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The Hodgkin-Huxley-type models of nerve activ-

ity are based on ionic currents that are produced

as the result of ion flux through channels. We have

thus far assumed that there are enough channels so

that a deterministic approach to the fraction of open

channels is appropriate. However, this assumption

is not always valid. For example, patch clamp elec-

trical recordings measure the electrical activity in a

small patch of membrane, where there are only a

few channels.

As another example, in some cells there are only

a few (100 or less) channels of a particular type.

In this case, the variance in the number of open

channels can be quite large compared with the mean,

so once again the deterministic approach (which is

a description of the mean) is questionable. As a
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Figure 1: Cell-attached patch clamp illustration.

(en.wikipedia.org/wiki/Patch clamp)
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Figure 2: Current measurement using cell-attached patch clamp.

(www.biophysj.org/cgi/content/full/82/6/3056)
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final example, in some cases the noise in the system

can be a key component for signal amplification and

transmission. Leaving out the noise fundamentally

changes the signal transduction process.

The outline for this talk is

1. Description of a stochastic ion channel using a

Markov model

2. Using the Monte Carlo method to simulated the

stochastic behavior of the channel and then a

population of channels

3. A stochastic Morris-Lecar model

4. How noise can help, Stochastic Resonance
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Single channel as a 2-state Markov process

For an excellent reference see Chapter 11 by Greg

Smith in “Computational Cell Biology” (Fall et al.,

2002).

A simple ion channel has a single closed and single

open state:

C O
k

_
k +

Figure 3: State diagram for a single ion channel

The state of the system is given by the random

variable s ∈ C, O. Define

Pc(t) = Prob[s = C, t] (1)

Po(t) = Prob[s = O, t] (2)

The parameter k+ is the C → O rate (units of

ms−1). If the channel is closed at time t, the prob-
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ability that it will open by time t + ∆t is

Prob[s = O, t + ∆t|s = C, t] = k+∆t (3)

This is a conditional probability. Must mul-

tiply by the probability that the channel is in state

C at time t. Finally,

Prob[C → O] = Prob[s = O, t + ∆t|s = C, t]× Pc(t)

= k+∆tPc(t) . (4)

C O

A closed channel must either open or stay closed, so

Prob[s = C, t + ∆t|s = c, t] = 1− k+∆t (5)

and therefore,

Prob[C → C] = Prob[s = C, t + ∆t|s = C, t]× Pc(t)

= (1− k+∆t)Pc(t) . (6)
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C O

Similarly,

Prob[O → C] = k−∆tPo(t) (7)

C O

and

Prob[O → O] = (1− k−∆t)Po(t) . (8)

C O

What is the probability that the channel is closed at

time t + ∆t?



9

Pc(t + ∆t) = Prob[C → C] + Prob[O → C]

= (1− k+∆t)Pc(t) + k−∆tPo(t) (9)

C O

Similarly,

Po(t + ∆t) = Prob[O → O] + Prob[C → O]

= (1− k−∆t)Po(t) + k+∆tPc(t)(10)

C O

These transition probabilities can be written in

matrix/vector form as

~P (t + ∆t) = T~P (t) (11)

where

~P =

(
Pc

Po

)
(12)
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and where T is the transition probability matrix:

T =

(
Prob[s = C, t + ∆t|s = C, t] Prob[s = C, t + ∆t|s = O, t]
Prob[s = O, t + ∆t|s = C, t] Prob[s = O, t + ∆t|s = O, t]

)
=

(
1− k+∆t k−∆t

k+∆t 1− k−∆t

)
(13)

Notice that the elements of each column sum to 1,

which must occur in any transition probability ma-

trix.

Equation 11 is a recursion relation that tells how

to move one step forward in time. Because the equa-

tion is linear it can be solved, providing a formula

for moving n steps forward in time:

~P (t + n∆t) = Tn ~P (t) (14)

Alternatively, one can solve Eq. 11 using eigen-

values and eigenvectors of T. Starting from time

t = 0,

~P (n∆t) = c1λ
n
1
~X1 + c2λ

n
2
~X2 (15)

where c1 and c2 come from initial conditions. What
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do we know about the eigenvalues of T?

• Columns of T add to 1, so colums of T− I add

to 0.

• Since row1 + row2 is the zero row, the two rows

are linearly dependent.

• This means that T− I is singular, so it has a 0

eigenvalue.

• This means that λ1 − 1 = 0, so λ1 = 1, and T

has an eigenvalue of 1!!

The eigenvector associated with λ1 = 1 is

~x1 = C

(
k−

k−+k+

k+

k−+k+

)
(16)

The other eigenvalue will be less than 1 (or ~P (n∆t)

would blow up as n → ∞). Choosing C = 1/c1,
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then

~P (∞) =

(
k−

k−+k+

k+

k−+k+

)
(17)

so that the equilibrium probability that the

channel is open (p) is

p =
k+

k+ + k−
(18)

and the equilibrium probability that the chan-

nel is closed (1− p) is

1− p =
k−

k+ + k−
(19)
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Monte Carlo Simulation

One can simulate the stochastic gating of a single

channel or population of M channels using a Monte

Carlo simulation. This type of simulation technique

is used often in biological settings as well as other

areas of application.

Consider first a single stochastic ion channel. Sup-

pose that it is closed at time t. The probability

that it opens by time t + ∆t is k+∆t. Otherwise

it stays closed. To determine what happens, pick a

uniformly distributed random number on the inter-

val [0, 1]. Then,

0 1+∆k t

* *
opens stays closed

This random number (Ran) can be obtained from a
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pseudo-random number generator, available on any

computer.

The value of Ran determines whether the chan-

nel opens or stays closed. Once this has been deter-

mined the new state of the channel is printed out,

time is incremented by ∆t, and the process is re-

peated. The transition matrix gives the required

probabilities for making either C → O or O → C

transitions.

The figure below shows the results from 3 Monte

Carlo simulations, each with different values of the

transition rates k+ and k−.

Comparison of the first two panels shows that

there are more transitions made with the larger k+

and k−, and that the dwell times in each channel

state are shorter. In fact, it can be shown that the
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mean closed and mean open dwell times are:

< τc > =
1

k+
(20)

< τo > =
1

k−
. (21)

The dashed curve is the running sample mean:

< s > =

∑n
i s(i)

n
. (22)

In the top two panels, where k+ = k− this converges

to 1/2. This is like the probability of getting “heads”

with the toss of an unbiased coin. It is also equal to

the eqiulibrium probability that the channel is open,

p =
k

k + k
(23)

=
1

2
. (24)

In the bottom panel, k+ > k− so <τc > < <τo >,

which is evident in the figure. Also,

p =
0.2

0.2 + 0.05
(25)

= 0.8 (26)
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which is clearly the value that the running sample

mean converges to.

Monte Carlo Simulation of a Population of Channels

Two approaches to simulating a population of M

stochastic ion channels:

1. Use M Markov variables, one for the state of

each channel

2. Use a single Markov variable for the number of

open channels

The first approach is a simple extension of the

single-channel case. The benefit of this approach

is that you know the state of each channel. The

down side is that it is computationally expensive
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(particularly if M is large), and it may produce more

information than you need.

The second approach provides less information,

but is computationally more efficient. Here we let Sj

represent an ensemble with j open channels.

Then the transition diagram is

S0 S1 S2
. . . SM−1 SM

M k+ (M−1) k+

2 k−k−

k+

−M k

To see how to implement this using a Monte Carlo

approach, suppose that there is initially 1 open chan-

nel, i.e., the system is in state S1. Then the proba-

bility of moving to S0 is k−∆t and of moving to S2

is (M − 1)k+∆t. Thus,

0 1*

(M−1)k k−∆ t

* *

1−(...)

go to S2 go to S0 stay at S1

t∆+
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Note: Picking the time step can be tricky. It must

be small enough so that probabilities are less than

1. If it is too small than the simulation takes a

long time to run. Usually trial and error is the way

people set ∆t. There is another method, called the

Gillespie method in which the time step is deter-

mined algorithmically according to the values of the

transition rates.
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Figure 4: Monte Carlo simulation with M = 4 independent ion channels. Uses a

single Markov variable. Running mean converges to Mp, where p is equilibrium

probability that a channel is open.
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Stochastic Morris-Lecar Model

Recall the deterministic Morris-Lecar model for

neural excitability:

dV

dt
= −(ICa + IK + IL − Iap)/C (27)

dw

dt
= [w∞(V )− w] /τ (V ) . (28)

where an applied current is included in the V equa-

tion. Also, w is the fraction of open K+ channels

(or probability that a K+ channel is open). This

comes from the 2-state transition diagram

C O
k

_
k +

The forward and backward rates are now both V-

dependent, and

w∞(V ) =
k+

k+ + k−
(29)

τw(V ) =
1

k+ + k−
. (30)
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Solving for k+ and k−,

k+ =
w∞(V )

τw(V )
(31)

k− =
1− w∞(V )

τw(V )
(32)

where the Morris-Lecar w∞(V ) and τw(V ) functions

are

w∞(V ) =
1

2

[
1 + tanh

(
V − 2

30

)]
(33)

τw(V ) =
1

0.4 cosh
(

V−2
60

) . (34)

When the number of K+ channels is large one

can use the Law of Mass Action to convert the

2-state diagram into the ODE for w. Then w is in-

terpreted as the mean fraction of open chan-

nels. The ODE describes the time-variation of the

mean. However, if the number of K+ channels is

small, then a stochastic description is more appro-

priate. In this case, we have a stochastic model in
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which V is described by the ODE and w is described

as a Markov process for M channels.
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The Algorithm

1. Initialize V and assume that no K+ channels are

open (system is in state S0).

2. Use the Forward Euler method to discretize the

V -ODE:

Vj+1 = Vj −
∆t

C
[ICa(Vj) + IK(Vj, wj) + IL − Iap]

where j = 0, 1, . . . is the time index. The wj

is the fraction of open K+ channels, determined

by the Markov process (divide number of open

channels by M) simulated via Monte Carlo.

3. Update the k+ and k− rates using voltage Vj,

then use these kinetic rates to update the state

of the Markov variable (i.e., pick a random num-

ber and determine if another channel opens or

closes).
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4. Increment time and return to step 2.



26

Example 1

When Iap = 80 pA the deterministic Morris-Lecar

model has a single stable steady state, at a hyper-

polarized voltage. The system is excitable, so it can

produce an action potential if perturbed from rest.

The figures below shows simulations from both the

deterministic and the stochastic M-L models, first

with M = 50, then M = 200 channels, and then

M = 1000 channels.



27

0 100 200 300 400 500
Time (msec)

0.0

0.5

1.0

w

0 100 200 300 400 500
−80

−30

20

70

V
 (

m
V

)

Iap=80

M=50
deter.

Figure 5: Deterministic (red) and stochastic (black) models with 50 K+ channels.

Applied current is Iap = 80 pA.
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Figure 6: Deterministic (red) and stochastic (black) models with 200 K+ channels.

Applied current is Iap = 80 pA.
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Figure 7: Deterministic (red) and stochastic (black) models with 1000 K+ channels.

Applied current is Iap = 80 pA.
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Example 2

When Iap = 150 pA the deterministic Morris-

Lecar model has a stable limit cycle, resulting in

periodic spiking. Even with M = 50 channels this

behavior is mostly captured by the stochastic model.

In this case the system is not sitting near a thresh-

old, so the stochastic effects are weaker.
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Figure 8: Deterministic (red) and stochastic (black) models with 50 K+ channels.

Applied current is Iap = 150 pA.
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Example 3

In the following figure two of the M-L parameters

were modified, and Iap = 80 pA. What’s happening

here?
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Figure 9: Deterministic (red) and stochastic (black) models with 50 K+ channels.

Applied current is Iap = 80 pA, also v3 = 30, v4 = 60.
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Stochastic Resonance

Randomness in the system is often looked upon as

a bad thing, or at least as inconvenient since simula-

tions take longer and are harder to interpret. How-

ever, stochasticity can be good! In fact, it

can be necessary for transmission of a signal. The

concept of stochastic resonance was first described

in the 1980’s and has now been applied to many

physical systems, including neuronal systems.

As an example, consider the stochastic Morris-

Lecar model. Set the parameters so that there is a

single stable steady state at a hyperpolarized volt-

age. The deterministic system produces a spike if

perturbed past the spike threshold, but otherwise

it is silent. We now add a small sinusoidal applied

current with period T = 200 msec. This has little
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effect on the voltage, as shown in the figure below.
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Figure 10: Deterministic Morris-Lecar model with small-amplitude sinusoidal forc-

ing. The forcing has negligible effect on voltage.
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If we apply the same sinusoidal current to the

stochastic model with M = 20 K+ channels, then

we get the following:
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Figure 11: Stochastic Morris-Lecar model (M = 20) with small-amplitude sinusoidal

forcing. The spiking frequency is much different than the forcing frequency.

The spiking frequency is much faster than the forc-
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ing frequency, so the weak input signal is not re-

flected in the cell’s output.

We now increase the number of K+ channels to

M = 100:
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Figure 12: Stochastic Morris-Lecar model (M = 100) with small-amplitude sinu-

soidal forcing. The spiking frequency is approximately that of the forcing frequency.
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Now the spiking output of the cell is approximately

the same as the sinusoidal input.
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That worked well, let’s increase channel number

further, to M = 1000:
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Figure 13: Stochastic Morris-Lecar model (M = 1000) with small-amplitude sinu-

soidalforcing. The cell hardly spikes.

Now the output does not reflect the input at all!

With M large the stochastic model is like the deter-
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ministic model.
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These simulations can be summarized with a plot

of the match of the output response to the input sig-

nal, where a value of 1 means a perfect match and

0 means no match.

1

response

M100

Figure 14: Match of output and input signals for different values of channel number

M .

This is an example of stochastic resonance.

Moral of today’s story: The stochastic model

is not just a noisy version of the deterministic model.

The output of the two can be dramatically different.
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