Chapter 5: Arrays

An advantage fortran has over other programming languages is the ease with which it handles arrays. Because arrays are so easy to handle, fortran is an ideal choice when writing code to handle vector and matrix operations. Fortran also offers a great deal of freedom when indexing arrays, but keep in mind that the default initial index is 1.

It is worth noting that fortran stores array information by column, often referred to as column-major. Knowing this helps when printing multi-dimensional arrays. Also, understanding how a programming language manages memory can help you write faster, more efficient code. We won’t go into any more detail on this topic, but it is something to keep in mind when writing programs later.

Note, now that we know how to use modules, that, if necessary, all the code examples from this point on will use the Constants module.

5.1 Array Basics

We’ll give some examples of how to declare, manipulate, and print arrays. But first we list some of the useful intrinsic functions we can use with arrays:

- **SIZE** – Returns the number of elements in an array.
- **SHAPE** – Returns the number of elements in each direction in an integer vector.
- **LBOUND** – Returns the lower index of each dimension of an array.
- **UBOUND** – Returns the upper index of each dimension of an array.
- **MAXVAL** – Returns the largest value in the array.
- **MINVAL** – Returns the smallest value in the array.
- **MAXLOC** – Returns the location of the largest value in an array.
- **MINLOC** – Returns the location of the smallest value in an array.
- **SUM** – Returns the sum of the elements of an array
- **TRANSPOSE** – Returns the transpose of a matrix.
- **DOT_PRODUCT** – Returns the dot product of two vectors
- **MATMUL** – Returns the product of two matrices, dimensions must be consistent, i.e., \((M, K)\) and \((K, N)\)

```fortran
PROGRAM arrayExampleA
    USE Constants
    IMPLICIT NONE
    ! Can use the DIMENSION command or put an array's size after the variable name
    REAL(KIND=RP),DIMENSION(0:3) :: array1
    REAL(KIND=RP),DIMENSION(4) :: array2 ! same as 1:4
    REAL(KIND=RP),DIMENSION(-2:2) :: array3
    REAL(KIND=RP) :: array4(-1:1,0:2)
    REAL(KIND=RP) :: x,y
    INTEGER :: j,k
    x = 3.44\ RP
    y = 1.25 \ RP

    WRITE(*,*)'size of array1',SIZE(array1)
    WRITE(*,*)'size of array2',SIZE(array2)
```


WRITE(*,*), 'size of array3', SIZE(array3)
WRITE(*,*), 'size of array4', SIZE(array4)
WRITE(*,*)
WRITE(*,*), 'shape of array1', SHAPE(array1)
WRITE(*,*), 'shape of array2',SHAPE(array2)
WRITE(*,*), 'shape of array3',SHAPE(array3)
WRITE(*,*), 'shape of array4',SHAPE(array4)
WRITE(*,*)
WRITE(*,*), 'lower index of array1', LBOUND(array1)
WRITE(*,*), 'lower index of array2',LBOUND(array2)
WRITE(*,*), 'lower index of array3',LBOUND(array3)
WRITE(*,*), 'lower indices of array4',LBOUND(array4)
WRITE(*,*)
WRITE(*,*), 'upper index of array1', UBOUND(array1)
WRITE(*,*), 'upper index of array2',UBOUND(array2)
WRITE(*,*), 'upper index of array3',UBOUND(array3)
WRITE(*,*), 'upper indices of array4',UBOUND(array4)
WRITE(*,*)
! Syntax to assign specific values to an array
array1 = (/ -2.0'RP, 6.0'RP, pi, 1.1'RP /)
array2 = (/ x-y, x+y, SIN(x)-EXP(y), y**x /)
! Assign values in a loop
DO j = -2,2
 array3(j) = x**j
END DO
! Can do array slicing using a colon, we assign each column of an array
array4(-1,:) = (/ 1.0'RP,-0.5'RP ,12.0'RP /)
array4(0,:) = (/ -3.0'RP, 0.5'RP , 1.1'RP /)
array4(1,:) = (/ 2.0'RP,-0.35'RP, 8.8'RP /)
! Can print the array without loops
WRITE(*,*), 'array3 w/o loop',array3
WRITE(*,*), 'array4 w/o loop',array4
WRITE(*,*)
! But it is always more readable if you print with loops and slice
WRITE(*,*), 'array3 w/loop'
DO j = -2,2
 WRITE(*,*),array3(j)
END DO
WRITE(*,*), 'array4 w/loop'
DO j = -1,1
 WRITE(*,*),array4(j,:)
END DO
WRITE(*,*), 'max of array1', MAXVAL(array1)
WRITE(*,*), 'location of max in array2', MAXLOC(array2)
WRITE(*,*), 'min of array3', MINVAL(array3)
WRITE(*,*), 'location of min in array4', MINLOC(array4)
END PROGRAM arrayExampleA

We compile and run the first array example and show the results. Note that the way you print arrays can turn gibberish in a nice 2D output.

arrayExampleA.f90 - Output

size of array1	4
size of array2	4
size of array3	5
size of array4	9
Next, we provide an example when we manipulate arrays which represent matrices. In the next example we also write a quick subroutine to help print the arrays in the style we want.

PROGRAM arrayExampleB
IMPLICIT NONE
INTEGER,DIMENSION(2,2) :: A,B
INTEGER :: i,j

A(1,:) = (/ 1 , 2 /)
A(2,:) = (/ 3 , 4 /)
B = 1 ! sets every element in B to 1

WRITE(*,*)'A='
CALL PrintIntegerMatrix(A,2,2)
WRITE(*,*)'B='
CALL PrintIntegerMatrix(B,2,2)
B(2,2) = B(2,2) + 3
WRITE(*,*)'Add 3 to B(2,2)'
A = A*2
WRITE(*,*)'A=A*2'
CALL PrintIntegerMatrix(A,2,2)

A = A**2 - 1 ! This works for intrinsics like SIN, EXP, etc... as well
WRITE(*,*)'A=A**2-1'
CALL PrintIntegerMatrix(A,2,2)

A = A+B
WRITE(*,*)'A+B'
CALL PrintIntegerMatrix(A,2,2)

A = MATHUL(A,B)
WRITE(*,*)'A=AB'
CALL PrintIntegerMatrix(A,2,2)

A = TRANSPOSE(A)
WRITE(*,*)'A = A^T'
CALL PrintIntegerMatrix(A,2,2)

WRITE(*,*)'Dot product of col 1 of A with col 2 of A',DOTPRODUCT(A(:,1),A(:,2))
WRITE(*,*)'Dot product of row 1 of A with row 2 of A',DOTPRODUCT(A(1,:),A(2,:))

END PROGRAM arrayExampleB

SUBROUTINE PrintIntegerMatrix(mat,N,M)
IMPLICIT NONE
INTEGER,INTENT(IN) :: N,M
INTEGER,INTENT(IN) :: mat(N,M)

! Local Variable
INTEGER :: i

DO i = 1,N
 WRITE(*,*)mat(i,:)
END DO
WRITE(*,*)
RETURN
END SUBROUTINE PrintIntegerMatrix

Again, we provide the output of the second array example for instructive purposes.
5.2 Example: Interpolation

We wish to interpolate a function \(f \) given two set of points \(\{x_i\}_{i=0}^{N} \) and \(\{y_i\}_{i=0}^{N} \), where \(y_i = f(x_i) \). Omitting some detail, we know that Newton divided difference provide an efficient way to specify an interpolation rule. Consider the two sets of points \((x_0, y_0)\) and \((x_1, y_1)\). The polynomial of order 1 is given by the straight line:

\[
p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0).
\]

Notice that \(p_1(x_0) = y_0 \) and \(p_1(x_1) = y_1 \). A series of polynomials may then be constructed depending on their order, i.e., depending on the number of points available.

\[
p_0(x) = y_0,\quad p_1(x) = y_0 + y[x_0, x_1](x - x_0),\quad p_2(x) = y_0 + y[x_0, x_1](x - x_0) + y[x_0, x_1, x_2](x - x_0)(x - x_1)
\]

Then the interpolating polynomial, \(P_N \), is given by the sum of the preceding sequence, i.e.,

\[
P_N(x) = \sum_{i=0}^{N} c_i \prod_{j=0}^{i-1} (x - x_j)
\]

Next, we detail the procedures necessary to have a proper interpolation routine based on Newton divided differences. How we obtained and wrote the pseudocode code on the next page may not necessary make sense. Don’t fret! The topic of interpolation, using Newton divided differences as well as other methods, is covered in great detail when you take Dr. Gallivan’s FCM II course. For now, be assured that the procedures are correct, you’ll learn exactly why later. We will collect all our interpolation procedures into a module that is then used by a main program.
Algorithm 1: *Newton Coefficients*: Compute interpolation coefficients from Newton divided differences.

Procedure Newton Coefficients

Input: \(\{x_i\}_{i=0}^N \), \(\{y_i\}_{i=0}^N \), \(N \)

\[
c_0 \leftarrow y_0
\]

for \(k = 1 \) to \(N \) do

\[
d \leftarrow x_k - x_{k-1}
\]

\[
u \leftarrow c_{k-1}
\]

for \(j = k - 2 \) to \(0 \) do

\[
u \leftarrow u(x_k - x_j) + c_j
\]

\[
d \leftarrow d(x_k - x_j)
\]

\[
c_k \leftarrow (y_k - u)/d
\]

Output: \(\{c_i\}_{i=0}^N \)

End Procedure Newton Coefficients

Algorithm 2: *Newton Interpolating Polynomial*: Evaluate interpolant at a point

Procedure Newton Interpolating Polynomial

Input: \(x \), \(\{x_i\}_{i=0}^N \), \(\{c_i\}_{i=0}^N \), \(N \)

\[
P(x) \leftarrow 0
\]

for \(k = 0 \) to \(N \) do

\[
p \leftarrow 1
\]

for \(j = 0 \) to \(k - 1 \) do

\[
p \leftarrow p(x_k - x_j)
\]

\[
P(x) \leftarrow P(x) + c_ip
\]

Output: \(P(x) \)

End Procedure Newton Interpolating Polynomial

Algorithm 3: *Interpolated Values*: Interpolate to a set of nodes stored in \(x^{new} \).

Procedure Interpolated Values

Uses: Algorithm 5

Input: \(\{c_i\}_{i=0}^N \), \(\{x_i\}_{i=0}^N \), \(\{x_i^{new}\}_{i=0}^N \), \(N \)

for \(k = 0 \) to \(N \) do

\[
y_k^{new} \leftarrow \text{Newton Interpolating Polynomial}(x_k^{new}, \{x_i\}_{i=0}^N, \{c_i\}_{i=0}^N, N)
\]

Output: \(\{y_i^{new}\}_{i=0}^N \)

End Procedure Interpolated Values

We amalgamate the interpolation procedures and convenience procedures for printing results to a file, for plotting purposes, into a module.

```fortran
MODULE InterpolationRoutines
USE Constants
IMPLICIT NONE

interpolationRoutines.f90
```
CONTAINS

SUBROUTINE Interpolate(C,X,Xnew,Ynew,N)
 IMPLICIT NONE
 INTEGER ,INTENT(IN) :: N
 REAL(KIND=RP),DIMENSION(0:N) ,INTENT(IN) :: C,X
 REAL(KIND=RP),DIMENSION(0:2*N),INTENT(OUT) :: Xnew,Ynew
 REAL(KIND=RP),EXTERNAL :: PolyInterpolant

 INTEGER :: i
 DO i = 0,2*N
 Xnew(i) = i*(2.0`RP*pi)/N
 PolyInterpolant(Xnew(i),X,C,N,Ynew(i))
 END DO
 RETURN
END SUBROUTINE Interpolate

SUBROUTINE NewtonCoeff(X,Y,C,N)
 IMPLICIT NONE
 INTEGER ,INTENT(IN) :: N
 REAL(KIND=RP),DIMENSION(0:N),INTENT(IN) :: X,Y
 REAL(KIND=RP),DIMENSION(0:N),INTENT(OUT) :: C

 ! Local Variables
 REAL(KIND=RP) :: d,u
 INTEGER :: i,j
 C(0) = Y(0)
 DO j = 1,N
 d = X(j) - X(j-1)
 u = C(j-1)
 DO i = j-2,0,-1
 u = u*(X(j)-X(i))+C(i)
 d = d*(X(j)-X(i))
 END DO
 C(j) = (Y(j)-u)/d
 END DO
 RETURN
END SUBROUTINE NewtonCoeff

SUBROUTINE PolyInterpolant(x,nodes,coeff,N,y)
 IMPLICIT NONE
 INTEGER ,INTENT(IN) :: N
 REAL(KIND=RP),DIMENSION(0:N),INTENT(IN) :: nodes,coeff
 REAL(KIND=RP) ,INTENT(IN) :: x
 REAL(KIND=RP) ,INTENT(OUT) :: y

 ! Local variables
 INTEGER :: i,j
 REAL(KIND=RP) :: temp
 y = 0.0`RP
 DO i = 0,N
 temp = 1.0`RP
 DO j = 0,i-1
 temp = temp*(x-nodes(j))
 END DO
 y = y + coeff(i)*temp
 END DO
 RETURN
END SUBROUTINE PolyInterpolant
With the interpolation module in place, we have the tools necessary to write and compile a driver program.

```fortran
PROGRAM interpolationDriver
  USE InterpolationRoutines
  IMPLICIT NONE
  INTEGER :: N = 12
  REAL(KIND=RP),DIMENSION(0:N) :: X,Y,c
  REAL(KIND=RP),DIMENSION(0:2*N) :: newX,newY
  INTEGER :: i
  OPEN(13,FILE='poly.dat')
  DO i = 0,N
    X(i) = i*(2.0*RP*pi)/N
    Y(i) = COS(X(i))
    WRITE(13,*)X(i),Y(i)
  END DO
  CLOSE(13)
  CALL ReadInArrays(X,Y,N)
  CALL NewtonCoeff(X,Y,c,N)
  CALL Interpolate(c,X,newX,newY,N)
  CALL WriteData(newX,newY,N)
END PROGRAM interpolationDriver
```

We compile and run the interpolation program and plot the result on the next page. The result passes the
so called “eyeball” norm, because the answer looks correct. To fully verify the code functions properly we would compare the numerical errors, using multiple functions, to theoretical predictions and ensure consistency (something we would do in an FCM II code).

Figure 1: Newton interpolating polynomial run with $N = 12$.