The Relationship Between Two Fast/
Slow Analysis Techniques for
Bursting Oscillations

Richard Bertram

Department of Mathematics
Florida State University
Tallahassee, Florida



Collaborators and Support

Joél Tabak Wondimu Teka

Supported by NIH grant DK 043200 and NSF grant DMS 0917664



2-Fast/1-Slow Analysis: a Powerful
Tool for Understanding Plateau
Bursting
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Pseudo-Plateau Bursting Occurs in
Some Pituitary Cells

1 sec

Electrical recording from a GH4 pituitary cell line

Bursts are short and the spikes have very small amplitude.

Characteristic of bursting in pituitary lactotrophs and somatotrophs



Pseudo-Plateau Bursting Presents New
Challenges
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Trajectory does not follow the z-curve, and
there is no periodic spiking branch!

The spikes go away as €_is decreased to O



An Alternate Approach

eV =f(V,n,c)
n=g(V,n)
c=¢h(V,c)

Analyze the reduced system obtained in the limit &, = C, — 0

Voltage V is in a state of with nand ¢



The Critical Manifold

Surface in 3-space where V is at quasi-equilibrium

RHS of V-ODE: JV.n,c)=—(g, +1g + 1 + 1)

Critical manifold: S = {(V,n,c) ER’: f(V,n,c) = 0}
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The Flow on the Critical Manifold

RHS of V-ODE: f(V,I’l,C) = _(ICa + IK + ISK + IBK)

Critical manifold: S = {(V,n,c) EN’: f(V,n,c)= O}
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Nullclines of the Desingularized

System

Green: V-nullcline
: c-nullclines

0.2 025 03 0.35

L*is upper fold curve
L"is lower fold curve
CN1 is c-nullcline of full system
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FN is folded node

FFis

A is ordinary equilibrium
(saddle point)



The Folded Node Produces Rotations
in the Nonsingular System

The sheets of the critical manifold perturb smoothly to form the slow
manifold for €,>0 (Fenichel theory). This is not true in the neighborhood

of the folded node, where the perturbed sheets become twisted to preserve
uniqueness of solutions.
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Pseudo-Plateau Bursting

The small oscillations that emerge in the vicinity of the folded node (for €,>0)

are small-amplitude voltage spikes. These, combined with the large jumps between
upper and lower sheets, form mixed-mode oscillations, which in this context, are
called pseudo-plateau bursting.
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How are the traditional
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Limit £, — 0

and the 1-fast/2-slow analysis related?

Limit &, =0

nullclines
folded node

analysis

8VV = f(V,n,c)
n=gV,n)
c=¢h(V,c)
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/Z-Curve and V-Nullcline are
Suspiciously Similar

FN and subHB not the same
Point A is on both the z-curve
and the V-nullcline

subHB is on the middle sheet
of the critical manifold
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V-Nullcline Converges to the Z-Curve
in the Limit & —0

— V-nullclines
c-nullclines
=+ z-curve (unstable)

— z-curve (stable) [

0= g(V,n)% + sch(V,c)ﬁ =F(V,c)
on dc

The FN and the subHB are
still different
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The subHB Moves to the Upper Fold
Curve L in the Limit & —0

Steady states of: 22 L
i FN R ) — V-nullcline
24 | T, c-nullcline |
SVV = f(Va na C) ’>‘24 T, ) .« = z-curve (unstable)
- '+, | — z-curve (stable)
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The FN and the subHB are
still different, but both are 30 + .
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The subHB Converges to the FN in the
Double Limit &.& —0
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Which Structures Organize the Burst?

Neither of the fast/slow decompositions is very accurate far from the singular limits
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The Orbit Follows the Z-Curve when €_
is Small
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Orbit moves along top and bottom branches of the z-curve, through the subHB



The Orbit Follows the Z-Curve when €_
is Small
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Orbit moves along top and bottom branches of the z-curve, through the subHB



The Flow is Organized by the Folded
Node When g, is Small
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Orbit rotates as it moves along the twisted slow manifold around the folded node singularity



When g,, and g_are Both Small the
Orbit Moves Through the Folded
Node, Near the Z-curve
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Orbit rotates as it moves along the twisted slow manifold around the folded node singularity.
The V-nullcline is near the z-curve, and the FN is near the subHB.



Thank Youl!

This work has been submitted as “The Relationship
Between Two Fast/Slow Analysis Techniques for
Bursting Oscillations”, by Teka, Tabak, and Bertram









Which Structures Organize the Burst

An entire sector of singular canards enter the folded node (FN) from
the top (attracting) sheet and travel for some distance along middle

(repelling) sheet.

This sector is the Singular Funnel, delimited by the fold curve L* and
the Strong Canard (SC).
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Relaxation Oscillations

These are periodic solutions that do not enter the singular funnel.
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Continuous Spiking

For € away from O, the relaxation oscillations transform into a
continuous train of impulses.
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Mixed Mode Oscillations

These are formed from periodic orbits that enter the singular funnel.
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From Singular Orbit to Bursting

Transformation of the periodic orbit as € (or the membrane capacitance
C,,) is increased.

magnified view
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