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Understand the dynamics of a novel form of
bursting in a model for excitable endocrine cells



Pseudo-Plateau Bursting Often Occurs
In Endocrine Cells

Perforated patch recording
from a GH4 pituitary cell line

Simulation from a mathematical
model (Toporikova et al., 2008)



There are Several Models That
Produce Pseudo-Plateau Bursting

Lactotrophs: Tabak et al., J. Comput. Neurosci., 2007
Toporikova et al., Neural Computation, 2008

Somatotrophs: Tsaneva-Atanasova et al., J. Neurophysiol., 2007

Corticotrophs: LeBeau et al., J. Theoretical Biology, 1998
Shorten et al., J. Theoretical Biology, 2000

Single B-Cells: Zhang et al., Biophysical J., 2003



Typical Pseudo-Plateau Fast-
Subsystem Bifurcation Structure
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Unlike square-wave bursting (plateau bursting), the top
branch of the z-curve is stabilized; there is no stable spiking
branch.
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Calcium concentration has been removed; not necessary for the bursting.
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The n and e variables change on a slower time scale than V. There
are 2 slow variables and 1 fast variable.
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Black = stationary
Red = periodic (spiking)




Bursting Occurs In a Region of the g-
g, Parameter Space
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Parameters are the maximum conductances corresponding to the two
slow variables.
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Parameters set to produce spiking.

The spiking solution becomes a relaxation oscillation on the
critical manifold; this is the quasi-equilibrium surface for the V variable.



The Reduced and Desingularized
Systems

Goal: Derive equations for the flow on the critical manifold.
RHS of V-ODE:  f(V,e,n)=—(I, + 1 +1,+1))

Critical manifold: S = {(\/,e, neR’: f(V,en)= 0}
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A folded singularity of the reduced system is an equilibrium of the
desingularized system that occurs on a fold curve, and satisfies

f (\/ , 8, n) — (0  onthe critical manifold

F (\/ , ©, n) = (0  Vtime derivative is 0 in desingularized system

of

— = O on a fold curve of S
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A folded node singularity (FN) is a folded singularity with
negative real eigenvalues. For small values of C (large, but

not infinite, time scale separation) the slow manifold is twisted
In the neighborhood of the FN.
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From Desroches et al., Chaos, v. 18, 2008



The Singular Funnel

The singular funnel of a folded node is delimited by the fold
curve (L*) and the strong singular canard (SC). This is the
trajectory that is tangent to the eigendirection of the strong
eigenvalue of the FN.
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In the singular limit, trajectories entering the funnel move
through the FN in finite time and follow the middle sheet of S
for some time. For small, but non-zero C, corresponding
trajectories exhibit due to the
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Mixed-Mode Oscillations (Bursting)
Enter the Singular Funnel

0,=4 nS

For small C, the trajectory oscillates once it jumps up. The small
oscillations in combination with the large jumps is a mixed-mode
oscillation. The small oscillations are the “spikes” of the

pseudo-plateau burst.



Canard Theory Provides the Bursting
Borders
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o Is the distance of the singular orbit from the SC,
within the singular funnel. >0 in the MMO region.



Due to jump up —

Due to the FN
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Maximum Number of Small Oscillations
IS Given by a Formula

- u+1
For C sufficiently small, S, =|——
2u

where [ ] Is the greatest integer function. For derivation see
Wechselberger, SIAM J. Dyn. Syst., 2005. This is insensitive
to changes in g,.
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Actual Number of Small Osclillations
Determined by Where the Singular
Trajectory Enters the Funnel
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For C small and
S...=3:
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Number of small oscillations increases with 8, the distance from the SC.



Numerical Simulation Agrees with the
Canard Theory

Number of spikes per burst, with C=2 pF.

max

Small, dark blue = spiking

Small, light blue = burst with 2 spikes
Large, red = burst with 53 spikes
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