the average postsynaptic voltage (solid
line). In the absence of facilitation, the average voltage equilibrates at a lower
level (dashed line). Postsynaptic parameter values are: αa = 2 msec−1 mM−1,
βa = 1 msec−1, ḡmem = 0.1, ḡsyn = 0.2 (µM cm−2), Vmem = −70, Vsyn = 0 (mV),
and Cmem = 1µF cm−2.

postulates an explicit voltage dependence in the release mechanism, a fea-
ture that has not been supported by experimental data (Landò & Zucker,
1994).
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The present model also belongs to the family of kinetic models used to
describe a wide variety of neuronal mechanisms (see Destexhe, Mainen, &
Sejnowski, 1994b, for an overview). These include voltage-gated and ligand-
gated ion channels (Hodgkin & Huxley, 1952; Destexhe et al., 1994b); IP3-
sensitive Ca2+ channels in the membrane of the endoplasmic reticulum (De
Young & Keizer, 1992); postsynaptic receptors and channels (Standley, Ram-
sey, & Usherwood, 1993; Destexhe et al., 1994a,b); and presynaptic trans-
mitter release sites (Parnas et al., 1986; Yamada & Zucker, 1992; Destexhe
et al., 1994b; Bertram et al., 1996). In Destexhe et al. (1994b) a nonfacili-
tating kinetic model of transmitter release was coupled to kinetic models
of postsynaptic receptor binding to provide a description of the complete
synaptic signal transduction process. As demonstrated in Figure 2, the re-
lease model discussed in this article can be applied in a similar manner,
introducing the key feature of presynaptic facilitation to the signal trans-
duction scheme.
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