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Synchronization occurs often in biological sys-

tems. For example, neurons of the region of the hy-

pothalamus called the suprachiasmatic nucleus ex-

hibit circadian oscillations in electrical activity. These

rhythms are synchronized, so that the peak of ac-

tivity occurs simultaneously in all or most of the

neurons.
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Figure 1: From Repper and Weaver, Nature, 418:935, 2002
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As another physiological example, the β-cells within

a pancreatic islet all burst in synchrony, resulting in

coordinated insulin release from all the β-cells in an

islet.
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Figure 2: From Valdeolmillos et al., J. Physiol., 493:9, 1996
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In some cases, the oscillators are in antiphase with

one another. That is, their phases differ by 180o.

One example of this is when two model neurons

are electrically coupled and the coupling strength

is weak. This electrical coupling occurs through gap

junctions.
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Figure 3: From Sherman and Rinzel, Proc. Natl. Acad. Sci. USA, 89:2471, 1992
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Phase Oscillators

The biological mechanisms through which oscilla-

tors are coupled and can become synchronized differ

from situation to situation. However, mathematical

descriptions of coupled oscillators can reveal some

general principles. This area of mathematics is quite

well developed, largely due to the efforts of Bard

Ermentrout, Nancy Kopell, Arthur Win-

free, Yoshiki Kuramoto, and Eugene Izhike-

vich. We will just touch on some of this theory,

beginning with the description of a phase oscillator.

Ω
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0

x
θ

Γ U

Let Γ denote a stable limit cycle for some system
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of differential equations. Then there exists a con-

tinuous function Ω that maps each point on Γ to a

point on the unit circle U . That is, one can pick a

point on Γ, call it x0, and map it to θ = 0. Then

every other point on Γ is mapped to another point

θ on U in a continuous fashion.

The dynamics of the original stable limit cycle are

replicated by the phase oscillator

dθ

dt
= ω (1)

θ is the phase relative to x0 and ω is the phase

speed. The period of the limit cycle oscillation,

and the period of one complete loop around the unit

circle U , is then T = 2π
ω .
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Entrainment of Fireflies

The following example comes from Strogatz (1994).

In one species of southeast Asian fireflies the males

gather in trees at night and begin flashing. Different

flies flash at different frequencies when in isolation,

and if they did this as a group then flashing in the

trees would be continuous. However, periodic flash-

ing is what is actually observed. This indicates that

the fireflies synchronize their activity. This observa-

tion motivated experiments in the 1970’s in which

a flashlight was used to entrain flies to the flashing

period of the flashlight.

Represent the flashing of the flashlight as a uni-

form phase oscillator:

ψ̇ = Ω (2)

where Ω is a constant. Represent the firefly flashing
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as a nonuniform phase oscillator:

θ̇ = ω + A sin(ψ − θ) (3)

where ω is the natural frequency of the firefly and A

is the coupling strength (assume that A > 0). If

ψ > θ, then A sin(ψ− θ) > 0 and the firefly speeds

up, trying to catch up to the flashlight.

flash

ψ

θφ

Define the phase difference as φ ≡ ψ − θ.

Then

φ̇ = ψ̇ − θ̇ (4)

= Ω− ω − A sinφ . (5)

The 3 parameters (Ω, ω, and A) can be replaced by
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a single parameter µ by non-dimensionalizing

the system:

t has units of seconds

Ω, ω, and A have units of radians per second.

Define the dimensionless variables τ ≡ At and µ ≡
Ω−ω
A . Then

dφ

dt
=
dφ

dτ

dτ

dt
(6)

=
dφ

dτ
· A (7)

and

Ω− ω − A sinφ = Aµ− A sinφ . (8)

Combining, we get the phase equation in dimen-

sionless form:

dφ

dτ
= µ− sinφ (9)
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Parameter Exploration

In parametric systems it is typical to explore pa-

rameter space to get a better understanding of the

range of behaviors that the system of equations can

exhibit. In our dimensionless equation the parame-

ter space is one-dimensional (unlike the 3-dimensional

space of the original dimensional phase equation).

Case 1: µ = 0

The phase difference equation is

dφ

dτ
= − sinφ (10)

Steady state: φ∗ = 0 (and mutliples of 2π).

Since φ = 0 corresponds to θ = ψ, the firefly

synchronizes with the flashlight. That is, it is en-

trained and the phase difference is 0. So even
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though the phase of the firefly may initially be dif-

ferent from that of the flashlight, it will eventually

synch up.

We can view the phase portraits of the phase dif-

ference on either the number line or the circle dia-

gram.

φ

φ’

−1

1

−π π
0π

Case 2: 0 < µ < 1

When µ is increased beyond 0 it translates the ve-

locity curve upward. The new stable steady state φ∗1

is at a non-zero values, so the firefly and flashlight

will be phase locked but not synchronized.
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The two steady states (stable and unstable) satisfy

φ∗ = arcsin(µ) (11)

and the smaller of the two solutions is the stable

one. In terms of the phase circle diagram (not the

phase difference circle diagram):

ψ

θφ1
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φ1
*ψ
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Case 3: µ = 1

In this case there is a single steady state,

φ∗ = arcsin(1) =
π

2
(12)

and the velocity curve is tangent to the φ-axis. The

system has gone through a saddle node bifurcation.

φ

φ’

−1

1

0
π/2

π/2

φ

The steady state is half stable since it attracts

on one side and repels on the other.
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Case 4: µ > 1

Now the velocity curve never intersects the φ-axis, so

the phase difference continues to change over time.

This is called phase drift. In this case, the flashlight

fails to entrain the firefly.

φ

φ’

−1

1

0

φ

If µ < 0 the cases are similar to these, except

that the firefly leads the flashlight (φ∗ < 0). We can

then give the entrainment window, the range of µ

over which the system is entrained. In terms of the

dimensionless parameter µ this is:
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−1 1
µ

While in terms of the original parameters (dimen-

sioned) it is:

ω− ω+A A
Ω

Isochrons

Previously we defined a phase for each point on

a limit cycle. If the limit cycle is stable, then we

can extend this idea to all points within the basin

of attraction of the limit cycle. We do this through

the use of isochrons. An isochron is a set of points

that all have the same asymptotic phase. That

is, all points on an isochron will approach the same

phase on the limit cycle as t→∞. There will be an
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isochron for each phase value, and thus each point

in the basin of attraction will lie on an isochron. In

this way, we define the phase of each point in the

basin according to which isochron it lies on.

Example (Winfree, 2001)

Consider the polar system of equations:

dr

dt
= (1− r)r2 (13)

dφ

dt
= r . (14)

There is a stable solution of r = 1, which is a circular

limit cycle. It can be shown that the isochrons are:

φ = θ +
1

r
− 1 (15)

where θ is the phase associated with the isochron.

Four isochrons and the limit cycle are shown below.
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Isochrons are useful for understanding phase tran-

sition curves and phase response curves. Suppose

that a phase point moving along a limit cycle is

given an instantaneous perturbation, knocking it off

the limit cycle but not out of the basin of attraction

of the limit cycle. Then the point will land on an

isochron, which tells us the phase of the point once it

comes back to the limit cycle. The phase transition

curve (PTC) plots the new phase of the point as a

function of the stimulus phase. The phase response

curve (PRC) plots the phase difference as a function

of the stimulus phase.

Example

Consider a planar system with the following circular

stable limit cycle and radial isochrons:
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Figure 4: Limit cycle, isochrons, and image for weak perturbations.
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The solid circle is the limit cycle. The dashed

circle is the result of a small horizontal perturba-

tion applied to any point on the limit cycle. Con-

sider the case illustrated with a black horizontal line.

The isochron intersecting the solid circle at point a

defines the original phase, while the isochron inter-

secting the dashed circle at point b defines the new

phase. The phase transition curve for this example

is shown below.
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Figure 5: Type 1 Phase Transition Curve (PTC) for weak perturbations
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For values of θ at which the PTC is below the

dashed 45o line the phase is delayed by the pertur-

bation, while for values at which the PTC is above

the line the phase is advanced.
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The phase response curve (PRC) is formed

by computing the difference between the dashed line

and the PTC at each θ, as shown below.
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Figure 6: Type 1 Phase Response Curve (PRC) for weak perturbations
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In this last example the perturbations were weak,

and this is called Type 1 phase resetting. For large

perturbations the situation is quite different:

Figure 7: Limit cycle, isochrons, and image for strong perturbations.

When a perturbation is applied at θ ∈ (0, π) the

response is delayed, just as before. However, while

the new phase was previously a monotonic increas-

ing function of the old phase, it now first increases
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but then decreases on the interval θ ∈ (0, π). The

blue isochron corresponds to the maximal new phase

value. At θ = π the new phase is 0 (light blue

isochron) and for larger θ becomes negative. The

new phase grows in magnitude initially, but then at

some point (brown isochron) begins to decline to-

ward 0. This is called a Type 0 PTC.
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Figure 8: Type 0 PTC for strong perturbations
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If one restricts the phase to the interval [0, 2π),

then the Type 0 PTC can be represented as follows:
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Figure 9: Alternate form of Type 0 PTC
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What does the Type 0 PRC look like?
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Figure 10: Type 0 PRC for strong perturbations
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The type 1 and type 0 PRCs are fundamentally

different. In the first case the curve is continuous,

while in the second case it has a discontinuity.

Phase transition and response curves are impor-

tant both in understanding synchronization prop-

erties of weakly coupled oscillators and for under-

standing something about an actual biological os-

cillator. In the latter case, it is often possible to

determine PTCs and PRCs experimentally. These

give insight into how sensitive the system is to per-

turbations, and place constraints on mathematical

models of the system (i.e., the model PRC should

look similar to the experimental one).
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Synchronization of Weakly Coupled Oscillators

Here we see how the PRC can help in the analysis

of two endogenous oscillators that are mutually cou-

pled. The mathematical theory is most developed

for the case where coupling is weak.

Consider the two coupled oscillators

d~x1

dt
= f1(~x1) + ~g12(~x1, ~x2)

d~x2

dt
= f2(~x2) + ~g21(~x1, ~x2) (16)

where f is the oscillator’s velocity function and g is

the coupling function. Also, ~x ∈ <n where n ≥ 2.

The corresponding phase model is

θ̇1 = ω1 +Q1(θ1)g12(θ1, θ2)

θ̇2 = ω2 +Q2(θ2)g21(θ1, θ2) (17)

where ω is a natural frequency of the oscillator and

Q(θ) is the infinitesimal PRC. How does this come
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about? Basically, by the chain rule,

dθ

dt
=
dθ

dx

dx

dt
(18)

and dx
dt is equivalent to g, while dθ

dx describes how the

phase responds to a small perturbation in x. This dθ
dx

is Q, which is the PRC normalized by the amplitude

of the pertubation, A, in the limit as A→ 0:

Q(θ) = lim
A→0

PRC

A
. (19)

Equation 17 can be rewritten as

θ̇1 = ω1 + h12(θ1, θ2)

θ̇2 = ω2 + h21(θ1, θ2) (20)

where h12 = Q1g12 describes the influence of oscil-

lator 2 on oscillator 1.

One can then average the influence of one oscilla-

tor on the other by averaging h over all time. This
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gives the H-function:

H12(χ) = lim
T→∞

1

T

∫ T

0

h12(t, t + χ) dt (21)

where χ = θ2 − θ1. Then the phase equation be-

comes

θ̇1 = ω1 +H12(θ2 − θ1) (22)

θ̇2 = ω2 +H21(θ1 − θ2) (23)

The H-function is a constant unless the oscillators

are nearly resonant, i.e., T1/T2 ≈ p/q where

p + q is small.

• H constant =⇒ oscillators phase drift.

• If the oscillators are nearly resonant then it is

possible for the oscillators to phase lock.
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Example

Consider two coupled oscillators with nearly equal

natural frequencies:

θ̇1 = ω1 +H12(θ2 − θ1) (24)

θ̇2 = ω2 +H21(θ1 − θ2) . (25)

Let χ = θ2 − θ1, then

χ̇ = ω +H(χ) (26)

where ω = ω2−ω1 and H(χ) = H21(−χ)−H12(χ).

To determine a phase locked solution (χ∗) one finds

the steady state solutions to this phase difference

ODE. These satisfy

H(χ∗) = −ω . (27)

This can be done graphically by plotting y = H(χ)

and y = −ω and looking for intersections of the two

curves.
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In the Kuramoto model H(χ) = − sin(χ). To

find phase locked solutions in this case, one plots

y = − sin(χ) and y = −ω. The solution is stable

if the slope of the graph of H is negative at the

intersection.

χ

y=H

y= −ω

π 2π
χ1

* χ*
2

Figure 11: Two phase locked solutions, one stable and the other unstable.

In the stable phase-locked steady state oscillator

2 leads oscillator 1 by a phase angle of χ∗1. The

opposite would occur if w < 0.
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2

1
χ1

*

θ

θ

Figure 12: When phase locked, oscillator 2 leads oscillator 1 by a phase angle χ∗
1 .

If the oscillators are actually identical, then w =

0 and the two phase locked solutions are at χ =

0 (the synchronous solution) and χ = π (the

antiphase solution). The synchronous solution

is stable.

χ

y=H

π 2π

Figure 13: For identical oscillators the synchronous solution is stable.
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The End


