
Chapter 4: Program Organization
Now that we know the basics of how to code in fortran we will learn how to break a program into manageable
parts. This makes code easier to read, easier to test and easier to reuse. We’ll hit the high notes of how to use the
FUNCTION, SUBROUTINE, and MODULE constructs to break-up the workflow of a program. A quick way to
remember the difference between each piece is that a

• FUNCTION takes in multiple arguments and returns a single argument.

• SUBROUTINE takes in and returns multiple arguments.

• MODULE is a construct that contains variable declarations, functions, and subroutines that can be made
available to a program or another module.

When we discuss the FUNCTION and the SUBROUTINE we include special attributes that tell the compiler
how to handle arguments passed in by the user. There are three options:

• INTENT(IN) – Use with functions and subroutines. It informs the compiler that an argument may not be
changed by the function/subroutine

• INTENT(OUT) – Use with subroutines. It informs the compiler that an argument will return information
from the subroutine to the calling procedure. The argument’s value is undefined on entry to the procedure
and must be given a value by some means.

• INTENT(INOUT) – Use with subroutines. It informs the compiler that an argument may transmit informa-
tion into a subroutine, be operated upon, and then returned to the calling procedure.

4.1 Functions
A function in fortran is a procedure that accepts multiple arguments and returns a single result. They come in

two flavors intrinsic and external.

4.1.1 Intrinsic Functions

Intrinsic functions are built-in functions that do not need declared. There are lots of intrinsic functions available
(a quick Google search reveals as much), some of them are

• EXP – exponential function

• SIN – sine, argument in radians (other trig functions available as well)

• ASIN – arcsine, argument in radians (other inverse trig functions available as well)

• LOG – natural logarithm

• LOG10 – common logarithm (base 10)

• ABS – absolute value

4.1.2 External Functions

These are procedures written by a user that can be called by another PROGRAM (or FUNCTION or SUB-
ROUTINE). We’ll write the external function and the program that call it in separate files. This example we’ll
write a function to evaluate the function

f(x) = x3 − x+ cos(x).

First, we write the function

1

function.f90
FUNCTION f(x)

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP) :: f

f = x**3 - x + COS(x)
END FUNCTION f

In function.f90 we have a variable f with the same name as our function. This is a special variable, known as the
RESULT variable, and it is the means by which a FUNCTION returns information to a calling procedure. Always
remember that every FUNCTION must contain a variable that has the same name as the FUNCTION, or we
could rewrite the function declaration above as FUNCTION f(x) RESULT(v); in either case the variable f(x) or v
must be assigned. Next, we write the main program that will call the function f(x).

functionMain.f90
PROGRAM functionExample

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
REAL(KIND=RP) :: x,y
REAL(KIND=RP),EXTERNAL :: f

x = 3.0 RP
y = f(x)
PRINT*,y

END PROGRAM functionExample

Now that we have these two fortran source files, how do we compile the program? We have several options, we
can

1. Compile the files all at once on the command line.
Compile all files at once

gfortran function.f90 functionMain.f90 -o functionExample

2. Compile the files one at a time at the command line.
Compile files on at a time

! the -c flag means ‘compile’ but don’t create an executable
gfortran -c function.f90
gfortran -c functionMain.f90
gfortran function.o functionMain.o -o functionExample

3. Compile using a make file.

For this example, one of the first two options are straightforward. However, once we have a lot of source files it
becomes unwieldy due to the nature of dependencies. Dependencies, essentially, boils down to checkinig

• If a program CALLs a subroutine or function from another file, this other file must be compiled either at the
same time or before the program is compiled.

• If a program USEs a module, or a module USEs another module, then the USEd module needs to be compiled
before the program or USEs module.

A make file makes the compilation of many source files simple because it automatically detects inheritance and
which files need compiled. Later, in Sec. 4.4.1, we cover make file construction.

In general, a function in fortran has the form

2

General Function
FUNCTION function name(passing arguments)

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
data type,INTENT(IN) :: arguments that shouldn’t be changed
data type :: any arguments that can be changed
data type :: function name

! Local variables
data type :: available locally, calling procedure doesn’t know of

these variables
...
code

END FUNCTION function name

4.2 Subroutines
Subroutines are more general than functions as they allow multiple input arguments and output results. However,

you do have to be diligent when you assign the INTENT of each argument. Let’s start with a simple example that
mimics the FUNCTION we just wrote.

subroutine.f90
SUBROUTINE f(x,y)

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP),INTENT(OUT) :: y

y = x**3 - x + COS(x)
END SUBROUTINE f

In subroutine.f90 we have an argument that transmits the value of x into the subroutine and the argument y which
returns information to the calling program. Note that the INTENT of each input argument matches accordingly.

Next, we have the main program that calls the subroutine.
subroutineMain.f90

PROGRAM subroutineExample
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
REAL(KIND=RP) :: x,y

x = 3.0 RP
CALL f(x,y)
PRINT*,y

END PROGRAM subroutineExample

The two source files are compiled identically to compiling the function source files (modulo file names).
In general, a subroutine in fortran has the form

General Subroutine
SUBROUTINE subroutine name(passing arguments)

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
data type,INTENT(IN) :: arguments that shouldn’t be changed
data type,INTENT(INOUT) :: arguments that may be changed
data type,INTENT(OUT) :: arguments for output only

! Local variables

3

data type :: available locally, calling procedure doesn’t know of
these variables

...
code

END SUBROUTINE subroutine name

4.3 Passing Functions
Let’s return to the example of using the left endpoint quadrature rule to approximate an integral. Recall we

had to hard code the function we wanted to integrate. Now, however, with our knowledge of functions we can write
a general quadrature routine and pass in different functions to integrate.

We’ll write the functions to integrate, the left hand rule and then a driver to collect the quadrature results.
Let’s consider two functions

f(x) = ex − x2 and g(x) = sin(x) − cos(x),

with corresponding source code
functions.f90

FUNCTION f(x)
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP) :: f

f = EXP(x) - x**2
END FUNCTION f
!
FUNCTION g(x)

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP) :: g

g = SIN(x) - COS(x)
END FUNCTION g

Next we write a function that implements the left point rule quadrature method.
quadratureRules.f90

FUNCTION leftHandRule(a,b,N,func)
IMPLICIT NONE
INTEGER ,PARAMETER :: RP = SELECTED REAL KIND(15)
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),INTENT(IN) :: a,b
REAL(KIND=RP),EXTERNAL :: func
REAL(KIND=RP) :: leftHandRule

! Local Variables
INTEGER :: i
REAL(KIND=RP) :: dx,x

!
dx = (b-a)/N
leftHandRule = 0.0 RP
DO i = 0,N-1

x = a + i*dx
leftHandRule = leftHandRule + func(x)*dx

4

END DO
END FUNCTION leftHandRule

We applied the EXTERNAL attribute to the func input argument, which informs the compiler that the argument
is a REAL FUNCTION and not a REAL variable. This, in effect, allows us to pass a function to another function.

Finally, we write a driver for the quadrature program.
QuadExample.f90

PROGRAM Quadrature
IMPLICIT NONE
INTEGER ,PARAMETER :: RP = SELECTED REAL KIND(15)
INTEGER ,PARAMETER :: N = 150
REAL(KIND=RP),PARAMETER :: a = -1.0 RP, b = 2.0 RP
REAL(KIND=RP) :: Integral
REAL(KIND=RP),EXTERNAL :: leftHandRule,f,g

Integral = lefthandRule(a,b,N,f)
WRITE(*,*)’Approximation for f(x) integral: ’,Integral
WRITE(*,*)
Integral = leftHandRule(a,b,N,g)
WRITE(*,*)’Approximation for g(x) integral: ’,Integral

END PROGRAM Quadrature

We finish the example by providing the output of the quadrature program for the two functions f(x), g(x).
QuadExample - Commands and Output

gfortran functions.f90 quadratureRules.f90 QuadExample.f90 -o quad
./quad
Approximation for f(x) integral: 3.9809989288432961

Approximation for g(x) integral: -0.82136496727329411

4.4 Modules
Modules are similar to header files in C++. With modules we can easily organize our code, allow for code reuse

and obtain additional benefits we will discuss later (in Chap. 6). Modules are extremely useful and powerful. We
will only scratch the surface of what modules are capable. Since source files can contain multiple modules, follow
the philosophy of one file = one module.

Modules have the general structure
General Module Structure

MODULE module name
! variable definitions
CONTAINS
! functions and subroutines
END MODULE module name

Let’s create a simple module that will make our lives simpler. In every function, subroutine and program we’ve
had to declare

INTEGER,PARAMETER :: RP = SELECTED REAL KIND(15)

It would be nice if we could always have the precision definition available to all procedures. We can use a module
to achieve this goal. For good measure we’ll also include the constant π, just in case we need it later.

5

Constants.f90
MODULE Constants

IMPLICIT NONE
INTEGER ,PARAMETER :: RP = SELECTED REAL KIND(15)
REAL(KIND=RP),PARAMETER :: pi = 4.0 RP*ATAN(1.0 RP)

END MODULE Constants

Note that we still use IMPLICIT NONE in the module. Also, since the module Constants.f90 contains no functions
or subroutines we omit the CONTAINS command.

Now in a main program (or other module) we USE the module
main.f90

PROGRAM main
USE Constants
IMPLICIT NONE

...
END PROGRAM main

Notice we use the module before we invoke IMPLICIT NONE in main.f90. Also, we still use IMPLICIT NONE
everywhere.

To compile with modules is similar to compiling with multiple .f90 files. We have the option of compiling all at
once or individually. However, since we usually have more than a couple module (or source) files, there is an easier
way to compile. We use makefiles.

4.4.1 Compiling Source Code with Makefiles

Makefiles are special format files that, together with the make utility, help us automatically compile source code,
get the correct dependencies and linking, and manage programming projects. A makefile has the basic components
of defining the compiler to be used, any compiler flags, the name of the compiled executable, and then any objects
to be built and their dependencies.

Writing the syntax for a general makefile would be very unwieldy and confusing. So instead, let’s learn through
an example. We’ll create a makefile for the quadrature program written earlier in this chapter. We name the
compiler, flags, and executable name at the top of the file, name the objects to built, and then compile. The pound
symbol # is the comment character for makefiles. We’ll colorize the makefile to facilitate its readability. Also, we’ll
update the files a bit to include the Constants module.

quad.mak
COMPILER = gfortran
FLAGS = -O3 # this is an optimizer which makes loops more efficient
EXECUTABLE = quad
Object Files for build
OBJS = \
Constants.o \
functions.o \
quadratureRules.o

$(EXECUTABLE) : QuadExample.f90 $(OBJS)
$(COMPILER) $(FLAGS) -o $(EXECUTABLE) QuadExample.f90 $(OBJS)

Object dependencies and compilation
Constants.o : Constants.f90

$(COMPILER) $(FLAGS) -c Constants.f90 # The commands must be exactly one ‘‘tab’’ over

functions.o : functions.f90 Constants.o
$(COMPILER) $(FLAGS) -c functions.f90

6

quadratureRules.o : quadratureRules.f90 Constants.o
$(COMPILER) $(FLAGS) -c quadratureRules.f90

Now we show how to use a makefile to compile the program. To make a makefile with a specific name we use the
-f flag.

quad.mak - Commands and Output
make -f quad.mak

gfortran -c ./Constants.f90
gfortran -c ./functions.f90 Constants.o
gfortran -c ./quadratureRules.f90 Constants.o
gfortran -o quad ./QuadExample.f90 functions.o quadratureRules.o

./quad
Approximation for f(x) integral: 3.9809989288432961

Approximation for g(x) integral: -0.82136496727329411

For this simple program a makefile is somewhat overkill. However, once we start object oriented programming
makefiles can make our lives much simpler when building projects.

7

	Program Organization
	Functions
	Intrinsic Functions
	External Functions

	Subroutines
	Passing Functions
	Modules
	Compiling Source Code with Makefiles

