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Bursting consists of periodic clustering of elec-

trical impulses. It occurs in many nerve and en-

docrine cells. These include:

• thalamic neurons

• hypothalamic neurons

• cortical neurons

• spinal cord

• neurons of the pre-Bötzinger complex in brain

stem

• pituitary cells

• pancreatic β-cells

The burst period ranges from tens of milliseconds

(many neurons), to a few seconds (pituitary cells), to

several minutes (β-cells). The example below shows
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bursting in a pancreatic islet, composed of a cluster

of insulin-secreting β-cells.
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Why bursting?

There are several possible physiological roles of

bursting. These include:

• Bursting avoids desensitization of receptors

• Bursting can amplify neurotransmitter secretion

• Bursting can relieve presynaptic inhibition

• Bursting encodes two time scales, while periodic

spiking encodes only one

• Bursting is more robust than a single spike; bet-

ter for use in central pattern generators

Other roles are likely to be revealed over time.

Today, we will look at several mathematical mod-

els that produce bursting oscillations, and see how
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the oscillation can be analyzed using a geometric

singular perturbation analysis.
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Modified Morris-Lecar Model

We modify the Morris-Lecar model by adding a

current that responds to the calcium concentra-

tion in the cell. This current is Ca2+-activated K+

current, IK(Ca). There are several possible formula-

tions, but we use:

IK(Ca) = ḡK(Ca)

(
Ca3

c

Ca3
c + K3

D

)
(V − VK) (1)

where a Hill function with exponent 3 is used to

describe the Ca2+ activation.

With this current, the Morris-Lecar model be-

comes:

dV

dt
= −[ICa + IK + IL + IK(Ca)]/C (2)

dw

dt
= λ [w∞(V )− w] /τ (V ) . (3)

For now we will treat Ca2+ as a constant parameter.

The parameter λ is introduced so that we can eas-
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ily change the speed of the recovery variable w. By

making λ small we make w slow compared to V .

Set λ = 0.01, then:
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2

Figure 1: Phase portrait of relaxation oscillation, λ = 0.01

This is called a relaxation oscillation. With such

an oscillation the phase point travels along the null-

cline of the fast variable except for jumps at the

knees. The variable time courses look like:
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Figure 2: Relaxation oscillation time courses, λ = 0.01

These time courses look quite different from those

of a sinusoidal oscillation. We return later to re-

laxation oscillations, but now increase λ 100-fold to

λ = 1. Now both variables change at comparable

speeds. Phase portraits at three values of calcium

concentration Cac are shown below. Increasing Cac

translates the V -nullcline leftward.
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Figure 3: Oscillation with λ = 1 and Cac = 0.1 µM.
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Figure 4: The system is bistable when Cac = 0.15 µM. Basins of attraction are

separated by the two branches of the stable manifold.
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Figure 5: At about Cac = 0.165 µM one branch of the stable manifold connects

with a branch of the unstable manifold, creating a homoclinic orbit.

This can all be summarized with a bifurcation

diagram of the V -w system:
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Figure 6: Bifurcation diagram with bifurcation parameter Cac. SN=saddle-node,

HB=Hopf, HM=homoclinic.

Calcium Dynamics

We now bring in the Cac dynamics. During an

impulse, Ca2+ enters the cells through the Ca2+

channels. It is also pumped out of the cell by Ca2+

pumps.

Jin = −αICa (4)

Jout = kpmcaCac (5)
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Figure 7: Ca2+ fluxes in a typical cell.

Then,

dCac

dt
= fc(Jin − Jout) (6)

= −fc(αICa + kpmcaCac) (7)

where fc is the fraction of Ca2+ that is free (i.e., not

bound by Ca2+ buffers in the cytosol).

spiking ⇒ |ICa| large ⇒ Cac increases

silent ⇒ |ICa| small ⇒ Cac decreases

We now look at the trajectory of the full 3-dimensional

system in the V -Cac plane. This is superimposed on

the bifurcation diagram of the V -w fast subsystem,
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Figure 8: Slow manifold (z-curve) superimposed with the Cac-nullcline.

which is called the slow manifold or z-curve.
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Figure 9: Slow manifold (z-curve) superimposed with the Cac-nullcline and the

bursting trajectory of the full system.

This geometric analysis where we treat one vari-

able as a slowly-changing parameter of the fast sub-

system is called fast/slow analysis or geomet-

ric singular perturbation analysis.
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Figure 10: Time courses of fast V and slow Cac during bursting.
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How are bursting oscillations and relaxation oscilla-

tions related?

For each value of Cac where a periodic (spiking)

solution exists calculate the average V over one pe-

riod of the oscillation. Plot this average voltage

curve, which begins at the Hopf bifurcation and ends

at the homoclinic bifurcation.
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Figure 11: Z-curve and Cac-nullcline along with the average voltage curve (dark

blue).
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Now superimpose the burst trajectory, but using

a moving average with V averaged over a period of

a single spike. Then we have a relaxation oscillation!
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Figure 12: Z-curve and Cac-nullcline along with the average voltage curve (dark

blue) and the moving average of the burst trajectory (red).
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What happens if the Ca2+ nullcline is translated

downward so that it intersects the bottom branch of

the z-curve?

What happens if it intersects the average V curve?

These are extreme cases that limit the range of burst-

ing. Intermediate cases, where the intersection is on

the middle branch between the lower knee and the

homoclinic, give variation in the burst period and

plateau fraction.

plateau fraction =
active duration

burst period

cell silent ⇒ plateau fraction = 0

cell continuously spiking ⇒ plateau fraction = 1
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How does plateau fraction vary as the intersection

on the middle branch is changed from near the knee

to near the homoclinic?
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Calcium Handling in the Endoplasmic Reticulum

The endoplasmic reticulum (ER) is an or-

ganelle that processes proteins that are bound for

the plasma membrane. It is also a storehouse for

Ca2+. The illustration below shows some important

Ca2+ fluxes between compartments.

J

J

J J

in

SERCAleak

PMCA ER

cytosol

Figure 13: Ca2+ fluxes into and out of cytosol and ER.

With this new ER compartment the cytosolic Ca2+

equations must be modified, and a new ODE intro-
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duced.

dCac

dt
= fc(Jin − JPMCA − JSERCA + Jleak)(8)

dCaER

dt
= fERµ(JSERCA − Jleak) (9)

where µ = Vc/VER is the volume fraction.

The Ca2+ leak out of the ER is proportional to

the concentration gradient:

Jleak = kleak(CaER − Cac)

and a reasonable model for flux through SERCA

pumps (SERCA=Sarco-Endoplasmic Reticulum AT-

Pase) is

JSERCA = kSERCACac .

Because of the size differences in the flux terms

there are typically big differences in the Cac and

CaER dynamics:

• Cac is small and changes relatively rapidly
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• CaER is large and changes slowly

Changes in CaER typically have no direct influ-

ence on the cell’s membrane potential. However,

they do affect the Cac nullcline:

Cac =
−αICa + kleakCaER

kPMCA + kSERCA + kleak
(10)

The nullclline is now more vertical and it moves

when CaER changes.

Ca c

V

CaERlarge

CaERsmall

Figure 14: The Cac nullcline changes with CaER.
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Because the Cac-nullcline is now more vertical, it

intersects the periodic and stable stationary branches

of the z-curve, so that bursting does not occur if

CaER is held constant.

stationary

periodic

Cac

V Ca−null

Figure 15: With CaER frozen bursting cannot occur.
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Suppose that the system starts out spiking (A).

stationary

periodic

Cac

V Ca−null

Figure 16: (A) The system is assumed to start out spiking.

This brings Ca2+ into the cell through Ca2+ chan-

nels, and some of the Ca2+ is pumped from the cy-

tosol to the ER, causing CaER to slowly increase.

This translates the Cac nullcline rightward, eventu-

ally moving it past the homoclinic bifurcation, so

that spiking is terminated and the silent phase be-

gun (B).
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Figure 17: (B) As CaER increases during the active pahse the Cac nullcline moves

rightward, eventually terminating the active phase.

The phase point now moves along the bottom

branch of the z-curve toward the stable steady state.

At the same time, but more slowly, CaER declines

and shifts the nullcline (and steady state) leftward

(C).
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Figure 18: (C) As CaER decreases during the silent phase the Cac nullcline moves

leftward, dragging the phase point with it.

Eventually the nullcline moves past the lower knee,

terminating the silent phase and restarting the ac-

tive phase (D).
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Figure 19: (D) Eventually the Cac nullcline moves past the lower knee, ending the

silent phase.

The end result is bursting which is driven by both

cytosolic Ca2+ and the ER Ca2+ dynamics. When

the nullcline does not intersect deep into the periodic

and stationary branches the cytosolic and ER com-

ponents contribute about equally, producing medium

bursting. Note the different shapes of the Cac and

CaER time courses.
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Figure 20: When Cac and CaER dynamics contribute about equally medium burst-

ing is produced.

When the Cac nullcline intersects deep in the pe-

riodic and stationary branches the ER Ca2+ concen-

tration must change a great deal to pull the system

from one phase to the other. Since CaER changes

slowly, this results in slow bursting.
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Figure 21: When the nullcline intersects deep into the periodic and stationary

branches slow bursting results.

Bottom line: The addition of the ER Ca2+ store/sink

greatly increases the range of burst periods that can

be produced.
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Figure 22: Bursting goes from fast to slow as the K(Ca) current conductance is

decreased from 1000 pS (top) to 500 pS (middle) to 370 pS (bottom).

There is evidence for this effect of CaER on the

burst period in pancreatic islets. When the rate of

release from the ER is increased by activating IP3

receptors with the neurotransmitter Acetylcholine

(ACh), bursting gets much faster (Henquin et al.,
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Endocrinology, 122:2134, 1988).
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