
Chapter 3: The Elements of a Program
We start this chapter with a couple of laundry lists (sometimes with mini-examples) that outline the data types
available in fortran, the common control sequences, and file I/O. After we walk through the different program
elements we will finish the chapter with an example problem from numerical integration.

3.1 Data Types
Some of the most common data types in fortran are:

• INTEGER – Exact whole number

• CHARACTER – Standard text ASCII character with one byte per character

• CHARACTER(LEN=4) – String of a specified length

• LOGICAL – Set to either .TRUE. or .FALSE.

• REAL – Floating point number with 7 significant figits (usually)

• REAL(KIND=RP) – Floating point number with significant digits specified by RP = SELECTED REAL KIND(15),
where 15 yields double precision (16 significant digits)

• COMPLEX(KIND=RP) – Two floating point numbers with significant digits specified by RP

Keep in mind, we can make any of the preceding data types a PARAMETER.
Let’s examine a few situations of how fortran handles casting one variable type to another:

typesExample.f90
PROGRAM typesExample

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
INTEGER :: i,j,k
REAL(KIND=RP) :: x,y,z

!
i = 7
j = 4
x = 3.7 RP
y = 4.0 RP
k = j**i
PRINT*,’4**7= ’,k
k = i/j
PRINT*,’7/4= ’,k ! division with integers always truncates down
k = x
PRINT*,’automatic conversion 3.7 to INT= ’,k ! always truncated towards zero
z = i
PRINT*,’automatic conversion 7 to REAL= ’,z ! converts integer to real
z = i/j
PRINT*,’automatic conversion 7/4 to REAL= ’,z ! truncates then converts to real
z = i/4.0 RP
PRINT*,’automatic conversion 7/4.0 RP to REAL= ’,z ! retains accuracy of a real
z = 7.0 RP/j
PRINT*,’automatic conversion 7.0 RP/4 to REAL= ’,z ! retains accuracy of a real
z = REAL(i,RP)/REAL(j,RP) ! compiler to treat the integers as reals
PRINT*,’automatic conversion 7 RP/4 RP= ’,z

END PROGRAM typesExample

We compile and run the types example to illustrate the meaning of the comments in the program

1

typesExample.f90 - Commands and Output
gfortran typesExample.f90 -o typesExample
./typesExample
4**7= 16384
7/4= 1
automatic conversion 3.7 to INT= 3
automatic conversion 7 to REAL= 7.0000000000000000
automatic conversion 7/4 to REAL= 1.0000000000000000
automatic conversion 7/4.0˙RP to REAL= 1.7500000000000000
automatic conversion 7.0˙RP/4 to REAL= 1.7500000000000000
automatic conversion 7˙RP/4˙RP to REAL= 1.7500000000000000

3.2 Control Sequences
This is by no means a comprehensive list of the control sequences available in fortran; however, these are ones

that come up the most often:

• IF/THEN/ELSE – Execute certain pieces of code based on a logical condition(s). The main logical operators
are:

~ Less than: < or .LT.
~ Less than or equal to: <= or .LE.
~ Greater than: > or .GT.
~ Greater than or equal to: >= or .GE.
~ Equal to: == or .EQ.
~ Not Equal: /= or .NE.
~ Logical and: .AND.
~ Logical or: .OR.
~ Logical not: .NOT.

IF/THEN/ELSE Statement
IF (x.EQ.7) THEN

do stuff
ELSE IF ((x.LT.5).AND.(x.GT.2)) THEN

do other stuff
ELSE

do other stuff
END IF

• DO loops – Perform a piece of code in the loop structure a specified number of times. The bounds of the loop
are INTEGERS.

DO Loop
DO i = 1,13

PRINT*,i
END DO
! Loops can also run backwards
DO j = 9,0,-1 ! This means step backwards from 9 to 0, decrement by 1 each iteration

PRINT*,j
END DO
! In general, we have the bounds on the loop
DO j = start value,end value,increment ! the default increment is 1

CODE
END DO

2

• DO WHILE loops – Perform a piece of code in the loop structure until a logical condition is met.
DO WHILE Loop

b = 2
DO WHILE (b/=128) ! Make sure this termination condition will be met!

b = b*b
PRINT*,b

END DO

• EXIT – Exit out of a DO loop based on a logical argument.
EXIT Example

DO i = 1,35
PRINT*,i
IF (i**2.GT.55) THEN ! or: IF(i**2.GT.55) EXIT

EXIT
END IF

END DO

• CYCLE – Increment to the next iteration in a DO loop based on a logical argument.
CYCLE Example

DO i = 1,6
IF (i.EQ.4) THEN! or: IF(i==4). Be careful you don’t write IF(i=4),

CYCLE
END IF
PRINT*,i

END DO

3.3 Input/Output Constructs
Next, we examine the different options fortran offers for the input of data into a program to be operated on and

output of data to the screen or to a file. For now we will only cover unformatted (i.e., list-directed) read/write,
but know that it is possible to format the data to suit one’s needs. We cover formatted reads/writes in Chap. 7
Additional Topics, as they can be somewhat complicated.

3.3.1 I/O to the Screen

• Input – We can ask the user to provide information from the terminal. We use a READ(*,*) statement to
read in data from the screen inputted by the user. Again, the first * means ‘the screen’ and the second *
means ‘unformatted’.

readExample.f90
PROGRAM readExample

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
INTEGER :: j
REAL(KIND=RP) :: x
CHARACTER(LEN=20) :: name

READ(*,*)’Enter an integer’,j ! if you don’t input an integer, an error is thrown
READ(*,*)’Enter a real number’,x
READ(*,*)’Enter your name’,name

WRITE(*,*)j,x,name
END PROGRAM readExample

• Output – We’ve used this a couple times already, often we print to the screen only for debugging purposes.
So we will only worry about unformatted output to the screen.

3

Unformatted Printing to Screen
! Both commands will produce the same output
PRINT*,’The number is’,a
! or
WRITE(*,*)’The number is’,a

3.3.2 I/O to a File

When we input or output data to a file we first have to tell the program to open a file. To do so we use the
OPEN command, which assigns an integer (sometimes called the fileUnit) to reference a file’s name. In general,
don’t set the fileUnit to be 0, 5 or 6 as most compilers reserve those values in the following way:

• Standard Error is 0 – Used by programs to output error messages or diagnostics.

• Standard In is 5 – Used by programs to input data from the terminal, similar to READ(*,*)

• Standard Out is 6 – Used by programs to output data to the terminal, similar to WRITE(*,*)

Always remember, anytime you OPEN a file you should CLOSE it once you are done reading/writing.

• Input – To read in from a file we replace the first * in the READ statement with the Unit that represents the
file name.

readFileExample.f90
PROGRAM readFileExample

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
INTEGER :: j
REAL(KIND=RP) :: x

OPEN(UNIT=15,FILE=’testInput.dat’)
READ(15,*)j,x
CLOSE(15)

PRINT*,j,x
END PROGRAM readFileExample

• Output – Similar to the input example we replace the first * in the WRITE statement with the fileUnit.
writeFileExample.f90

PROGRAM writeFileExample
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
REAL(KIND=RP) :: x,y,z

x = 6.25˙RP
y = 1.15˙RP
z = x + y

!
OPEN(UNIT=15,FILE=’testOutput.dat’)
WRITE(15,*)z
CLOSE(15)

END PROGRAM writeFileExample

3.4 Example: Quadrature
Use the Riemann sum with left endpoints to approximate the integral

I =
∫ b
a

x2

3
dx ≈

N−1∑
i=0

x2
i

3
∆x.

4

In order to compute this integral approximation, we need to decide the discretization rule for the xi’s, the simplest
is a uniform spacing. So, xi = a+ i∆x, with

∆x = b− a
N
.

We will store the answer in the real variable ‘sum’ and display the result to the screen. The pseudocode of the
integral approximation, for a given value of a, b, and N , is

Algorithm 1: Left Riemann Sum: Approximate an integral with the left Riemann sum.

Procedure Left Riemann Sum
Input: a, b,N

∆x← b−a
N

sum← 0
for i = 0 to N − 1 do
xi ← a+ i∆x
sum← sum+ (x2

i /3) ·∆x

Output: sum

End Procedure Left Riemann Sum

We next provide a fortran implementation that asks the user for a, b, and N values and prints the result to the
screen.

leftRiemann.f90
PROGRAM leftRiemann

IMPLICIT NONE
INTEGER,PARAMETER :: RP =SELECTED REAL KIND(15)
INTEGER :: i,N
REAL(KIND=RP) :: a,b,x i,dx,sum

WRITE(*,*)’ Enter a value for a, b, and number of sub-rectangles N’
READ(*,*)a,b,N ! You don’t include the RP when inputting real numbers

! For example, just type -2.0,4.0,25
dx = (b-a)/N
sum = 0.0 RP
DO i = 0,N-1

x i = a + i*dx
sum = sum + dx*(x i**2/3.0 RP)

END DO

WRITE(*,*)’ The integral is approximately’,sum
END PROGRAM leftRiemann

Note, that we hard-coded the function that we wished to integrate. Later, we will learn how to pass an arbitrary
function f(x) into the program. We save our program as leftRiemann.f90 and run the program to find

leftRiemann.f90 - Commands and Output
gfortran leftRiemann.f90 -o leftRiemann
./leftRiemann

Enter a value for a, b, and number of sub-rectangles N
-2.0,4.0,25

The integral is approximately 7.5391999999999992

We can compare the output to the known answer for the integral

I =
∫ 4

−2

x2

3
dx = x

3

9

∣∣∣∣∣
4

x=−2

= 8.

5

If we take N larger, the approximation will become better (i.e. closer to 8).

6

	The Elements of a Program
	Data Types
	Control Sequences
	Input/Output Constructs
	I/O to the Screen
	I/O to a File

	Example: Quadrature

