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POPULATION DYNAMICS OF SYNAPTIC RELEASE SITES*

RICHARD BERTRAM AND ARTHUR SHERMAN#

Abstract. We describe a mathematical model of synaptic transmitter release that is based on
the finding that transmitter release sites and Ca?t ion channels are colocalized in the presynap-
tic terminal. Because Ca2t channels open and close stochastically, the release model is inherently
stochastic. We develop a simple method for representing the collective effect of a population of sites
and channels by constructing a system of ordinary differential equations for the mean release. A mul-
tiple scale analysis of this system reveals several features of transmitter release and fast facilitation,
where release is enhanced if preceded by a conditioning impulse. These include an inverse relation
between facilitation and Ca2t cooperativity, a step-like frequency dependence of facilitation, and a
release time course that is invariant to changes in the magnitude of release that occurs as the model
synapse facilitates or when the external Ca?t concentration is changed. The model is sufficiently
simple to be used in conjunction with models of neuronal electrical activity and with neural network
models.
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1. Introduction. Neurons communicate primarily through chemical synapses,
where electrical impulses called action potentials evoke the release of transmitter
molecules. When released, these molecules diffuse across the narrow region separating
the presynaptic terminal from the target postsynaptic cell and bind to receptors that
are linked either directly or indirectly to ion channels, leading to a local change
in polarization of the cell. Transmitter molecules are released through exocytosis,
whereby transmitter-filled vesicles fuse with the presynaptic membrane and form pores
through which the molecules diffuse down their concentration gradient. Vesicle fusion
is thought to occur when Ca2?*, brought into the synapse through voltage-gated ion
channels opened during an action potential or other presynaptic depolarization, binds
to receptor proteins associated with the vesicle and vesicle docking site (see [5] for a
review).

Two phenomena, facilitation and cooperativity, have been widely studied. Fa-
cilitation is the enhancement of release when preceded by one or more conditioning
impulses and represents a form of short-term memory. It is a complex phenomenon
that occurs on a number of time scales, but here we treat only fast facilitation on a
time scale of tens of milliseconds to a few seconds. Cooperativity is the nonlinear,
power law dependence of release on external Ca?t concentration and is thought to
reflect the requirement for binding of several Ca?* ions to initiate release at a given
site.

Using long trains of impulses, Stanley [21] demonstrated that the cooperativity
exponent is four under ideal conditions, low external Ca?T concentration, and low
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stimulus frequencies (~ 0.1 Hz). Interestingly, however, he found that as stimulus
frequency was increased, cooperativity declined in a step-like fashion, approaching
one at ~ 100 Hz. At the same time, facilitation increased in a step-like fashion. This
reciprocal relation between cooperativity and facilitation led Stanley to hypothesize
that each release site contains four Ca?t binding sites or gates, each of which must
be bound for release to occur, with unbinding kinetics graded from slow to fast, and
affinities ranging from high to low. The downward steps in cooperativity then reflect
the progressive saturation of faster gates as frequency increases, and the corresponding
upward steps in facilitation reflect the ability of faster gates to retain their bound Ca?*
between pulses as the interpulse interval decreases.

Figure 2.1 illustrates how the probability of release at a site increases in the
second impulse because some of the Ca?* bound during the conditioning impulse is
still bound. The three observed steps in facilitation suggest that three of the four
gates per release site have slow unbinding kinetics, ranging from moderately slow
(tens of milliseconds) to very slow (seconds). The remaining gate is fast, so that
release from the synaptic terminal terminates almost immediately after the end of
the action potential, another characteristic feature of synaptic release. This “residual
bound Ca?* hypothesis” stands in contrast to an alternate hypothesis that facilitation
is due to an elevation of free Ca?* left over from the conditioning impulse [24], [26].

Transmitter release occurs within 200 ysec of the opening of Ca?* channels, sug-
gesting that vesicle release sites and Ca?*t channels are separated by a distance of
no more than 100 nm [16]. Other studies have shown that release can be evoked by
the opening of a single Ca?t channel, placing the release site close enough to the
channel so as to be activated by the microdomain of Ca?* surrounding the channel’s
mouth [2], [22], [25]. Action potentials are typically 1 to 3 msec in duration. The
low Ca?t channel opening probability per unit time makes it unlikely that adjacent
channels will be open simultaneously during such short depolarizations; thus most of
the release of transmitter will be from vesicles activated by Ca?*t in single-channel
microdomains. Stanley [22] proposed that transmitter release sites are colocalized
with Ca?t channels.

We have translated Stanley’s verbal model into a mathematical one [4]. We
assumed that each release site is associated with a single channel, allowing us to
neglect the dynamics of Ca?t diffusion between channels. Although this is likely
an oversimplification, we were able to show that the model captures many of the
key features of transmitter release. In particular it shows that facilitation can occur
without accumulation of residual free Ca?tand it exhibits steps in facilitation and
cooperativity.

However, the colocalization assumption introduces a new complication: the re-
lease sites inherit the stochasticity of Ca?* channel opening, which is averaged out by
diffusion in other models. We therefore employed two models in our first study, a de-
terministic caricature, in which the gates are driven by Ca?* pulses, and a stochastic
model, capable of simulating action-potential- or voltage-clamp-driven release. The
simplicity of the deterministic model enabled us to derive analytic expressions for
release and facilitation and to analyze the effects of varying physical parameters. We
showed for a limiting case that although release increases with external Ca?* concen-
tration, facilitation decreases, in agreement with experiments [19], [21].

By focusing on channel dynamics, the stochastic model permitted study of a
phenomenon that hitherto had been treated in an artificial way. The bulk of release
occurs not during depolarization but in the tail following repolarization, when the
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product of channel open probability and domain Ca?* is maximized (see Fig. 2.4). It
also reproduces the almost complete invariance of the release time course as release
magnitude increases via facilitation or increased external Ca?* concentration [6]. This
has been problematic for at least one transmitter release model [26].

In [4], the stochastic model was solved using a Monte Carlo method to simulate
channel openings and closing. This is cumbersome and very time consuming computa-
tionally, too slow, for example, to demonstrate steps in facilitation. It is also difficult
to analyze. Although invariance of the release time course was demonstrated, the
simulations did not explain why the time course is invariant. Here we derive a system
of ordinary differential equations that describe the mean behavior of the population
of sites and channels without direct Monte Carlo simulation. This method is not only
much easier to use in simulations, it is also more amenable to analysis.

In section 2 of the present paper we first review the deterministic and stochastic
models. Then we reformulate the stochastic problem as a system of hyperbolic con-
servation laws for the probability distributions (Figs. 2.2, 2.3) and use this to derive
the equations for the expected value of release. In section 3 we show that the mean
release for the stochastic model exhibits frequency-dependent steps (Fig. 3.1) similar
to those shown previously for the deterministic model [4].

In section 4 we carry out a multiple scale analysis of the mean release system. In
section 4.1 the facilitation process is analyzed in terms of the time course of each of
the slow gates. For a slow gate, it is shown that during a train of impulses the average
bound concentration rises exponentially on a slow time scale, with a time constant
that depends on the Ca?* unbinding rate (Fig. 4.1A). In section 4.2 we analyze
the step-like frequency dependence curve and derive a leading order approximation
curve (Fig. 4.2). The analysis in section 4.3 shows why the model has the invariance
property described above (Fig. 4.1B,C). It also shows that invariance persists over a
long train of impulses, even though the degree of facilitation is different for different
external Ca?t concentrations. Finally, in section 4.4 we analyze the decrease in Ca?*
cooperativity with facilitation.

Although the system describing mean release is much simpler to use than a Monte
Carlo simulation, it is still prohibitively large (30 differential equations) for many ap-
plications. Motivated by the multiple scale analysis, we show in section 5 that it is
not necessary to know the detailed distribution of open Ca?* channels to compute the
time course of the mean bound concentration of a slow gate; it is well approximated
by the mean-field representation using only the ensemble average of the domain Ca?*
concentrations (Fig. 5.1). With this approximation, release requires only three equa-
tions. This and other suggested reduced forms make the model sufficiently simple for
use with both single neuron models and neural network models (see [3]).

2. Deterministic and stochastic models.

2.1. Deterministic model of calcium binding and release. Each release
site is assumed to contain a Ca?t channel and four independent Ca?* binding sites
or gates. The binding of Ca?* to the jth gate has first-order kinetics

k;.rCa
(2.1) Uj ~— Bj » J=1,2,3,4,
K
where U; and Bj are the nondimensional concentrations of unbound and bound gates,
repectively, whose sum is normalized to 1 (they may also be viewed as probabilities).
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Ca is the domain Ca?* concentration which we assume to be proportional to the influx
through a single Ca?" channel. (We also assume that this influx is proportional to
the external Ca®* concentration.) Binding rates (k;r, in msec~!'uM ') and unbinding
rates (k;, in msec™!) are kf = 3.75 x 1072, kT = 4 x 107*, kj = 2.5 x 1073,
ky =1x107% k3 =5x107% k3 = 0.1, k = 7.5 x 1073, ky = 10. The k; vary
from small to large, while the k;“ are small for all gates. We will carry out different
perturbation analyses below, depending on whether kj+ and kj_ are both small or
only kj is small. The dissociation constants (k; = k; / kj) for gates S; through Sy
are 108 nM, 400 nM, 200 uM, and 1334 pM, respectively. Thus, the Ca?t affinities
(1/k;) of the gates are graded from high (9 pM™! for Sy) to low (7 x 107* pM~!
for S4). Unbinding time constants (1/k3_) are 2.5 sec, 1 sec, 10 msec, and 0.1 msec,
respectively.

The probability that the jth gate is bound evolves in time according to the dif-
ferential equation
(2.2) @—IﬁCa(V)—(k*Ca(V)qu’)B- j=1,2,3,4

: a j 3 ) Pis T s

If the associated Ca2?* channel is closed then Ca = 0, otherwise it is a function of
the membrane potential (V'), which is time dependent. Therefore, C'a provides time-
dependent forcing to the system. The release site is activated when all four gates are
bound; thus the probability of release per unit time (or the rate of release) is

(2.3) R = By B, Bs By.

This model is deterministic provided that the opening and closing of the associated
Ca?* channel, and thus Ca, is deterministic, which we assume to be the case for now.

Release from a single site is facilitated during the second of two impulses if the
probability of release during this impulse is greater than that during the first impulse
(facilitation of a population of release sites is defined as the ratio of release evoked
by the impulses). This process is illustrated in Fig. 2.1. Prior to the first impulse
there is no Ca?" bound to any of the four gates (not shown). With the first impulse
the associated Ca2™ channel opens, letting in Ca?t which binds to three of the four
gates, but because S3 remains unbound there is no release. Almost immediately
upon channel closure Ca?* unbinds from Sy, which has a fast unbinding rate. Ca?*
remains bound to S; and Sy for hundreds to thousands of msec since the unbinding
rates of these gates are low, so if the second impulse occurs within this time interval
Ca?* must bind to only two gates to induce fusion of the vesicle and the release of
transmitter.

A crucial feature of this scheme is the wide variation of Ca?t unbinding rates
among the gates. The high Ca?" unbinding rate of S ensures that release terminates
quickly upon channel closure, consistent with the experimentally observed fast time
course of release following a stimulating impulse. The three distinct unbinding rates
of the other gates provide three components of facilitation. Low frequency trains of
stimuli (less than 0.5 Hz) facilitate release only through the slowest gate, S;. Stimulus
trains with higher frequencies up to 20 Hz facilitate through S; and S5 but not Ss.
Trains with frequencies above 20 Hz facilitate through all three slow gates. Using
a stimulus protocol in which Ca is a fixed positive constant during each stimulus
and zero between stimuli, we showed [4] that this leads to a facilitation curve that
increases in a step-like manner with increasing stimulus frequency. Due to the simple
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F1G. 2.1. Illustration of the single domain/bound calcium hypothesis for transmitter release and
facilitation. The release site complex consists of a transmitter-filled vesicle, fusion machinery with
four Ca®t binding sites, and a single Ca®t channel. The binding sites range from slow unbinding,
high affinity (gate S1) to fast unbinding, low affinity (gate Sa).

piecewise constant forcing, it was possible to obtain a geometric series describing
release and facilitation as a function of stimulus number. Later we will show that
a step-like facilitation curve is produced by a more realistic model in which channel
opening and closing is stochastic and the flux through an open channel, and thus Ca,
is voltage dependent. In addition, we show that, to leading order, the rise in release
and facilitation over a train of pulses is exponential.

2.2. Release evoked by stochastic channel openings. We now describe
a more realistic model that takes into account the stochasticity of Ca?T channel
openings. We assume that a Ca?t channel has one open and one closed state and
replace Ca in (2.2) with X Ca, where Ca now represents Ca?" concentration in the
microdomain surrounding an open channel and X is a random variable equal to 0 if
the channel is closed and 1 if the channel is open. As a first step, we focus on the
dynamics of one gate. Then the stochastic equation governing the temporal evolution
of the concentration of bound gates of this type is
(2.4) 9Bi _ 1t X Ca(V) = (b X Ca(V) + k) B,
' at J 7o
= f(Xa Bj)'

In [4] this stochastic process was simulated using a Monte Carlo procedure. Time
was discretized, and at each time step the state of the Ca?T channel associated with
each release site in a population was determined. The evolution of B; (j = 1,...,4)
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at each site then follows from (2.4), with X = 0,1 depending on the state of the
channel. The probability of release at the site was then determined as the product
Bi --- By. Finally, mean release was approximated by the sample mean, obtained by
dividing the sum of the single-site release probabilities by the number of sites in the
population.

The binding of Ca?* to a gate could also be modeled stochastically. The Monte
Carlo procedure described above is equivalent to first averaging over all realizations
of the binding process, taking it to the deterministic limit, and then averaging over
channel states. Below we derive the deterministic limit of the latter averaging process,
leading to differential equations for the mean release. In Appendix C we give an
alternate derivation for the mean release equations that treats both channels and
gates stochastically.

For notational simplicity we drop the subscript denoting the gate number. The
probability density function of B is the sum of two components associated with the
two possible channel states. We define, for small Aw, the joint probability po(u,t) Au
= Pr[B € (u,u + Au) and X = 0] for the population of sites associated with closed
channels, and py(u,t) Au = Pr[B € (u,u + Au) and X = 1] for the population
associated with open channels. As channels open and close a given site jumps from
one population to the other, and the evolution of the density functions is described
by the coupled hyperbolic equations

(2:50)  Zopo(ust) + o 1£(0,w) polu )] = ~a(V) pofus ) + BV pr ),

(250)  pa(ut) + o (1w paon 1)) = (V) po(u, ) = B(V) pa(a )

for t > 0, u € (0,1). Here a (B) is the voltage-dependent probability per unit time
that a closed (open) channel opens (closes) (see Appendix A for details). Equation
(2.5a) (or (2.5b)), without the coupling terms, is analogous to the mass conservation
equation of a fluid, with f representing fluid velocity and pg representing fluid density.
It is also the deterministic limit of the Fokker—Planck equation for this process [7].

When uncoupled (oo = 8 = 0) each population evolves along characteristics de-
termined by

(2.6&) %l; = f(i,u),
dp; o df .
(26b) dt - *%(la u) Di

for i = 0,1. The characteristics for the pg population are u(t) = se~* t where s €
[0,1] (Fig. 2.2A). The dependent variable pg increases exponentially along a character-
istic, po(u,t) = po(s,0) e . The py characteristics u(t) = @ + (s — w) e~ (F Ca+kT)t
asymptote to & = kT Ca /(k™ Ca + k), the singular point satisfying f(1,7) = 0
(Fig. 2.2B). Again the dependent variable increases exponentially along a character-
istic py(u, ) = py(s,0) ek Cath)t,

When there is no coupling, (2.6a), (2.6b) ensure that mass is conserved in each
population provided that the following boundary conditions are applied (see Fig. 2.2):

(2.7) po(1,t) = 0, p1(0,£) = 0, pr(L,t) = 0.

The coupling terms allow mass to flow between populations while conserving the sum
of the masses, which we set to 1 through the initial conditions. Thus, pg and p;
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FiGc. 2.2. Characteristics and boundary conditions for the (A) po population and the (B) p1
population. The singular value u satisfies f(1,u) = 0.

satisfying (2.5a), (2.5b) with the boundary conditions (2.7) and appropriate initial
conditions satisfy the conservation law

1
(2.8) | motut) 4 a1

for each t > 0.

The transfer rates a and (3 both depend on voltage, with a < (8 at low voltages
and a > ( at high voltages. The singular value # also inherits a voltage dependence
through the factor Ca, although this dependence is typically not important (see Ap-
pendix A for expressions and parameter values). If the synapse is hyperpolarized
(V negative) for a long period of time, then the py population will contain most of
the mass since § > «. Since the characteristics for this population contract toward
u = 0, the mean concentration of bound gates will be low (Fig. 2.3A). If the synapse
is subsequently depolarized (V positive), @ >  and mass will transfer from the pgy
population to the p; population, where it will migrate rightward toward « with a time
constant of 1/(k™ Ca + k™) (Fig. 2.3B). If the synapse is then hyperpolarized, mass
will flow back to the pg population and will migrate leftward with a time constant
of 1/k~ (Fig. 2.3C). If the membrane is again depolarized before the py distribu-
tion has returned to its initial state, then the mean of the resulting p; distribution
will be greater than during the first pulse (Fig. 2.3D). This process of facilitation is
particularly evident by the fifth pulse (Fig. 2.3E,F).

2.3. Equations for mean release. Rather than computing the temporal evo-
lution of the probability density functions for the two populations, it is sufficient to
follow their expected values when computing the total release from a nerve terminal.
Define

(2.9a) ac(t):/o upo(u,t)du,
(2.9b) Uo(t):/o upi(u,t)du,

so that o = ¢¢ + ¢° = E[B], the expected concentration of bound gates of this type.
(Because B was defined as normalized concentration, o can also be thought of as the
probability that a gate is bound, while ¢° (c¢) is the probability that a gate is bound
and the associated Ca?T channel is open (closed).) Then, using (2.5b), (2.7), and
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Fia. 2.3. Solution of (2.5a), (2.5b) with boundary conditions (2.7) at siz different times using
the numerical scheme discussed in Appendix B. Simulating a wvoltage clamp protocol, voltage is
periodically pulsed from a hyperpolarized level (—65 mV for 5 msec) to a depolarized level (10 mV
for 1 msec). Arrows indicate direction of motion of the population means. (A) Initial distribution
at V. = —65 mV; (B, D, F) distributions at the end of the first, second, and fifth depolarizations,
respectively; (C, E) distributions shortly before the second and fifth depolarizations, respectively. The
net rightward displacement of the population means indicates that the gate is facilitating. In this
example k¥ =3 x 1072, k= = 1 x 1072, and Caex = 2 mM. All other parameters are as given in
the text and in Appendixz A.

integration by parts,

do® . 1 8p1
! a(f(
[ )
0 Ju

1
:/0 f(L,u)prdu— f(1,1)pi(1,0)
o1 o1
+a/0 upodu—ﬁ/o upy du

1
:/ [kt Ca— (Kt Ca+ k™) ulpy du
0

1 1
+a/ upodu—ﬁ/ u py du.
0 0

We now define m = Pr[X = 1] = fol p1 du, so that

do®

2.11 —_
( 2) dt

=kt Cam— (kT Ca+k™)o’+ac® — [Bo°.
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Similarly,
d c
(2.11b) c(ijt =—k c°—aoc®+ [0’
and thus
do - + o4 1+
(2.11¢) E:_k oc—kTCaoc’+ k" Cam.

The rate of change of m is determined by the Ca?* channel kinetics

dm

(2.12) o

=a(l—m)—Bm.
Thus, the equations for the expected values of pg and p; are linear with time-dependent
coefficients «, 3, and Ca and with time-dependent forcing by C'a and m.

If release sites contained a single gate, (2.11a) and (2.11b) with the auxiliary equa-
tion (2.12) would completely describe the mean release. Our model, however, postu-
lates four gates per release site. In this case, equations like (2.11a) and (2.11b) de-
scribe the expected concentration of bound gates of any one of the four types, denoted
o1,-..,04. Since the gates are correlated through m and Ca, E[R] =E[B; By B3 By]
+ 0109 03 04. Intuitively, since all four gates at a release site respond to Ca?* influx
through the same Ca2® channel, if a gate is bound then it is more likely that the
channel is open than if the gate is unbound. Hence, it is more likely that one of the
other gates is bound. In the Monte Carlo simulations performed in [4], this result is
equivalent to the observation that to compute the sample mean of release one must
take the sample mean of the product of the B;’s at each site in the ensemble rather
than taking the product of the sample means of the B;’s.

Thus, to compute mean release we must consider the joint density functions
pi(t,t) = pi(ur,ug,us,uqg,t), i = 0,1. We define the vector function f(z, 1) =
(f1(i,uy), f2(i,u2), f3(i,uz), f1(i,us))T, @ = 0,1, with each component defined as in
(2.4). We then extend (2.5a) and (2.5b),

(2130) o po(it) + V- [ 700, po(a. 0] = —apo(i, 1) + Bpa(i1),

—

(2.13b)  —py(@,t) + V- [ (1,@) pu (@, t)] — apol(ii, t) — Bpu(ii, 1),

where V,, = (52, 3%27 3%37 %)T. The boundary conditions generalize naturally
so that po(u,t) = 0 if any component u; = 1, and p;(u,t) = 0 if any u; =0 or 1.

Define

1
(2.14a) 05934 () ://// Uy ug uz ug po(t,t) did,
0
1
(2.14b) 09saa(t) = / / / / iy iz 3 g o (i, ) i,
0

and then o1934 = 0934 + 09934 = E[R]. The marginal expectations ok, 0jk, and
o; are defined analogously. As before, we construct differential equations for the
expectations by differentiating o§y34 and o{ys,, substituting the partial differential
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equations (2.13a), (2.13b), and using integration by parts. This yields

4
dGc — ¢ c o

(2.15a) % = —ij Ola34 — Q01234 + B 07234,

j=1
4
(2.15b) doipss _ > (k) Ca+tkj) 0% + a0fosy — Bof
. 7 2\ j ) 01234 1234 1234

j=

+ (ka 0934 + k; o541 + k; oi1s + ki ‘7?23) Ca.

Differential equations for the marginal expectations appearing in (2.15b) are
obtained following a similar procedure. For each triplet grs = 234, 341, 412,
and 123,

dot,, _
(2.15¢) df; == > kol — ek + Bl
J=q,m,s
dogTS + — o c o
(2.15d) = > (K Catky) 09+ ot —Bog,
=45

+ (kj 00 + k0, + kT 00,) Ca.

Similarly, for each doublet gr = 12, 13, 14, 23, 24, and 34 (the order of indices is
unimportant, e.g., o2 = 021),

dUCT — C c o
(2.15€) dz =— Z kjog. —aog, + Bog,,
Jj=aq.r
dO'gr + — o c o
(2.15f) = > (kf Ca+kj) ol +aoct, —Bog,
J=q.r

+ (kf o7 + kK 0?) Ca.

Finally, differential equations for of, o (¢ =1, 2, 3, 4) and the calcium channel open
probability m have been derived earlier and are given by (2.11b), (2.11a), and (2.12),
respectively. Expected release, then, depends upon the mean concentrations of all
gate configurations and is completely described by 2 (1 +4 + 6 +4) = 30 differential
equations along with an auxiliary equation for m. This is easily generalized, so that
for a model with M gates per release site and N distinct Ca?* channel states the
number of equations describing mean release is NV (2M — 1), plus auxiliary equations
for membrane potential and the gating of Ca?* channels.

Release and facilitation, the ratio of release evoked by the nth stimulus to that
evoked by the first during a 30 Hz train of presynaptic stimuli is illustrated in Fig. 2.4.
Each stimulus consists of a 2 msec voltage depolarization to 10 mV from a resting level
of —65 mV (Fig. 2.4A). Solving the equations numerically for expected release, we see
that evoked release grows monotonically with each stimulus. This facilitation is due
primarily to the accumulation of bound calcium to the two slowest gates (Fig. 2.4C).
Gate S3 loses Ca’T too quickly to contribute much to facilitation during the 30 Hz
stimulus train (Fig. 2.4B), although at higher frequencies its contribution can be
considerable. Gate Sy is too fast to contribute to facilitation at any stimulus frequency,
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F1G. 2.4. Numerical solution of the 30 equations describing transmitter release, (2.11a), (2.11b),
(2.15a)—(2.15f), plus the auziliary equation (2.12). A series of 2-msec depolarizing pulses to 10 mV
is applied from a holding potential of —65 mV. With this 30 Hz stimulation Ca?t unbinds from
gate S3 too quickly for the gate to contribute to facilitation (B). The low unbinding rates of gates
S1 and Sz allow bound Ca?t to accumulate (C), yielding a facilitated release (A). Each record is
normalized by its maximum value during the fifth pulse. The nonnormalized values of o1 and o2 are
much greater than oz and o4 due to their smaller dissociation constants. The standard parameter
set is used, with Caexz = 1 mM. The differential equations are solved here and in Figs. 3.1, 4.1, 5.1
using a variable-step Adams method with tolerance 10~°.

its primary role being to terminate release soon after the end of the presynaptic
stimulus. Notice that most of the release occurs after the depolarizing step (during
the so-called tail), when the product m Ca is greatest. The time course of the fall of
release reflects the time course of Ca2?t channel closure.

3. Steps in the frequency dependence of facilitation. We saw in Fig. 2.4
that the degree of facilitation achieved during a short train of stimuli depends cru-
cially on both the frequency at which the stimuli are applied and the binding and
unbinding rates of the three slow gates. This is true also of the asymptotic facilita-
tion, or facilitation achieved over a long stimulus train. With the deterministic model
we showed [4] that the asymptotic facilitation of each slow gate increases in a sig-
moidal fashion with the stimulus frequency when viewed on a log-linear scale. That
is, at low frequencies there is little or no facilitation, while at very high frequencies
the slow gate saturates and facilitation approaches some maximum value. At frequen-
cies between these two extremes the increase in single-gate facilitation with stimulus
frequency is approximately linear. The half-maximal frequency for each sigmoid de-
pends upon the unbinding time constant of the gate, with slower gates having lower
half~-maximal frequencies. Since the release is the product of the concentrations of
bound gates, the facilitation of release was easily computed as the product of three
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facilitation of release
————— facilitation of o,

8 F ———- facilitation of o, .
—-—- facilitation of

Facilitation

Stimulus Frequency (Hz)

F1G. 3.1. Step-like dependence of facilitation on stimulus frequency (solid curve) and the con-
tribution from each of the three slow gates. The method used to construct the curves is described in
the text. The standard parameter set is used, with Caey = 10 mM.

sigmoids (on a log-linear scale), yielding a step-like asymptotic facilitation curve con-
sistent with data from the squid giant synapse stimulated by long trains of action
potentials [21].

Because the stimulus train evoking release with the deterministic model consisted
of square pulses of Ca?* rather than action potentials, the deterministic facilita-
tion curve may be qualitatively different from that computed with the more realistic
stochastic model. In principle we could have constructed the stochastic facilitation
curve using the Monte Carlo algorithm in [4], but the required computer time was
prohibitive since thousands of sites are required for the sample mean to accurately
approximate the true mean. With the present method, construction of the stochastic
facilitation curve is now feasible. This requires the numerical solution of the 30 differ-
ential equations describing mean release coupled to a four-variable Hodgkin—Huxley-
like system describing a nerve impulse (see Appendix A). Short, impulse-inducing
current pulses are applied to the system at frequencies ranging from 0.1 to 100 Hz.
The number of current pulses applied at each frequency is large enough to allow facil-
itation to reach steady state. Facilitation of each of the marginal expectations o1, g2,
and o3 exhibits a sigmoidal frequency dependence (Fig. 3.1), and the product of the
three single-gate facilitation curves has a step-like appearance (not shown), as does
the true facilitation curve (solid curve in Fig. 3.1). (We show later that the product
of the three single-gate facilitation functions is approximately equal to the true fa-
cilitation function.) This is the first model of transmitter release to reproduce this
behavior.

4. Multiple scale analysis.

4.1. Single-gate facilitation. In this section we use a mutiple scale pertur-
bation analysis to better understand the process of facilitation. We show that the
facilitation provided by each of the slow gates rises exponentially in time and depends
only on the average domain Ca?* concentration, rather than the detailed distribution
of Ca2?* domains. This allows us to construct a leading-order formula for facilitation.
In section 4.2 we show that facilitation of release is, to leading order, the product
of the single-gate facilitation functions. This has all the qualitative features of the
facilitation curve shown in section 3, including its step-like frequency dependence.
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In the multiple scale analysis we take advantage of the fact that for gates Sy, Ss,
and S3 the binding (k") and unbinding (k) parameters are small compared with
other parameters. The intuition is that for the slow gates the binding time course
consists of rapid oscillations (on the channel time scale) superimposed on a slowly
facilitating base (Fig. 2.4C). We are interested in the behavior of the system during a
long train of periodically applied voltage-clamp depolarizations or impulse-generating
current pulses, and we assume that the system is at equilibrium prior to the onset of
these stimuli.

First the system is put into a nondimensional form. As a representative time scale
we take the time constant for the Ca® activation variable m, 7,,(V) = 1/(a(V) +
B(V)), evaluated at V' = —65 mV. For notational simplicity we write all dimensional
variables with a tilde and define the dimensionless time as t = £/7,,,. With this scaling
(2.11b) becomes

do®

(4.1a) p

=—ec0°—aoc+ [0o°,

where a = ary,, B = Brm, and € = k~ 7,,. Because the unbinding rate from the
gates is small, ¢ < 1. Likewise, (2.11a) becomes

do®
dt

(4.1b) =ec—e(lc+1)o°+ac®—[o°,

where ¢ = %, Kp = ’;—; is the dissociation constant of the gate, and ¢ = ¢m is
the population-averaged domain Ca?* concentration. That is, ¢ is the dimensionless
domain Ca?* concentration at an open Ca?* channel multiplied by the fraction of
open channels. The rate of change of the concentration of bound gates, o0 = ¢¢ + o,
is

do
dt
The nondimensional forms of (2.12) and (2.15a)—(2.15f) are analogous.

We now introduce the slow time 7 = et = k~ ¢, which will be the time scale of
facilitation, and the multiple scale expansion o (t,7) = aq(t,7)+eo1(t, 7)+O(?), with
similar expansions for ¢¢ and ¢°. Introducing these expansions into (4.1a)—-(4.1c) and
collecting terms with like powers of €, we obtain the O(1) system

(4.1c)

= —eo — eco’ + ec.

a c

(4.2a) 60150 = —ao§ + fog,
do§

(4.2b) Bto = ao§ — PBog,
80'0

4.2 — =0

(4.2¢) 5t

(subscripts correspond to powers of € and superscripts to the state of the channel).
Thus, on the fast time scale there is a transfer of mass between the open channel
population and the closed channel population while the concentration of bound gates,
00, is conserved. That is, og changes only on the slow time scale 7: ¢ = 0o(T).

In addition to this conservation property, the O(1) system has the property that
the state of the Ca?* channel (open or closed) and the state of the gate (bound or
unbound) are statistically independent:

(4.3) oy = may.
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That is, the probability that the channel is open and the gate is bound is simply the
product of the probability that the channel is open and the probability that the gate
is bound. To show this we consider

g(oo—mo)—aag dmcr —m%
ot 0 A T ot
—pog —la—(a+ B)m]o

—(a+ B)(og — may),

(4.4)

which implies 0§ —mog decays exponentially to zero. Since we assume that the initial
state of the system is at equilibrium prior to the onset of stimulation, o = moy at
time 0 and (4.4) implies that this equality holds for all time.

The O(¢) equation for the expected concentration of bound gates is

(90'1 80'0 _
(45) E = —E — 0o 60'8 + C
60’0 _ 4
=——F— —09g—Cog+¢cC
or 0 0

where we have used the independence property (4.3). This equation has a periodic
solution on a fast time scale provided that the following Fredholm condition is satisfied:

(4.6) —/ [—800— (1+¢)og+c| dt=0,

where T is the stimulus period. This can be rewritten as

(4.7 X0+ @)oo+ (o)

where (¢) = % fOT cdt, the time- and population-averaged domain Ca, and we have
used the fact that og is constant over a period. If the stimulus is periodic, (¢) is
constant, and (4.7) has a simple exponential solution

(4.8) oo(T) = l ic><c) + (00(0) _ 1ic><c>> e—(1+(é>)77

where o((0) is the initial value of og. The exponential rise in oy during a train
of depolarizations is demonstrated in Fig. 4.1A for two different concentrations of
calcium. The solid curves are generated by solving (4.1b) and (4.1¢) and show the
evolution of the full solution (o) for each Ca®* concentration. The dashed curves are
generated from (4.8) and show the evolution of oq, clearly capturing the slow growth
of the full solution.

Equation (4.8) describes the slow growth of the average value of o due to the
periodically applied depolarizations or impulses and thus can be used to provide an
O(1) measure of the time-dependent facilitation of the gate. Thus, facilitation (F) is
approximately oo(7)/0og(eT), the ratio of og at 7 to its value at the end of the first
period. This tells us that single-gate facilitation depends only on (¢), and not the
detailed distribution of Ca?* domains. It also allows us to predict that the rate of
convergence of facilitation to its asymptotic value increases with the average Ca?*
concentration, generalizing the same result found with the deterministic model of
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F1G. 4.1. (A) Numerical solution of (4.1b), (4.1c) (solid) and evaluation of (4.8) (dashed) for
two values of dimensionless calcium (o and o* ). See the text for a more detailed description. The
stimulus train consists of 30 depolarizations from —65 to 10 mV each for a duration of 2 msec, with
18 msec between depolarizations. Prior to the onset of stimulation the system was allowed to reach
equilibrium at V = —65 mV. For the bottom curves Caeqy = 1 mM, for the top Caeqy = 2 mM. (B)
t-dependent ratio p (solid) and T-dependent normalization factor uo (dashed). (C) Demonstration
of time course invariance. When o is scaled up by the O(1) normalization factor o (circles) it has
a time course almost identical to that of o* (solid).

section 2.1 [4]. Finally, oo has the asymptotic value o¢(c0) = (¢)/(1 + (¢)) and has
initial value o¢(0) = ¢(0)/(14¢(0)) (assuming the system starts at equilibrium), where
¢(0) is ¢ at the initial voltage. Hence,

_ 00(0)
(4.9)  Fy(oo) = o0(eT)
__{@ @) &(0) @\ rener] "
1+ () {1+<6) + (1+5(0) 1+ (e ) e (D T]
In the limit € — 0,
(4.10) Fo(00) — (¢) (14¢(0))  og(o0)

(1+ () e(0)  o0(0)

Typically (¢) > ¢(0), so gp(c0) is more saturated than oo(0). Hence, increasing Cae,
will increase o (0) more than o((o0) and facilitation will decline, generalizing another
result found with the deterministic model [4]. This decline in facilitation can also be
observed by plotting (4.9). As (¢) is increased, Fp(co) decreases monotonically (not
shown).

At moderate-to-high frequencies the relationship between stimulus frequency and
(€) is nearly linear since a change in frequency corresponds to a change in the time
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between stimuli, during which ¢ is nearly zero (the interstimulus contribution becomes
substantial at low frequencies and cannot be neglected; see (4.18)). Therefore, (4.10)
shows that for a very slow gate (e ~ 0) there is a hyperbolic relationship between
stimulus frequency and single-gate asymptotic facilitation. On a log-linear scale this
relation is sigmoidal, consistent with our previous numerical calculation of single-gate
facilitation (Fig. 3.1).

4.2. Facilitation of release. How do these single-gate facilitation results ex-
tend to facilitation of the full system, that is, to facilitation of release? We show below
that gate Sy contributes little to facilitation of release (i.e., the gate has no memory),
so facilitation is due almost entirely to facilitation of o123. Although o123 # 01 02 03,
we show that 01230 = 01,002,003, (the second index denotes the order of the term
in the perturbation expansion). This is consistent with the intuition that the gates
are correlated only because of the correlation between the Ca2?t channel and each
gate. In the leading-order system the gates and channel are statistically indepen-
dent (09, = m 0j0), so the correlation among the gates is removed. The product
of the leading-order single-gate facilitation functions thus provides a leading-order
approximation to the facilitation of release.

To show that gate Sy does not affect facilitation, consider o4 where j = 1,2, or
3. Since Sy is fast (i.e., k; is large), 04 can be assumed to be in quasi equilibrium
with the domain Ca" concentration. Let o, denote the peak value of ¢4 during the
nth pulse, and denote its peak value during the first pulse simply by 0;4. Then the
facilitation of this joint expectation, Fj4, is (in terms of dimensional parameters)

+ o + _ox
7k4 o} +kj of

4.11 Fiy =
( ) g4 kio}-’kajUZ

Since the dissociation constant (¥~ /k™) is much greater for the fast gate than any of
the slow gates, o7 > of; hence,

(4.12) Fjy~ -2
J

From the analysis in section 4.1, 03? ~ mojy; thus
(413> Fj4%Fj,

where F}; denotes facilitation of the slow gate S;. This result extends to joint expec-
tations involving Sy with any combination of slow gates.

Rather than showing directly that 1230 = 01,002,003,0, we show that 04,0 =
04,0 0r,0 for any doublet gr = 12, 13, and 23. We do this by showing that o4, and
04,0 0r,0 satisfy the same differential equations. This result then easily generalizes to
joint expectations involving any combination of slow gates. Using the same scaling as
before, but with € = k; 7, and Ca scaled by Kp = kq’/k;, we write (4.1c) and the
combined equations (2.15¢e), (2.15f) in the following nondimensional form:

dog

(4.14a) - €% —ecog +€c,

dO'r _ + o + =
(4.14Db) Frais ky.or —€ky. coy + €k, C,

dO’qr — + o o + o
(4.14c¢) e —e(1+ky)og —ec(L+kj)og. +ecl(oy) +ky.00),
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where k. = k. /k; and k. = k! /kS. Introducing multiple scale expansions for o,
oy, and oy, it is clear from inspection that o4, 0,0, and o4 are all constant over
a period (i.e., they vary only on the slow time scale 7). Using the Fredholm condition
for periodic solutions of the O(e) system, we obtain the slow evolution equations

@1s) 2280~ (14 (@) g0 + @)

(@15b) D0 o (kg (@) oo+, @)

(4.15¢) % = —(1+(0) + kyp + k. (©) 0gr0 + (00 + k. 0g0) (0).
Now,

(4.16) % (04,0 0r0) = 0g0 ag:o + o0 agj_’o

= —(1+(0) + kg + k. (€) 09,0 010
+ (or0 + kg 0q0) (€),

which is identical to the o4, equation. Therefore, since we assume that the system
starts from equilibrium, 04,0 = 04,0 0,0 for all time.

Having established to leading order the statistical independence of the slow gates,
we now compute the leading-order asymptotic facilitation of release (Fr; ) by mul-
tiplying together the slow-gate leading-order facilitation functions (4.9):

Frel,o(OO) = Fl,o(OO) F2,0(00) F3,0(OO)

3 _ = _ — —1
B @ @ 0 D\ otk @)e
o 31;[1 K1 +(¢) ['ﬂj +(¢) " ('ilj +¢(0) K1+ <C>) w T} ’

where € = k| Ty, K1 = kfj/kf;, and K1y = ky; = ki, = 1.

To compute the frequency dependence of facilitation we first establish an accurate
relation between (¢) and the stimulus frequency w. As in Fig. 3.1, we use action
potentials to evoke release. Assuming that Ca., = 10 mM, average domain CaZt
summed over an action potential (duration 3 msec) is determined numerically to be
approximately 63 pM (this must be divided by Kp = ki / kf‘ to get a dimensionless
value). For the remainder of the stimulus period (period = T 7, with units of msec)
the membrane potential is approximately constant at —65 mV, and average domain
Ca?*t at this voltage is 0.038 pM. Therefore,

(4.18) (@) ~ [63 + 0.038 (T 7 — 3)] / (T 7 Kp)
= [63w + 0.038 (1000 — 3w)] / 1000K b,

where w = 1000/ (T 74,).

The functions Fj.e;0(00), Fi,0(00), F20(00), and F3 ¢(c0) are combined with (4.18)
to produce the leading-order facilitation curves (solid) in Fig. 4.2. These agree well
with the actual facilitation curves (dashed) taken directly from Fig. 3.1, which were
constructed by numerical simulation with the full model. Equation (4.17) accurately
represents the qualitative features of facilitation, including its step-like appearance.
Thus, it can be used to qualitatively analyze the effects of changes in parameter values.
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Fic. 4.2. Facilitation curves taken from Fig. 3.1 (dashed) and computed from (4.17) with (4.18)
(solid). The single-gate facilitation curves are sigmoidal, while the total facilitation of release is
step-like. As in Fig. 3.1, release was evoked by trains of action potentials and Caer = 10 mM.

Because the difference between Fj¢(oo) and the actual single-gate facilitation is
small, the discrepancy between Frel,o(oo) and the true facilitation of release must lie
elsewhere. Most of the error is due to the approximation of o123 with 01230. This
approximation is good only to leading order, and the coefficient of the error term may
be large. Additional error is introduced because 01234 is used to compute facilitation
of release with the full model, while only the three slow gates are used for facilitation
in (4.17), but this error is quantitatively small.

4.3. Time course of release unchanged by changes in Ca.,. One property
of synaptic release exhibited in our earlier Monte Carlo simulations [4] is the so-called
time course invariance property. In experiments with a mammalian neuromuscular
junction [6], release was evoked with external Ca?" concentrations of 0.5 mM and
1.0 mM, and the two release time courses were normalized to have the same peak
values. When the normalized records were superimposed, they were indistinguishable.
Further simulations with the present form of the model (not shown) suggest that
this invariance property is valid over the entire range of physiological external Ca?*t
concentrations (0.5-10 mM). In addition, the model shows that this property holds
during each pulse in a train of impulses, in spite of the fact that the release facilitates
and the degree of facilitation is dependent upon C'a.,. In this section we demonstrate
that the invariance is a fundamental feature of the model by showing that the time-
dependent normalization factor is constant with respect to the fast time ¢, varying
only with the slow time 7 (to leading order). In other words, release scales uniformly
over the duration of a single impulse.

We first investigate the effects on a single slow gate of raising C'a.,,. We assume
in the model that domain Ca?* concentration is proportional to Ca,,, but this is not
necessary to prove invariance. We only require that ¢ increase with Cae,. Denoting
by ¢* the corresponding value of o, we define the normalization factor as the ratio

a*(t,T)

(4.19) pltsT) = T

We now show that u = u(7) for a slow gate, to leading order. Using the expansion
w(t, 7) = puo(t, 7) + O(e) in (4.19) along with expansions for ¢* and o, we obtain for
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the O(1) system,

(4.20) uo = 20,

g0
From (4.8) we know that oy and o} depend only on 7, so the same is true for puy.
Thus, u(t,7) = po(7) + O(€), establishing the invariance property to first order.

The approximation pg to p and the invariance property are illustrated numerically
in Fig. 4.1. As discussed earlier, Fig. 4.1A shows the evolution of ¢ and o for a slow
gate (S7) over a train of voltage-clamp depolarizations. The upper set of curves
corresponds to a concentration of Ca?t twice that of the lower curves. In Fig. 4.1B
the ratio u defined in (4.19) (solid) and the ratio po expressed in (4.20) (dashed) are
shown. The initial normalization factor is close to 1.9, falling to about 1.3 by the end
of the train of 30 pulses. Thus, o is closer to o at the end of the pulse train than at
the beginning, indicating that facilitation is greater at a lower value of Ca,,. This is
consistent with earlier analysis (section 4.1) and analysis of the deterministic model
[4]. Figure 4.1C shows the invariance property. When o is scaled up (circles) by the
O(1) normalization factor pg, the time course is almost identical to that of o* (solid
curve). This is true over the entire stimulus train, even though o and o* facilitate at
two different rates and to different degrees.

The observation that the normalization factor is lower at the end of the train of
pulses than at the beginning is a general result. If Ca?t concentration is increased by
a factor of A, then the asymptotic value of g is obtained from (4.20) and (4.8),

A+ (e))

(4.21) fio(o0) = ESYG))

Similarly, at the resting equilibrium prior to the onset of stimulation,

A1 +¢(0))

(4.22) 110(0) = ma

where ¢(0) is the dimensionless average domain Ca®" concentration at this resting
state. Since both the initial and the asymptotic normalization factors decrease mono-
tonically with average domain Ca?*, and since average domain Ca?* is greater during
the period of stimulation than prior to stimulation, the asymptotic normalization fac-
tor is always less than the initial factor.

While Fig. 4.1C shows invariance for a single gate, in [4] we used a Monte Carlo
simulation to demonstrate invariance of release, and thus of all four gates. Indeed,
the invariance property exhibited by o1, 02, and o3 is also exhibited by the joint
expectations involving the slow gates. This is true since o123 9 = 01,002,003, and
thus

(4-23) H123,0 = Nl,o(T) Mz,o(T) MS,O(T)-

An argument similar to that used in section 4.2 to show that the fast gate Sy has
no effect on facilitation can be used to show that pju =~ pjpa = p; X (j = 1,2,3),
and thus joint expectations involving the fast gate also have the invariance property.
These results fully account for the invariance of release displayed by the model.

The same reasoning used to establish invariance to changes in Cae, can be used
to establish a second experimentally observed invariance property. It was shown [6]
that the normalized time course of facilitated release is similar to that of unfacilitated
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release (although the degree of facilitation was not large). In [4] this invariance prop-
erty was demonstrated using a Monte Carlo simulation. To show why this works we
use the same argument as above, now letting ¢* denote the bound gate concentration
during the nth stimulus (i.e., facilitated), and o denote that during the first stimulus
(unfacilitated).

4.4. Ca?t cooperativity. In this section we show that the Ca?t cooperativity
of release is directly related to the normalization factor and thus inversely related to
facilitation. The inverse relation between cooperativity and facilitation was shown by
Stanley in experiments with the squid giant synapse [21] and motivated his verbal
model of transmitter release which is the basis of the present mathematical model.

Cooperativity is defined as the exponent I' such that R o Cal,, or R « ¢
since we assume that domain Ca2?* is proportional to Cae,. For each of the gates we
assume a proportionality relationship between the bound gate concentration and some
power of domain Ca2* and define the “fractional cooperativity” as v where o oc ¢”.
Intuitively, the fractional cooperativity of a gate is its approximate contribution to
the total cooperativity of release. In this section we obtain lower and upper bounds
on the cooperativity of release and show that each gate contributes at most one to
the cooperativity. We show that to leading order the cooperativity of the slow-gate
subsystem is equal to the sum of the fractional cooperativities of the individual slow
gates. We also show that the fast gate adds one to the total cooperativity.

For any of the four gates, if the external Ca?t concentration is increased by a
factor of A, then letting o* correspond to higher Cae,, 0* o< A7¢” and hence

r

O_*

(4.24) p="—=\.

g

Thus, for a slow gate g = A7 to first order or

log po
4.25 =
(4.25) 7= Toga

to first order, showing that the fractional cooperativity of this gate is no greater than
one (since pp < A) and, like the normalization factor pg, it declines slowly during a
train of pulses. Furthermore, since p123,0 = 1,0 f2,0 43,0 (4.23),

(426) H123,0 = )\(’Y] +v2+73)

to first order, and thus the cooperativity of the subsystem of slow gates is the sum
of the fractional cooperativities. As discussed in section 4.3, pu =~ X and 4 = pj pia
(j = 1,2,3). The latter result is easily extended to p1234 &~ 123 pa. Hence, the fast
gate has fractional cooperativity 74 = 1 and

(4.27) [i1234 & N1 Fr2EYaED),

Now, R* < ATcl, so H1234 = R*/R = AT. Hence, T ~ Y1 + v2 4+ v3 + 1; i.e., the total
Ca?t cooperativity is approximately the sum of the four fractional cooperativities.
Since the fractional cooperativity of a slow gate declines as the gate facilitates, total
cooperativity also declines. Therefore, since asymptotic facilitation increases in a
step-like fashion with the log of stimulus frequency, the asymptotic cooperativity of
release will show a step-like decrease from 4 at very low stimulus frequencies to near
1 at very high frequencies, as observed experimentally [21], [23].
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5. Approximations to the full model. The full model of transmitter release
that we have explored in this study accounts for many features of release and facili-
tation. However, the simplicity of the idea behind the model, four independent sites
binding Ca?* at different rates and colocalized with a Ca%t channel, is somewhat
obscured by the large number of equations required to describe it (30 differential
equations plus auxiliary equations for Ca?* channel activation and voltage). In this
section we discuss several approximations that can be made to reduce the number of
state variables in the model, and we describe some of the qualitative and quantitative
effects of these approximations.

In the first approximation we take advantage of the fast kinetics of gate Sy. Since
Ca?T binds (unbinds) to the gate almost immediately upon the opening (closing) of a
Ca?*t channel, it can be assumed that the concentration of bound gates of this type is
in equilibrium with the domain Ca2?* concentration. Thus, any differential equation
involving the index 4 can be set to equilibrium, yielding a system of 16 algebraic
equations that can be solved explicitly in terms of «, 8, m, and Ca. With this
approximation the number of differential equations is reduced to 14, but the release
time course is virtually unchanged.

Another useful approximation is to include only two gates in the release site; one
slow and one fast. Mean release is then determined by six differential equations, which
can be reduced to two if the quasi-equilibrium assumption is made for the fast gate.
This is appropriate if one requires a model of synaptic release that exhibits facilitation,
but is not concerned about capturing the multiple time scales of facilitation (i.e., the
facilitation steps) or the fourth-order Ca* cooperativity.

We now derive a simplification that reduces the number of differential equations
to three while preserving all the features of release discussed in previous sections of
the paper. It was shown in section 4.1 that for a slow gate o = o¢(7) + O(€), where
o depends only on the time average of average domain calcium and accounts for the
slow rise of ¢ during a train of pulses. We show now that the time course of ¢ during
a pulse depends on the instantaneous average domain Ca?* to O(e?). Taken together,
these results show that it is not necessary to know the detailed distribution of open
Ca?* channels to compute o during a train of pulses (Fig. 5.1A).

We begin with (4.1¢), which is coupled to (4.1b) by the factor ¢°. This coupling
may be removed by replacing ¢° with m o. Indeed,

(5.1) 0% =g+ Oe)
=moag + O(e)
=mo + O(e),

so o should be well approximated by o,5c, a variable that depends only on average
domain Ca?*and which satisfies

dospe

dt

We can think of this as a “mean field” approximation: sites respond to average Ca?*
rather than to channel-to-channel variations in CaZ?*.

To analyze (5.2) we introduce the multiple scale expansion o,pc(t,7) =
Oapc,o (t,T) +€0apct (t,7) + €2 0upc2 (t,7) + O(e3) and collect terms of like powers
of € to obtain the O(1) equation

(5.2)

= —€0spc — €CO, pc + €C.

aU'ADC,U

(5.3) o

=0,
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which is identical to (4.2c¢) describing the lowest-order term in the expansion of o.
The O(e) equation is

aUADC,I aoADC,O _ _
(5-4) = - — Oapc,0 —C0apc,0 +c,

ot or

which is identical to the o1 equation (4.5). This is true because of the statistical
independence property (4.3). The O(e?) equation is

8UADC,2 8UADC,1 _
(5.5) = — — Oapc,l — €0apc,1;

ot or

which differs from the O(e?) equation for o in the last term, since o # moy. There-
fore, o ,pe — 0 = O(62).

A similar analysis can be carried out for gates like Sy which are not slow (k= not
small) but for which kT is small, so that k= >> k™. In this case, we use the following
nondimensional form of the ¢ equation:

(5.6) % =—Kk“o—e€eco’+e€g,

where k= = k™ Ty, € = kT 7, Kooy Koo = 0.1 uM is near the resting Ca2?t concen-
tration, ¢ = Ca / K¢,, and ¢ = ¢m. If we now introduce the regular perturbation
expansion o(t) = og(t) + €01 (t) + O(e?) and collect terms with like powers of e, then
we obtain the equation dog/dt = —k~ o for the O(1) system. Thus, oy tends to 0
in O(1) time, contradicting the assumption that o is O(1). We therefore use the
expansion o(t) = e a1 (t) + €2 02(t) + O(e®) and obtain for the O(¢) system

d
(5.7) % =—K o1+¢C
and for the O(e?) system
do _
(5.8) d—; = —K 09— coy.

Using the same scaling as in (5.6), the nondimensional form of the equation utilizing
average domain Ca?* is

dospe

(5.9) 420 —

= —K O spc —€ECO spc + €C.

Introducing the expansion o ,pc(t) = €0anc,1 (1) + €2 0apc2 (t) + O(€2), we obtain

d
(5.10) % — K Oupes+E
for the O(e) system, and
do
(5.11) ’217;0’2 = —K Oupc2 — C0apo,1

for the O(€?) system. Equations (5.7) and (5.10) are identical, but (5.8) and (5.11)
differ since 0¢ # moy. Therefore, as was true for the slow gates, 04pc — 0 = O(€?)

and the time course of ¢ is well approximated by o 4pc.
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F1G. 5.1. Release elicited by four 2-msec depolarizations from —65 mV to 10 mV. (A) o1 and o2
computed with (2.11a) and (2.11c) (solid) and using the average domain Ca?t approzimation (5.2)
(dashed). The error in this approzimation is O(e?). (B) 012 computed with (2.15¢) and (2.15f) and
as the product o aopc,1 0apc,2. The error in this approzimation is O(e). (C) Release computed with
01234, but with fast equations at equilibrium (solid), and computed using the average domain Ca?t
concentration as capc,1 ADC,20ADC,3 0ADC,4 With oapc,a at equilibrium (dashed). Caeq = 1
mM.

We now relate these results to release. In terms of dimensional parameters and
variables,

do i — _ _
(5.12) % =kl Ca— (k] + k] Ca)oapc,;,
where j = 1,2,3,4 now denotes gate type rather than power of ¢ and where Ca =
mCa. In section 4.2 we showed that o133 = 0102035 + O(e). This remains O(e)
accurate if o; is replaced by 04p¢ ;. A more careful multiple scale analysis with three
time scales (unpublished) shows that

(5.13) E[R] = 0apc,1 Oapc,2 0apc,3Oanc,a + O(€).

This reduces the number of differential equations to four or three if o,p5¢,4 is taken
to equilibrium, plus auxiliary equations. In Fig. 5.1 we see that the errors in the
approximations to 1 and oy are small (O(e?)) (Fig. 5.1), the error in the approxi-
mation to the joint expectation 1o is larger (O(¢)) (Fig. 5.1B), and the error in the
approximation to release is larger still (Fig. 5.1C). However, the simplicity of this
form of the model makes the error acceptable for many applications.

Finally, in the limiting case of instantaneous channel kinetics, which means that
€ = k7, — 0, scheme (5.13) reduces to the deterministic model of section 2.1. If
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stimulation is through voltage clamp steps, which means that V and Ca are piece-
wise constant, then an analytical expression can be obtained for release [4], bring-
ing us full circle back to the simple, intuitive picture we began with in [4]. The
deterministic model retains many of the properties of the stochastic model and of
experiment [4] and may be appropriate in simulations of large networks of intercon-
nected neurons, particularly where membrane potential is not an explicit state variable
(see [3]).

6. Concluding remarks. We developed a simple method for representing the
collective effect of a population of colocalized release sites and stochastic Ca?* chan-
nels without direct Monte Carlo simulation. We first reformulated the stochastic
problem as a system of hyperbolic conservation equations for the probability distri-
butions of bound gates and then used these to derive differential equations for the
mean concentrations of bound gates and for the mean rate of release. Using a multiple
scale analysis we uncovered several properties of release that are consistent with ex-
perimental data. These include facilitation of release that decreases with the external
Ca?t concentration; a step-like frequency dependence of facilitation; Ca?* coopera-
tivity that declines in a step-like manner with facilitation; and a release time course
that is invariant to changes in the magnitude of release, whether due to facilitation
or to changes in external Ca2?*. Also as a result of this analysis, we established that
release computed with the average domain Ca?* concentration is a good approxima-
tion to release computed using the detailed distribution of open Ca?* channels. This
greatly simplifies the model, so that mean release can be computed with just three
differential equations. This and other suggested reduced forms makes the model suf-
ficiently simple for use with models of neuronal electrical activity or with networks of
model neurons. For example, by coupling the release model to a model of dopamine-
secreting neurons [14], we have shown that transmitter release is greater when the
neuron bursts than when it spikes continuously [3].

Our model of release differs from two of the best-known models [17], [24] in sev-
eral ways. In both [17] and [24], facilitation is due primarily to residual-free Ca®*,
although [24] does include a slow Ca?" binding site in the release mechanism. Nei-
ther [17] nor [24] is able to account for the step-like frequency dependence reported
in [21]. One model, [17], was developed to explain the apparent time course in-
variance to changes in the magnitude of release. This was achieved by postulating
that the release time course is determined by the membrane voltage, rather than by
the local Ca?t concentration. Since voltage is unaffected by facilitation or changes
in the external Ca?t concentration, this approach captures the time course invari-
ance. However, there is considerable evidence against such a role for voltage [27],
[13]. In the present paper we have shown that invariance in the release time course
to changes in the magnitude of release is a robust feature of our model, although
it does begin to break down at very high (and probably unphysiological) Ca?" con-
centrations. Thus, our model has the invariance properties described in [6] and yet
has a time course dependent only on Ca?* and the kinetics of Ca?t binding and
unbinding.

We have made several simplifications and assumptions in the model. We have
assumed that no more than one channel is open at a time at a given release site and
that Ca?t from other open channels does not reach this site. These assumptions
allow us to neglect Ca?* diffusion, but we expect them to be valid only when release
is evoked by brief depolarizations, such as action potentials. We have also assumed
that Ca?t influx is proportional to the external Ca?t concentration, thus neglecting
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the effect of Ca?t at the inner mouth of the channel on the concentration gradient
across the channel. This assumption is not crucial to our results, as they can be repro-
duced [4] using values of Ca?* concentration from a simulation of three-dimensional
diffusion near an open channel that takes this effect into consideration [1]. Finally,
we have assumed that the vesicle pool is inexhaustible and the release sites do not
inactivate.

The structure of the vesicle docking site is presently unknown, although there is
general agreement that it contains at least four Ca?* binding sites. In our model we
have assumed that there are four physically independent binding sites, but the actual
binding process could be different. For example, the sites could be sequentially linked
and noncooperative [10] or they could be cooperative such that when Ca2* binds to
one site the affinities of the others change [9]. The analysis presented here is not
limited to physically independent sites; it is equally applicable to any binding scheme
gated by Ca?t.

Finally, although the object of our analysis is a model of transmitter release with
colocalized Ca?t channels and release sites, it applies equally well to any system
of colocalized ion channels and ion receptors. For example, one class of potassium
channels is known to be coactivated by Ca?* and voltage. It is now thought that these
channels have multiple Ca?* binding sites and are colocalized with Ca?* channels
[12], [20]. As another example, Ca?* channels that are activated by inositol 1,4,5-
trisphosphate (IP3) are present on the membrane of the endoplasmic reticulum in
many cells. These channels are coactivated by Ca?t and inactivated by Ca?t on
a slower time scale. This is clearly an instance where the Ca?t channel and Ca?*
binding site (the inactivation site) are colocalized.

Appendix A. Membrane potential and domain Ca2?t. We assume that
Ca?*t concentration in the domain surrounding the mouth of an open channel is pro-
portional to the Ca?t current through the channel. For the single-channel current
we use the Goldman—Hodgkin—Katz formula [8], neglecting the effect of intracellular
Ca?* at the inner mouth of the channel:

2FV Cley

(A.1) i(V) = g P RT |1—exp(2FV/RT)|"

Here g., is the single-channel conductance, P converts concentration to membrane
potential, Ca,, is the external Ca®* concentration, and R1'/F is the thermal voltage
(26.7 mV). We use §e, = 12 pS and P = 1.6 mV mM !, Domain Ca?* concentration
is then Ca = —Ai(V), where we use the value A = 0.1 uM fA™!, and the negative
sign is introduced since the current is negative.

The voltage-dependent Ca2* channel opening rate, a = 0.6e , and closing
rate, § = 0.2eV/267  are based upon measurements from the squid giant synapse
[15].

In Fig. 3.1, asymptotic facilitation from a long train of action potentials is com-
puted numerically. We use the Hodgkin Huxley equations to generate an action
potential [11]:

v/10

(A.2) cm% (G B h(V = Via) + e (V = Vi)

+ gleak (V - Weak) - Ia;up]a
(A.2b) B o V) — 2V,
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dn

(A.QC) n = (noo(V) - n)/Tn(V)v
dh
(A.2d) g = (hes(V) = B)/u(V),

where 2o (V) = ag /(a4 Bz), T:(V) = 1/(ap + ) (similarly for neo, hoo, Tn, and 75,)
and a, = 0.1(V +40)/[1 — e~ (VH40/10] 3 — 4= (VH6)/18 " — 0.01(V + 55)/[1 —
67(V+55)/10]’ ﬂn = 0.125 ef(V+65)/807 ap = 0.07 67(V+65)/20, ﬂh _ 1/[1+67(V+35)/10}.
Here x, n, and h are gating variables, C}, is the membrane capacitance, Gya, Jx s Gicar
are the maximum conductances for the sodium, potassium, and leak currents, and
VNa, Vi, and Vjeqr are the corresponding reversal potentials. Parameter values are
Cm =1 pFem™2, gy, = 120 mSem 2, g, = 36 mScem 2, g = 0.3 mScem 2,
VNe =50 mV, Vi = =77 mV, and Vjeqr = —54 mV. To induce an action potential
a depolarizing current of I,,, = 30 pA cm ™2 is applied for 2 msec. Consistent with
experimental data [15], [21], we assume that the contribution made by Ca?* current
to the membrane potential is small, and we omit it from the voltage equation.

Appendix B. Numerical integration of the hyperbolic equations. A
first-order upwind differencing scheme [18] is used to numerically integrate (2.5a) and
(2.5b). Application of the scheme to (2.5a) is standard since the characteristics all
contract leftward toward uw = 0 (Fig. 2.2). The characteristics of (2.5b) contract
toward u = u, so the differencing stencil on the left of u is different from that on
the right. Furthermore, @ is voltage dependent, so that the interval over which each
stencil is applied changes with time and must be determined at each time step.

This differencing scheme captures the transport nature of the equations but does
not conserve mass. Thus, the pg and p; populations are renormalized at each time
step. The extended trapezoidal rule [18] is used to obtain approximations A; and
Ag of fol p1(u,t) du and fol po(u,t) du, respectively. Then at each grid point, u;, we
multiply pi(u;,t) by the ratio m/Ay, and po(u;,t) by the ratio (1 — m)/Ag. Initial
conditions must be specified so that Ay = m and Ag = 1 — m at the start of the
simulation.

Appendix C. Derivation of the equations for mean release assuming
both channels and gates are stochastic. The equations for mean release (2.11a),
(2.11b), (2.15a) (2.15f) can be derived from the balance equations for the complete
set of release site configurations. To demonstrate how this is done we consider release
sites with two gates and an associated Ca?* channel. A schematic diagram of the
gating kinetics is shown in Fig. C.1. The state of a release site associated with an
open (closed) Ca®* channel is denoted by S¢. (S5;), where i represents the first gate
and j represents the second gate. If a gate is bound then the index equals 1, otherwise
it equals 0. For example, S{, denotes a release site with the first gate occupied and
the second gate unoccupied. The associated Ca?* channel is closed. For simplicity,
we also let S{, denote the probability that the release site is in this state.

The sum of the states on the back (front) face of the box in Fig. C.1 is equal to
the probability that a Ca?t channel is open (closed),

(C.1) > S5 =m,
%,J

(C.2) > S5 =1-m.
i.j
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F1G. C.1. Schematic diagram of the gating kinetics for a release site with two gates and a Ca>t
channel with a single open and a single closed state. The eight corners of the box represent the eight
possible configurations of the gate/channel complex. Each corner also represents a probability, and
the sum of the probabilities is 1. The gate binding/unbinding rates and channel open/closed rates
are indicated next to the kinetic diagram. On the front face Ca =0, so only downward and leftward
transitions are possible.

The evolution equations for the different configuration probabilities are determined
from the gating kinetics. For example,

dS5
dt

The evolution of all release site configurations is described by six differential equations
along with the two conservation equations (C.1), (C.2).

There is a simple linear transformation from the configuration variables to the o
variables used throughout the text. For example, o is the probability that the first
gate is bound and the associated Ca?* channel is open; thus o¢ = 5S¢, + S¢;. For
release sites with two gates, the complete set of transformations is

(C.3)

=ky ST1 + 8BS — (kf + a) Sfp-

(C4) 01y = S11, 01 = Sip+ 571, 05 =55 + St
(C.5) 07y = STy, 07 =57+ 571, o3 =55 + 571

Applying these transformations in the release site configuration equations, one arrives
at the o equations for release sites with two gates.
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