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Neurons: are Electrically: Excitable

Action potential

Information is transmitted
through electrical impulses.

Threshold of excitation
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Many: Endocrine Cells are Also
Electrically: Excitable
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Electricall Activity: IS Due to lon
Channels

lon channel

" on filter

Cell membrane

These are proteins in
the plasma membrane
that open and close
depending on the
voltage drop across
the membrane.




Electrical Activity: Equations
Using| Conservation off Charge

dVv
E:_(ICa + IK + IK(Ca))/Cm

dn n_(V)-n

dt  7,(V)

V = voltage (mV)
t = time (msec)
n = fraction of open K* channels




Sufficient for Spiking

Action potential

Threshold of excitation

Depolarization
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Nerve Cells Often Burst
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Neuron L3 of the Aplysia abdominal ganglion (Pinsker, J. Neurosci., 40:527, 1977)
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Neuron from the pre-Botzinger complex (Butera et al, J. Neurophysiol, 81:382, 1999)




Pituitary: Cells' Alsor Burst
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Bursting in isolated cells (Van Goor et al, J. Biol. Chem., 276:33840, 2001)




Wihat Clusters Spikes inte Bursts?

c=f ('Jleak serca —al Ca kcc)

CER = 1:ER( cyt/VER )(‘]serca o ‘]Ieak)

C = free calcium concentration in the
cytosol

Cgr = free calcium concentration in the
Endoplasmic Reticulum (ER)

Cytosolic calcium feeds back onto the membrane through Iy,




Wihat Clusters Spikes into Bursts?

Calcium (called “s” below) builds up and activates the K(Ca) current,
shutting off the spiking. When calcium recovers to a low level spiking restarts.




Fast/Slow: Analysis; of Bursting

Variables can be separated into those that change rapidly and those
that change slowly. In this case, there is only one slow variable (calcium, C).
The slow variable is then treated as a bifurcation parameter for the fast
subsystem.

Solid = stable
Dashed = unstable
HB = Hopf bifurcation
SN = saddle node
bifurcation

/




SpIking Solutions

Next, the branch of periodic spiking solutions is added.

Blue curves = min and
max of the periodic spiking
solutions

IMPORTANT: The fast
subsystem is bistable.




Slow: Variable: Dynamics

Next we add the dynamics of the slow variable, calcium, back in.

The C-nullcline is the
curve where

aC g
dt

Below the nulicline

dC
—<
dt

0




Superimpose Trajectory

Finally, we superimpose the burst trajectory.

Red curve = trajectory
of the bursting oscillation




Interspike Interval Increases; for
Type 1 Bursting

This bursting is called or
bursting. A feature of this

type is that the interspike interval

increases during the burst. But

this feature is largely lost if the system
IS noisy.

1 2 3 4 5 6 7 8 9 10 11 12
spike number




Type 3 Bursting

This type of bursting exhibits

immediately before and after
each burst. These oscillations
are largely obscured by noise.




Noise s Bad, and Ubiguitous

Noise makes it hard to distinguish between
these two types of bursting.

Unfortunately, all neural systems are noisy.




Goal: Use Noise to oul Advantage

How?

Idea: Maybe noise affects the initiation and the
termination of a burst differently.




Active/Silent Phase Scatter Plots

Type 1 Bursting Model

No correlation
r=0.4, p=0.62
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Active/Silent Phase Scatter Plots

Type 3 Bursting Model

Significant
correlation
r=0.40, p<0.005
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Noise Isi Goed, and Upiguitous

In the presence of noise, one can use scatter plots of active/silent
phase durations to distinguish type 1 from type 3 bursting. This only
requires the voltage trace, so is very applicable in an

All neural systems are noisy!




Why the Difference in Correlation
Pattenns

- burst starts at saddle node bifurcation
burst ends at homoclinic bifurcation

Homoclinic bifurcations are more sensitive to noise,
so active phase duration is more variable than silent phase duration
Type 3 bursting: burst starts at subcritical Hopf bifurcation

burst ends at saddle node of periodics bifurcation

Subcritical Hopfs are more sensitive to noise,
so silent phase duration is more variable than active phase duration

These differences yield the differences in correlation patterns




That's all folks!
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