The Emerging Roles of Oxytocin in Rhythmic Prolactin Release

Richard Bertram
Program in Neuroscience
Florida State University
Collaborators

Florida State University
- Marc E. Freeman
- Joël Tabak
- Arturo Gonzales-Iglesias
- Cleyde V. Helena
- Ruth Cristancho-Gordo

University of California, San Diego
- De’Nise McKee

ETH, Zurich
- Marcel Egli

Universidad de São Paulo
- Maristela O. Poletini

Georgia Institute of Technology
- Natalia Toporikova

Financial support: NIH grants DK43200 and DA19356
Types of Studies Performed in the Lab

- in vivo
- in vitro
- modeling
Circadian Prolactin Rhythm in Female Rats

PSP – Pseudopregnancy, rhythm induced by mating

OVX – ovaries removed, rhythm induced by artificial cervical stimulation (CS). Our in vivo work is typically done with OVX rats.
Central Injection of Prolactin Itself Can Trigger the Prolactin Rhythm

Intracerebroventricular (icv) injection of ovine prolactin

Helena et al., Endocrinology, 150:3245, 2009

oPRL – ovine prolactin

Systemic administration of prolactin also works, but the required concentration is much higher
Central Blockade of Prolactin Receptors Inhibits the CS-Induced Prolactin Rhythm

Icv infusion of prolactin antagonist

Helena et al., Endocrinology, 150:3245, 2009

S179D – Prolactin receptor antagonist
Central Blockade of Prolactin Receptors Inhibits the CS-Induced Prolactin Rhythm

Icv infusion of prolactin antagonist

Central prolactin feedback is necessary for the rhythm!
What is the Mechanism for this Rhythm?
Dopamine is the Physiological Inhibitor of Prolactin Release

Dopamine From 3 Sources

Tuberoinfundibular (TIDA):
Dorsomedial ARN → Median eminence

Tuberohypophysial (THDA):
Rostral ARN → Neural and intermediate lobes

Periventricular hypophysial (PHDA):
PeVN → Intermediate lobe
Prolactin Stimulates Neuroendocrine Dopamine Secretion

In median eminence

Also true for neural and intermediate lobes

Systemic ovine prolactin injection

DeMaria et al., Brain Res. 837:236, 1999

DOPAC – the major metabolite of dopamine

oPRL – ovine prolactin
Hypothesis: The Dopamine-Prolactin Circuit Produces the Rhythm

This can happen only if the positive feedback of prolactin onto dopamine neurons is delayed. There is evidence for such a delay (Ma et al., Endocrinology, 146:93, 2005; DeMaria et al., Brain Res., 837:236, 1999)
Our Approach: Build a Math Model

\[
\frac{d PRL}{dt} = \frac{T_p}{1 + k_d DA^2} - qPRL
\]

\[
\frac{d DA}{dt} = T_d + k_p PRL^2 - qDA
\]

\[\tau = 3 \text{ hours}\]

Bertram et al.,
AJP, 290:E573, 2006
Prediction: Dopamine Levels Should Be Out of Phase with Prolactin Levels

Dopamine secretion into the median eminence and the neural lobe peaks at noon, between the prolactin surges.

McKee et al., Endocrinology, 148:4649, 2007
Neurons of the suprachiasmatic nucleus (SCN) that project to the arcuate nucleus and release vasoactive intestinal polypeptide (VIP) are most active early in the morning. They are inhibitory to DA neurons.

\[
\frac{d DA}{dt} = T_d + k_p PRL^2 - q DA - r_v VIP \cdot DA
\]
Improved Rhythm Generator

Rhythm during one day

Rhythm during 10 days

CS simulated by partial inhibition of dopamine neurons
Oxytocin Injection Can Initiate the Prolactin Rhythm

Egli et al., AJP 290:E566, 2006
What Role Does Oxytocin Play in the Prolactin Rhythm?
Oxytocin Stimulates Prolactin Secretion From Lactotrophs *in vitro* Through a Calcium-Linked Mechanism

Egli et al., *Endocrinology* 145:3386, 2004
An Oxytocin Antagonist Can Prevent the CS-Induced Prolactin Rhythm

(McKee et al., Endocrinology, 148:4649, 2007)

CS – cervical stimulation
OTA – oxytocin antagonist
Prolactin Feeds Back Onto and Inhibits Oxytocin Neurons of the Supraoptic Nucleus (SON) and Perhaps the Paraventricular Nucleus (PVN)

Electrical firing rate with extracellular recording from the SON

Kokay et al., AJP 290:R1216, 2006

CCK - stimulating agent
Model with Oxytocin Interactions

\[
\frac{dPRL}{dt} = \frac{T_p + \nu_0 OT}{1 + k_d DA^2} - qPRL
\]

\[
\frac{dOT}{dt} = \frac{T_0}{1 + k_0 PRL^2} - qOT
\]
Simulation and Prediction

Simulation

Prediction: The PRL rhythm will return when the OT antagonist leaves the system. That is, OT at the lactotroph is required for the expression of the rhythm, but not for triggering the rhythm.

As predicted, the prolactin rhythm comes back once the antagonist clears the system (day 2 – no rhythm; day 3 – rhythm present)

(McKee et al., Endocrinology, 148:4649, 2007)
Conclusions: Part 1

1. The prolactin rhythm is likely due to interactions between dopamine neurons and lactotrophs.

2. The prolactin rhythm can be induced by mating, or in OVX animals, by cervical stimulation, central or peripheral prolactin injection, or peripheral oxytocin injection.

3. Oxytocin at the lactotroph is necessary for the expression of the CS-induced rhythm, but is not part of the triggering mechanism.
Prolactin Secretion During Rat Estrous Cycle

Prolactin (ng/ml)

Diestrus-1 Diestrus-2 Proestrus Estrus

Diurnal Cycle

0 1 2 3 4

100 200 300 400

Prolactin Secretion
The Amount of Dopamine Arriving in the Anterior Lobe Decreases Coincident with the Rise of Prolactin During the Estrous Cycle
Does Oxytocin Contribute to the Proestrous Surge?

1. Plasma oxytocin concentration increases in response to estradiol administration (Yamaguchi et al., Endocrinol. Jpn., 26:197, 1979)

2. The concentration of oxytocin in pituitary portal blood peaks on the afternoon of proestrus (Sarkar and Gibbs, Neuroendocrinology, 48:214, 1988)

So a role for oxytocin seems plausible
Does the Oxytocin Sensitivity of Lactotrophs Vary During the Cycle?

Our experiments:

Remove anterior pituitary from cycling rats on the morning of diestrus-1 or afternoon of proestrus

Disperse cells. Use mixed population for prolactin secretion measurements, enrich for lactotrophs for calcium measurements

Apply oxytocin to the pituitary cells
Response to Oxytocin is Greater from Proestrous Cells

- Secretion increased
- Calcium response increased

Tabak et al., Endocrinology, 151:1806, 2010
1. Sensitivity of lactotrophs to oxytocin is increased during the afternoon of proestrus. This corresponds to the time of the peak in plasma oxytocin levels, and the prolactin surge.

2. Both the size of the individual calcium responses and the number of cells responding to oxytocin are upregulated on the afternoon of proestrus.

Open Question: What is the mechanism of the upregulation of the oxytocin response?
A review of this talk is freely available online in the July Special Issue:

Journal of Neuroendocrinology

www.journalofneuroendo.com