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Typical Goals of Biological Modeling

1. Integrate and interpret the data

2. Make testable predictions

3. Design experiments

4. Find the gaps in the box/arrows diagrams
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Types of equations used in dynamic models?

Deterministic equations

With these equations, the state of the system at time t + ∆t

is completely determined by the state of the system at earlier

time points. For example, the equations for planetary motion

are deterministic, they tell us the location of the earth tomor-

row given its location today.

Stochastic equations

These equations include probabilistic events. Given the state

of the system at time t, there are a range of possible states at

time t + ∆t, based on a probability distribution function. For

example, if there are 10 ion channels in a patch of membrane

and 5 are currently open, there may be 4, 5, or 6 channels open

at the next instant of time, t + ∆t. This would be described

by stochastic equations.
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Ordinary differential equations

These have a single independent variable, which is time in the

case of dynamic models. For example,

du

dt
= au2 + bu + c .

The independent variable is time t, the single dependent vari-

able is u, and a, b, and c are parameters. These parameters

are constants that are typically adjusted over time by iterating

between model prediction and experimental tests.

Partial differential equations

These have 2 or more independent variables, one of which is

time for dynamic models. The others are often spatial di-

mensions. For example, the diffusion of Ca2+ within a cell

would be described by a partial differential equation:

∂u

∂t
= D52 u

where u is the Ca2+ concentration at a location in the cell, D

is a parameter, the diffusion coefficient, and 52 represents

partial derivatives with respect to the spatial variables.
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Linear equations

These have only constant terms or terms to the first power

of u in the right hand side of the differential equation. For

example,
du

dt
= au + b

where a and b are parameters. There may be several differen-

tial equations, one for each dependent variable. For example,

du

dt
= au + bv + c

dv

dt
= du + ev + f

where u and v are the two dependent variables. This is a

system of linear ODEs. Because of the linearity, it is possible

to derive a formula for the solution. This would tell us the

values of u and v in terms of time t for all points in time.

Before the advent of computers, the vast majority of math

models were linear!
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Nonlinear equations

These have one or more terms in the right hand side of the

equation involving u2, u3, eu, etc. or with two or more depen-

dent variables multiplied together. For example,

du

dt
= au4

or the system

du

dt
= auv + b

dv

dt
= cu + dv + e .

It is typically not possible to write down a formula for the

solution of a nonlinear ODE (or PDE). Instead, one uses a

computer to solve the equations using numerical techniques,

and often uses qualitative analysis to understand the long-term

behavior of the dependent variables without actually solving

the equations. Most modern biological models are

nonlinear.
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Model Dimensionality

This is typically the number of dependent variables, and

therefore the number of differential equations. Models with 2

dependent variables are called planar models. These are

the simplest models that can produce oscillations, so are often

used by modelers when possible.

A special case exists for differential equations that contain

a time delay. These are called delay differential equations. For

example,
du

dt
= au + buτ

where uτ = u(t − τ ) is the u variable delayed by τ time

units. Models containing this type of equation can be useful in

physiological settings, for example, when a hormone secreted

from a cell has an effect on another cell, but only after it has

circulated through the blood. These equations have dimension

of infinity!
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Analysis of a 1-Dimensional Model

Example, a one-dimensional nonlinear ODE:

du

dt
= p− u(u− 0.5)(u− 1)

where p is a parameter. Start with p = 0. The RHS tells how

u changes over time, i.e., the velocity of u.

0.5 1
u

velocity

Figure 1: p = 0

The circles are points where the velocity is 0. That is, they

are equilibria, also called steady states. Those colored in red

are stable, while the open circle is unstable.
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• What happens if the initial value of u (the initial condi-

tion) is less than 0.5?

• What happens if the initial u value is greater than 0.5?

The system is bistable, while the unstable steady state is

the threshold between the initial conditions attracted to the

leftmost stable steady state (this is the basin of attraction

of this attractor) and the basin of attraction of the rightmost

attractor.

0.5 1
u

velocity

left basin

right basin

Figure 2: Phase portrait, p = 0

Since this system is one-dimensional, the phase space is just
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a line, the x-axis of the figure above. The figure showing the

flow on the phase space is called a phase portrait. The dyanam-

ics can also be viewed as u versus time for different initial values

of u, as follows

t

0.5

1

u

Figure 3: Time course, p = 0

Note: This analysis was all done without solving the differ-

ential equation. No computer is required!

Example: p > 0

When the parameter p is increased the velocity curve is trans-
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lated upwards. This shifts the locations of the steady states.

For p sufficiently large the two leftmost steady states coalesce

and disappear, leaving only a single steady state (blue). This

event is called a bifurcation, since the qualitative properties of

the system change here.

1

velocity

u

p=0

p>0

p>>0

Figure 4: Various p values

The change in the long-term dynamics as p is increased

can be summarized with a bifurcation diagram. We plot the

equilibria for a range of values of the parameter p, indicat-

ing whether they are stable (solid curve) or unstable (dashed
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curve).

p

1

0.5
bifurcation

u

Figure 5: Bifurcation diagram for 1-D model

Analysis of a Planar Model

As an example we look at a well-known planar model for elec-

trical activity in a barnacle muscle. This model, the Morris-

Lecar model (1981), has been used as the starting point for

models of many other cell types, including endocrine cells.
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The Morris-Lecar Model

• One hyperpolarizing current: IK = ḡKw(V − VK), where

V is the membrane potential, VK is the K+ Nernst po-

tential, ḡK is maximum conductance and w is an acti-

vation variable, the fraction of open K+ channels. w

approaches its equilibrium value, w∞(V ), with a time

constant τw = τw(V ):

dw

dt
= [w∞(V )− w] /τw(V ) .

• One depolarizing current: ICa = ḡCam∞(V )(V − VCa),

which is assumed to activate instantaneously.

• One leakage current: IL = gL(V − VL), which is depolar-

izing and has a V -independent conductance.

• One capacitance current: IC = C dV
dt , where C is the mem-

brane capacitance.

• One applied current: Iap, the current applied through an

electrode.
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Figure 6: Calcium and potassium equilibrium and time constant functions
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By Kirchoff’s Current Law (conservation of charge), the sum

of these current must be 0:

IC + ICa + IK + IL − Iap = 0

or
dV

dt
= −(ICa + IK + IL − Iap)/C.

Summary: The ODEs for the Morris-Lecar model are:

dV

dt
= −(ICa + IK + IL − Iap)/C

dw

dt
= [w∞(V )− w] /τw(V ) .

Since this model is 2-dimensional, the phase space is the 2-

dimensional plane. There are a set of tools that can be used to

analyze dynamics in the plane. The first tool is the nullcline.

This is a curve in which the rate of change (velocity) of one

of the variables is 0. There are two nullclines, one for each

variable. Equilibria occur at points where the two nullclines

intersect.
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V -nullcline:

w =
Iap − ḡCam∞(V )(V − VCa)− ḡL(V − VL)

gK(V − VK)

w-nullcline:

w = w∞(V ) .

We now construct the phase portrait, which will now be

drawn in the V w-plane.

w

V (mV)
60−60

1
w−null

V−null

Figure 7: Black circle: equilibrium, Red: subthreshold response, Green: impulse.

Iap = 0.

The middle branch of the cubic-shaped V -nullcline is the im-
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pulse threshold. Other planar models for impulse generation

have been developed. Most have cubic-like V -nullclines.

Increasing the applied current translates the V -nullcline up-

ward. The steady state can become unstable when the in-

tersection is on the middle branch, through a Hopf bifurca-

tion. The stable steady state is replaced with a stable limit

cycle. This limit cycle represents a periodic train of action

potentials.

w

V (mV)
60−60

1
w−null

V−null

Figure 8: Green: Limit cycle. Iap = 100 pA.
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Figure 9: A periodic train of action potentials, when Iap = 100 pA.
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If the applied current is increased enough that the w-nullcline

and V -nullcline intersect on the right branch, then the steady

state is stablized through a second Hopf bifurcation. This cor-

responds to a depolarized steady state and reflects excitation

block.

w

V (mV)
60−60

1
w−null

V−null

Figure 10: Depolarized resting state, when Iap = 250 pA.

These behaviors can be summarized with a bifurcation dia-

gram:
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Figure 11: Morris-Lecar bifurcation diagram. Black: stationary branch, Red: peri-

odic branch
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Models with Dimension > 2

For these models the analysis is harder since nullclines are no

longer applicable. More importantly, much more complicated

dynamic behavior can occur. This includes chaos, where the

time courses of the variables are unpredictable. One example

is the Lorenz equations, which for a range of parameter values

produce chaos:
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Figure 12: Chaotic time course from the Lorenz equations
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Figure 13: Chaotic trajectory in the uw-plane
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Stochastic Models

In many instances the system under study has a substantial

degree of randomness in it. For example, the following patch

clamp recording shows the random or stochastic opening of

channels in a patch that contains 4 or more ion channels.

Figure 14: Cell-attached patch clamp measurement

This behavior cannot be captured by deterministic differen-
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tial equations; it requires a stochastic model.

The dynamics of an ion channel can be described most sim-

ply as a 2-state Markov process, with the following kinetic

scheme:

C O
k

_
k +

where C and O represent closed and open channels states,

respectively, and k+ and k− are forward and backward tran-

sition rates, respectively. These rates reflect probabilities, and

the stochastic transitions between C and O can be simulated

using a Monte Carlo algorithm.

The following figure shows the result of a Monte Carlo sim-

ulation of the opening/closing of a single ion channel. 0 means

the channel is closed, 1 means it is open.
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Figure 15: Monte Carlo simulation of single ion channel with various transition

rates. Red curve is time average of the fraction of time the channel is open.
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The Monte Carlo simulation can be applied to a population

of channels, as in the case below for a population of 4 channels.
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Figure 16: Monte Carlo simulation of a population of 4 ion channels. Green curve

is the time-averaged number of open channels.
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One can also create a hybrid model that combines deter-

ministic equations with stochastic processes. For example, the

voltage differential equation from Morris-Lecar can be used,

but the differential equation for the fraction of open K+ chan-

nels is replaced by a Markov process. This process consists

of a population of 50 K+ channels with opening/closing simu-

lated with Monte Carlo. Then the fraction of open channels at

each time point (w) is calculated and used in the V differential

equation. This produces a noisy voltage trace.
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Figure 17: Simulation from a hybrid Morris-Lecar model. Red curve is the trace

from the deterministic model.
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That’s all folks, enjoy the workshop!!


