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General Questions

1. How can math be used in biology?

2. What does a biomathematician do?

3. Why do we create mathematical models in biol-

ogy?

4. How much detail should go into a model? Is

more detail always better?

5. How should one calibrate a biological model?
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How can math be used in biology?

Population Biology

An early model for population growth was devel-

oped by Thomas Malthus, who lived from 1766

to 1834. This is based on the observation that a

species can increase in numbers according to a geo-

metric series:

N1 = N0R (1)

N2 = N1R (2)

= N0R
2 (3)

N3 = N0R
3 (4)

... (5)

Nj = N0R
j (6)

This is a linear discrete dynamical system

that is simple to solve. It also yields a testable pre-
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diction, that

Nj →

0, if R < 1

∞, if R > 1

(7)

Pierre Verhulst (1838) developed a model that

better reflects the biology. His logistic model as-

sumes that the growth rate R declines as the popu-

lation increases:

R = R

(
1− N

κ

)
(8)

Then,

N1 = N0R = N0R

(
1− N0

κ

)
(9)

or

N1 = RN0 −
R

κ
N 2

0 (10)

and in general

Nj = RNj−1 −
R

κ
N 2

j−1 . (11)
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For this nonlinear difference equation the asymp-

totic behavior is bounded when R > 1:

Nj →
κ(R− 1)

R
(12)

Moral of the story: linear models can provide in-

sight and can typically be solved analytically. How-

ever, the most informative and realistic biological

models are nonlinear.
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Neuroscience

The fundamental unit of information in nerve cells

or neurons is the electrical impulse or action

potential. Information about the intensity of ex-

ternal input and communication among neurons is

all encoded in the frequency or the firing rate of

electrical impulses.

In 1952 Alan Hodgkin and Andrew Hux-
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ley used their own experimental data to develop

a mathematical model of the electrical activity of

the squid giant axon. This validated their proposed

mechanism for impulse generation and its propaga-

tion down the axon. Won the Nobel Prize in 1963.

The Hodgkin-Huxley model consists of 4 nonlin-

ear ordinary differential equations (ODEs). As with

most useful biological models, the nonlinearity is es-

sential. For impulse propagation a diffusive term

is added to one of the equations, yielding a partial

differential equation.
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What does a biomathematician do?

A biomathematician lives in two worlds:

Biology Mathematics

Things to do to survive in the intersection:

• Read biology papers

• Learn the language of biology

• Talk to experimental biologists

• Work on problems that are interesting to biolo-

gists

• Build models that give predictions that can be
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tested in the lab

• Form a strong collaboration with one or more

experimental labs
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Why do we create mathematical models in biology?

• Integrate biological data

• Writing down equations often identifies holes in

biological knowledge

• Make testable predictions that can help in ex-

perimental design

• Models are inevitably simplifications of the bi-

ological system. With these simplifications it is

easier to understand the essential elements of the

system.
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How much detail should go into a model?

A related question: Is a more detailed or accurate

model better than a simpler, less accurate model?

There is an example from calculus that can shed

light on this.
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Reasons that a more detailed model may be less

useful than a simpler model:

1. Adding more detail introduces more parameters,

whose value probably can’t be determined.

2. With more equations it is harder to understand

the mechanism producing the behavior of the

model. That is, the added complexity obscures

the main elements of the model.

3. The added detail can give the user the false im-

pression that all the components are necessary

for the model to reproduce the biological behav-

ior.
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How should one calibrate a biological model?

In physics or engineering, one calibrates a model by

measuring the parameters. For example, the mo-

tion of a spring for small displacements from its un-

stretched length can be described by Hooke’s law in

combination with Newton’s 2nd Law of Motion:

m
d2s

dt2
= −k(s− so) (13)

m

k

sso

The mass parameter m and the spring constant k

can both be measured, and in this way the model is

calibrated.
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For biological models it is rare to be able to mea-

sure all or most of the parameters.

A B C

D

p2

p1

p3

p4
p5

If even one of these interaction parameters is un-

known, then variation of this parameter could lead

to a wide range of model behaviors.

Another problem is that biological systems are of-

ten heterogeneous, so even if you can get the

values of all parameters in one cell, say, they may

be very different in another cell of the same type.

Moral: Biological models usually can’t be cali-
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brated the same way that physics or engineering

models can be. Probably the best way to calibrate a

biological model is to make model predictions, then

test them in the lab, and based on this modify the

model (perhaps this simply requires changing pa-

rameter values, or perhaps modifying the equations

themselves).
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The neuron is the basic unit of the nervous sys-

tem. It is a normal cell that has been adapted mor-

phologically and in terms of protein expression for

direct communication with other neurons, with var-

ious receptors (e.g., photoreceptors), and with mus-

cle tissue.

Dendrites: input pathways, from afferent neu-

rons

Soma or cell body: integration center

Axon: output pathway

Synapses: structures where electrical signals are con-

verted to chemical signals and transmitted to effer-

ent neurons

Myelin: insulating cells on vertebrate axons
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Figure 1: Stained single neuron
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Figure 2: Population of interconnected stained neurons
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Figure 3: Structure of a neuron

Neurons encode information in the frequency of

spiking, or electrical impulse firing rate. How

are electricity and the neuron related? Answer: ion

channels.

An ion concentration gradient is maintained across

the plasma membrane by ion pumps. An ion
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Figure 4: Illustration of an ion channel in a membrane
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channel is a portal that allows ions of a specific type

(e.g., potassium ions, K+) to cross the membrane.

plasma
membranechannel

KCl

KCl

K +

Figure 5: An ion channel allows specific types of ions to flow through

As ions move through the channels an electrical

potential develops, which opposes the concentration

gradient. The total ion flux across the membrane is

described by the Nernst-Planck equation:

J = −D

(
dC

dx
+

zCF

RT

dΦ

dx

)
(14)

where C is ion concentration and Φ is the electrical

potential. Eventually an equlibrium is reached (J =

0). The equilibrium potential is called the Nernst

potential:
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Vion =
RT

zF
ln

[ion]out

[ion]in
(15)

where Vion = Φin − Φout. Typically,

[K+]in > [K+]out (16)

so VK < 0,

[Na+]in < [Na+]out (17)

and

[Ca2+]in < [Ca2+]out (18)

so VNa, VCa > 0. In fact, typical values are:

VK ≈ −70 mV (19)

VNa ≈ 50 mV (20)

VCa ≈ 100 mV (21)

The resting potential is the weighted average

of the Nernst potentials, with the weights being the
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macroscopic conductance (g) of the channels in the

membrane:

Vrest =
gNaVNa + gCaVCa + gKVK

gNa + gCa + gK
(22)

VK

Vrest

0 V (mV)VNa VCa

Figure 6: Relative locations of Nernst and resting potential



25

ELECTRICAL EXCITABILITY

If the conductances were constant, then the neu-

ron would act like a passive resister in parallel with

a capacitor. However, the conductances are voltage-

dependent; they all increase with voltage, but at dif-

ferent rates and with different time constants. The

depolarizing currents INa = gNa(V −VNa) and

ICa = gCa(V − VCa) raise the voltage V and acti-

vate first. The hyperpolarizing current IK =

gK(V − VK) returns the voltage to rest and acti-

vates later. This combination of positive feedback

and delayed negative feedback produces an electrical

impulse or action potential.

A key property of the neuron’s electrical dynamics

is the presence of a threshold. Voltage perturba-

tions above this threshold evoke an impulse.
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Figure 7: An action potential along with some subthreshold responses
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The first mathematical model to describe impulse

generation in neurons was developed by Hodgkin

and Huxley in 1952. This consists of 4 nonlinear

ODEs. Later models were developed that capture

the essential dynamics of impulse generation, but

that are planar. One well-known example was de-

veloped by Morris and Lecar in 1981 as a description

of a barnacle muscle fiber (muscle also operates by

producing electrical impulses).

THE MORRIS-LECAR MODEL

• One hyperpolarizing current: IK = ḡKw(V −

VK), where ḡK is maximum conductance and

w is an activation variable, the fraction of

open K+ channels. w approaches its equilib-

rium value, w∞(V ), with a rate of τ−1, where

τ = τ (V ) is the time constant (not really a
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constant...):

dw

dt
= [w∞(V )− w] /τ (V ) . (23)

• One depolarizing current: ICa = ḡCam∞(V )(V−

VCa), which is assumed to activate instantaneously.

• One leakage current: IL = gL(V − VL), which is

depolarizing and has a V -independent conduc-

tance.

• One capacitance current: IC = C dV
dt , where C is

the membrane capacitance.

• One applied current: Iap, the current applied

through an electrode.

By Kirchoff’s Current Law (conservation of charge),

the sum of these current must be 0:
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Figure 8: Calcium and potassium equilibrium and time constant functions
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IC + ICa + IK + IL − Iap = 0 (24)

or
dV

dt
= −(ICa + IK + IL − Iap)/C. (25)

Summary: The ODEs for the Morris-Lecar model

are:

dV

dt
= −(ICa + IK + IL − Iap)/C

dw

dt
= [w∞(V )− w] /τ (V ) .

This can be analyzed in the w − V phase plane.

V -nullcline:

w =
Iap − ḡCam∞(V )(V − VCa)− ḡL(V − VL)

gK(V − VK)
(26)
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w-nullcline:

w = w∞(V ) (27)

=
1

2[1 + tanh(V−V3
V4

)]
. (28)

w

V (mV)
60−60

1
w−null

V−null

Figure 9: Phase plane analysis of the Morris-Lecar model. Red: subthreshold re-

sponse, Green: impulse. Iap = 0.

The middle branch of the cubic-shaped V -nullcline

is the impulse threshold. Other planar models for

impulse generation have been developed. Most have
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cubic-like V -nullclines.

Increasing the applied current translates the V -nullcline

upward. The steady state can become unstable

when the intersection is on the middle branch, through

a Hopf bifurcation. The stable steady state is re-

placed with a stable limit cycle, i.e., periodic impulses:

w

V (mV)
60−60

1
w−null

V−null

Figure 10: Phase plane analysis of the Morris-Lecar model. Green: Limit cycle.

Iap = 100 pA.
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Figure 11: A periodic train of action potentials, when Iap = 100 pA.
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Increasing the applied current even more can trans-

late the V nullcline high enough so that the intersec-

tion is on the right branch. In this case the steady

state is stable and periodic motion is terminated.

w

V (mV)
60−60

1
w−null

V−null

Figure 12: Depolarized resting state, when Iap = 250 pA.

BIFURCATION ANALYSIS

The dynamics of the Morris-Lecar model as Iap
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is varied can be summarized with a bifurcation di-

agram. Such a diagram describes the asymptotic

state of the system over a range of values of a bifur-

cation parameter, in this case Iap.

V

SNP2HBSNP1 1 HB2
Iap

Figure 13: Morris-Lecar bifurcation diagram. Black: stationary branch, Red: peri-

odic branch
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One can also view the period vs. parameter, rather

than amplitude vs. parameter:

SNP2HBSNP1 1 HB2
Iap

100

Period (msec)

Figure 14: Morris-Lecar bifurcation diagram. Period of stable oscillatory solution

This is an example of a Type 2 Oscillator, since the

period is bounded. For a Type 1 Oscillator the pe-

riod is unbounded as Iap approaches a critical value,

called a homoclinic bifurcation.
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Iap

Period (msec)

HM

Figure 15: Period bifurcation diagram for a type 1 oscillator. Period approaches

infinity at the homoclinic bifurcation (HM).
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At a homoclinic bifurcation, the limit cycle con-

nects with a saddle point. In this case, one branch of

the saddle’s unstable manifold connects to a branch

of its stable manifold.
w

V (mV)
60−60

1

Figure 16: Homoclinic orbit in the phase plane. (blue) stable manifold, (brown)

unstable manifold of the saddle point (triangle). The homoclinic orbit surrounds an

unstable spiral (open circle).

From this diagram, we can see immediately why

the period of the homoclinic orbit is inifinite. (why?)
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A generic amplitude vs. applied current bifurca-

tion diagram for a type 1 oscillator looks like:

V

IapHBHM SN

Figure 17: Bifurcation diagram of a type 1 oscillator. (black) stationary branch,

(red) periodic branc. HB=supercritical Hopf bifurcation, SN=saddle node bifurca-

tion, HM=homoclinic bifurcation.
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Some neurons exhibit type 1 dynamics, so the fir-

ing rate declines to near 0 as the applied current is

decreased. Other neurons exhibit type 2 dynamics,

so the system makes an abrupt transition from con-

tinuous spiking to rest as the applied current is de-

creased. Knowing which behavior occurs allows one

to develop an appropriate model for the neuron.
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The Wilson-Cowan Model

Question: How many equations does it take to

describe a population of many thousands of

interconnected neurons?
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Answer: 2–if you use the Wilson-Cowan model.

The Wilson-Cowan model, developed in 1972 as a

model for olfaction, is an example of a mean field

model. It uses a single variable to describe the

mean firing rate of a population of excitatory neu-

rons, and a single variable for a population of in-

hibitory neurons.

E I

Figure 18: Two neural populations in the Wilson-Cowan model. One (E) is excita-

tory, the other (I) is inhibitory.

Such a model can be used profitably if there is no

special spatial or temporal structure within a sub-

population. For example, it is useful if the E neurons
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are randomly connected, but would not be useful if

the E neurons are clustered into interconnected lay-

ers.

Consider first only the excitatory population, with

no I neurons. Then

dE

dt
= [−E + fE]/τE (29)

where τE is a time constant, −E describes the first-

order decay of E towards 0, and fE describes the in-

put into E. If one used a linear function for fE, then

the system could experience uncontrolled growth.

Therefore, a saturating function is used:

fE =
1

1 + e−x
(30)

The argument x of the input function includes

both the autofeedback of E onto itself, and a

constant term (pE) representing extrinsic input:

x = aE + pE . (31)
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1

1/2

x

y

y=fE

Figure 19: The input function in the Wilson-Cowan model.

Together,

dE

dt
= [−E + fE(aE + pE)]/τE . (32)

This is a 1-dimensional system, with equilibria

satisfying

E∗ = fE =
1

1 + e−(aE∗+pE)
. (33)

A nice graphical method to solve this nonlinear al-

gebraic equation is to plot y = E and y = fE and

look for intersections.
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E

y

y=E

y=fE

E*

Figure 20: Single steady state when a = 6.

The single steady state is stable since E > fE

when E > E∗, so dE
dt < 0 in this case. Also, E < fE

when E < E∗, so dE
dt > 0. Together, these prove

that the steady state is stable.

If the strength of the autofeedback, a, is increased,

then the y = fE curve is deformed and two new

steady states are born:

The system is now bistable; the outer steady

states are stable, the inner one is unstable. The
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y

y=E
y=fE

E* E* *2 E3E1

Figure 21: The system is bistable when a = 10.

existence of the larger stable steady state E∗3 reflects

the regenerative nature of this system due to the

presence of positive feedback.

Now we add the inhibitory neurons into the sys-

tem. These are just like the excitatory neurons, ex-

cept that their output has the opposite polarity. The

I neurons provide input to both the E and I neu-
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rons, so the equations for the two types are:

dE

dt
= [−E + fE(aE − bI + pE)]/τE (34)

dI

dt
= [−I + fI(cE − dI + pI)]/τI (35)

where fI has the same form as fE. This is the

Wilson-Cowan model.

The E-nullcline is E = fE(aE− bI + pE). The

I-nullcline is I = fI(cE−dI+pI). For parameter

value pE = −5 the phase portrait is:

E

1

1

I−null

E−null

I

Figure 22: Wilson-Cowan phase portrait, excitable regime (pE = −5).
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There is a single stable steady state, but if the

phase point is perturbed past the middle branch

of the E-nullcline, then there is a regenerative re-

sponse, with E first increasing further before it be-

gins to decrease back towards the steady state. This

is very similar to an impulse produced by the Morris-

Lecar model. In the context of Wilson-Cowan, this

would correspond to a population spike. That is,

a spike of activity in the population of E neurons

followed by an I spike.

The dynamics of Wilson-Cowan are in fact very

similar to the dynamics of Morris-Lecar:

E ⇐⇒ V

I ⇐⇒ w.

These are both prototypical models of an excitable

system.
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Like Morris-Lecar, Wilson-Cowan can produce limit

cycle behavior. Increase the pE parameter, translat-

ing the E-nullcline upward so that the intersection

is on the middle branch.

E

1

1

I

I−null

E−null

Figure 23: Limit cycle behavior, when pE = −1.

This produces a periodic train of population spikes.
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