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Why use mathematical modeling?

1. As an aid to the interpretation of experimental data.

2. Integration of multiple sets of experimental results.

3. Great for finding holes in our knowledge.

4. Ideal for making predictions. This is a powerful tool
for experimental design.



Project 1: Pancreatic Islets



What 1s an Islet of Langerhans?

Cluster of electrically couple hormone-secreting cells,
located throughout the pancreas. The human pancreas
has about 1 million islets.

Courtesy of Rohit Kulkarni

Immunostained for glucagon (green) and insulin (red)



Insulin Secretion 1s Pulsatile
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Peripheral insulin measurements 1n the blood of humans
exhibits oscillations, suggesting that insulin 1s secreted
in a pulsatile manner.



Central Question:

What is the mechanism for oscillations in
insulin secretion from pancreatic -cells?



Islets are Electrically Excitable

Islets are like nerve cells 1n that they produce electrical
impulses. During an upstroke of an impulse Ca?* enters
the cells, causing insulin to be released.
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Islets Have Characteristic Patterns of
Electrical Activity



Fast Bursting Oscillations

1 min

Simultaneous fast Ca?* and voltage measurements from a mouse
islet in 11.1 mM glucose. From Zhang et al., Biophys. J.,
84:2852, 2003



Slow Bursting Oscillations
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Compound Bursting Oscillations

Gluc ose 15mM

E..U.,L RN TR
Mlmn mmmqm

- vawv‘w L ww’w»)u’w

| Il, -ft/lflwlwlwlwIVW}))
gL Nl B ',....,..

‘lmn

Henquin et al., Eur. J. Physiol., 393:322, 1982

Bursting oscillations superimposed on a slow wave of activity



More Evidence of Compound Oscillations

Measurements of intracellular Ca?* also reveal compound
oscillations.
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.

S min
0-

Compound Ca?* oscillations in an islet
(Zhang et al., Biophys. J., 84:2852, 2003)



Goal: Develop a Mathematical Model
That Can Reproduce the Various
Patterns of Activity



The Dual Oscillator Model



Central Hypothesis

Fast, slow, and compound oscillations can all be
produced by a mechanism that includes Ca?* feedback
onto 1on channels (driving the consisting
of a burst) and glycolytic oscillations (driving the slow
oscillation that modulates the bursts).



Glycolytic Oscillations in Yeast
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Electrical Component of the DOM

= (e, + 1y + 1 ca +[K(ATP))/Cm
n=mn,(V)-n)t,

Voltage equation reflects Kirchoff s current law

Second equation describes dynamics of the K™ activation
variable n. This depends on the voltage.



Electrical/Calcium Components of the DOM

= (e, + 1y + 1 ca +[K(ATP))/Cm
n=mn,(V)-n)t,

é T f(Jleak B Jserca ") a[Ca Wy kcc)

v éER = f ER (cht / VER kJserca . Jleak)
ER 1s the Endoplasmic Reticulum

Ca?" enters the cell through L-type Ca?" channels. The free
cytosolic Ca?" activates K(Ca) channels. Thus, there is mutual
feedback between the electrical and Ca*" components.



Fast Oscillations with the DOM

When glycolysis is non-oscillatory, the DOM produces fast bursting
oscillations, due to the electrical/calcium components of the model.

S o @
E
< -60
~80 ' ’ ‘ '
0 40 80 120 160
020
< (b)
S o015f
[&]
Bertram and 0-105 20 80 120 160
Sherman, BMB,
120
66:1313, 2004 s ©)
5‘_- 100 \/\/\/\
oﬂ)
8% 40 80 120 160

Time (sec)

The ER acts as a slow Ca®" filter, setting the period of
bursting through its interaction with the cytosol.



Fast Oscillations 1n Islets
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Simultaneous fast Ca?* and voltage measurements from a mouse
islet in 11.1 mM glucose. From Zhang et al., Biophys. J.,
84:2852, 2003



Glycolytic Component of the DOM

lglucokinase (GK) d F6P = A( J — J )
2 GK PFK
[ Glucose 6-phosphate (G6P) ] dt
phosphoglucose isomerase d F B P
( ‘ i~ JPFK _O‘SJGPDH
Fructose 6—phosphate (F6P) ] FBP (+) dt
l phosph((){?rllzlg;)kinase < AMP (+)
[ Fructose 1,6—bisphosphate (FBP) ] ATP (-)
| Key feature: The product FBP feeds
" slyceraldehyde 3-P back positively onto the allosteric
. dehydrogenase (GPDH) .
l | enzyme PFK (phosphofructokinase).
| Leads to oscillations due to substrate

depletion.



Glycolytic Oscillations Produced 1f
Glucokinase Rate 1s in the Right Range
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Mitochondrial Component

Includes equations for mitochondrial NADH concentration, inner
membrane potential, Ca>" concentration, and ADP/ATP concentrations.

Final 3-compartment model:
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The Three Types of Activity can be
Reproduced by the Model
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Who’s Driving? Are Metabolic Oscillations
the Driver or the Passenger?

Diazoxide hyperpolarizes the B-cells by activating K(ATP)
ion channels, terminating electrical activity.
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Kennedy s Conclusion

Slow oscillations in metabolic variables

are driven by Ca?" feedback. That” s why
they stop when Ca’* is constant at a low
value. Metabolic oscillations are the

passenger!



Kennedy Data Consistent with the DOM; The
Hyperpolarization Drains the Fuel!!

Opening K(ATP) channels with diazoxide (Dz) can terminate
the oscillations in glycolysis, and thus the metabolic oscillations.
Explains O, recordings from Kennedy' s lab and our own NAD(P)H data.
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Dz hyperpolarizes cell

Cytosolic Ca?* concentration
is reduced

. Ca2" pumps don’ t need to

work as hard, so less ATP is
utilized.
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______________________________________

. The ATP inhibits PFK,

terminating metabolic
oscillations



The “Killer” Prediction

The DOM, and no other model, predicts that depolarizing
the cell can restart metabolic oscillations.

Dual Oscillator Model
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Merrins et al., BJ, 99:76, 2010



340/380 ratio

The “Killer” Experiment

After some lobbying, the Satin lab tested the model

prediction...
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Merrins et al., BJ, 99:76, 2010

Oscillations in NADH that were eliminated by
hyperpolarization with Dz were rescued by
depolarization with KCl, as predicted.



Take Home Messages

1) A mathematical model can help with the interpretation
and re-interpretation of experimental data.

2) Making predictions and then testing them is a great
way to challenge your model, and thus your understanding

of the system.



Project 2: Pituitary Cells



Hypothalamus and Pituitary

Neurosecratory cells produce
releasing and release-nhbiting

hormones.

These hormones are

secretad nto a portal system

Each type of hypothalam
hormone either stimulates or pituntary
inhbits production and sacretion portal system

of an anterior prtuitary hormone.

The anterior pituitary secretes
its hormones into the bloodstream

gonadotropins
FSH & LH)
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Pituitary Cells are Electrically Active

Spontaneous activity of two pituitary cell types
Van Goor et al., J. Neurosci., 2001:5902, 2001
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Pituitary Cells are Electrically Active

Spontaneous activity of two pituitary cell types
Van Goor et al., J. Neurosci., 2001:5902, 2001
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Blocking Large-Conductance K(Ca) Channels
(or BK Channels) Converts Bursting to
Spiking
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We Use the Dynamic Clamp to Test our
Theories on Pituitary Cells

Ie,(V) Ig(Ca)

read "4

compute

df/dt = (f {V)-V)/Tyy
I = 8o fx (V-Vy)

write




Blocking BK Current with Iberiotoxin
Converts Bursting to Spiking
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Adding BK Current with D-Clamp Converts

Spiking to Bursting
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Model and Analysis Predict That BK Current
Rescues Bursting Only If It Activates Quickly

control

We tested this prediction - o
on pituitary cells using - Jn Nl
D-clamp... . .
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Prediction Validated!



In the Future...

Current Strategy
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Thank You!



