
Chapter 7: Additional Topics
In this chapter we’ll briefly cover selected advanced topics in fortran programming. All the topics come in handy
to add extra functionality to programs, but the feature you’ll use most often is dynamic arrays, i.e., an array the
size of which can be redefined at execution time.

7.1 Overloading Operators
We’ve seen a few examples of overloading intrinsic assignment operators, like the = operator. However we can

also define our own operators using interfaces. For example, we can create a dot product operator:
Dot Product Operator

INTERFACE OPERATOR(.DOT.)
! Operator syntax: u.DOT.v

MODULE PROCEDURE dotproduct
END INTERFACE

REAL(KIND=RP) FUNCTION dotproduct(vec1,vec2) RESULT(dot)
REAL(KIND=RP),INTENT(IN) :: vec1(:),vec2(:)
IF (SIZE(vec1).EQ.SIZE(vec2)) THEN

dot = DOT˙PRODUCT(vec1,vec2)
ELSE

dot = 0.0˙RP
PRINT*,’ERROR: Vector size mismatch’

END IF
END FUNCTION dotproduct

7.2 Dynamic Arrays
When we dealt with arrays in Chap. 5 we made the implicit assumption that we already knew how large we

wanted to make the array. We can remove such an assumption if we add the ALLOCATABLE attribute to a variable
declaration. This attribute will tell the compiler to reserve a chunk of memory for possible use during execution.
It also gives us the freedom to resize arrays without recompiling.

For example, if we want a three dimensional ALLOCATABLE array we use a : as a placeholder for the dimension
size, e.g.,

REAL(KIND=RP),ALLOCATABLE,DIMENSION(:,:,:) :: array1

To make the reserved memory available for use we use the ALLOCATE command. Always remember that if a
PROGRAM, FUNCTION, or SUBROUTINE contains an ALLOCATE command it should have a corresponding
DEALLOCATE command to release the memory. This will help prevent memory leaks, which occur when a
program mismanages memory. Memory leaks can slow down performance and can even exhaust available system
memory (which leads to segmentation faults). Fortran does offer some built-in error checking when allocating
memory:

ALLOCATE(var˙name(lowerBound:upperBound),STAT=ierr)

where the STAT option returns an INTEGER type. If ierr 6= 0, then there was an error allocating the memory
for var name.

We also show a quick example of reallocating memory during a program’s execution
AllocateExample.f90

PROGRAM AllocateExample
IMPLICIT NONE
INTEGER,ALLOCATABLE,DIMENSION(:) :: array1

1



INTEGER,ALLOCATABLE,DIMENSION(:,:) :: array2

ALLOCATE(array1(-2:8),array2(-1:2,0:10))
PRINT*,LBOUND(array1),UBOUND(array1)
PRINT*,SHAPE(array2)
DEALLOCATE(array1,array2)

!
ALLOCATE(array1(0:100),array2(1:5,-5:5))
PRINT*,LBOUND(array1),UBOUND(array1)
PRINT*,SHAPE(array2)
DEALLOCATE(array1,array2)

END PROGRAM AllocateExample

7.3 Optional Arguments
When we write a FUNCTION or SUBROUTINE sometimes an argument may not need to be present at all

times. For example, in a function that prints a matrix we can write to a file, but default to the terminal if no file
name is provided. In this way we can make the file name an OPTIONAL argument. The procedure can then check
if the argument is PRESENT (returns a LOGICAL) and operate accordingly.

OptionalPrint.f90
SUBROUTINE PrintMatrix(mat,fileName,N)

INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(N,N),INTENT(IN) :: mat
CHARACTER(LEN=*),OPTIONAL ,INTENT(IN) :: fileName

! Local Variables
INTEGER :: i,fileUnit

IF (PRESENT(fileName)) THEN
OPEN(UNIT=fileUnit,FILE=fileName)

ELSE
fileUnit = 6 ! 6 is the terminal screen

END IF
!

DO i = 1,N
WRITE(fileUint,*)mat(i,:)

END DO
!

IF (PRESENT(fileName)) THEN
CLOSE(fileUnit)

END IF
END SUBROUTINE PrintMatrix

NOTE: If we put the above subroutine in its own file, it MUST be contained in a module.

7.4 Advanced Input/Output Options
We know how to read in or display data to the terminal or to a file, but there are some useful I/O options

we glossed over. Next we’ll explore some of the advanced options available to us when inputting and outputting
information.

7.4.1 Non-Advancing I/O

First is the ADVANCE option in READ or WRITE statements. Effectively, this will tell the READ/WRITE
statement whether or not to advance to the next line. By default ADVANCE is set to ’YES’. For example,

Advance NO
READ(fileUnit,ADVANCE=’NO’)var1,var2,var3,var4

2



will read in four variables from the file pointed to by fileUnit where all variables are on the same line. However,
if we read in using

Advance YES
READ(fileUnit,*)var1,var2,var3,var4

reads in four variables from the file pointed to by fileUnit where each variables is on its own line, i.e., separated
by a carriage return.

7.4.2 Formatted File I/O

Sometimes unformatted file reading and writing is insufficient. For example, fortran can create and read binary
files, which require special arguments. To format data for reading/writing fortran uses a notation like ’A4’, which
means a character of length 4. Or in general, a variable type and the length of the data to be written. The most
common variable outputs are

• A – characters/strings

• I – integer

• F – real number, decimal form

• E – real number, exponential form

• ES – real number, scientific notation

• EN – real number, engineering notation

For real number outputs we specify the width of the number with a # symbol as well as the number of digits to
appear after a decimal points, e.g., F10.6 is a real number with 10 digits, 6 of which appear after the decimal.

We can combine several different formatting parameters by replacing the * option with ’(parameters)’ as we
do in the next example

FormatPrint.f90
SUBROUTINE PrintMatrix˙Formatted(mat,fileName,N)

INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(N,N),INTENT(IN) :: mat
CHARACTER(LEN=*),OPTIONAL ,INTENT(IN) :: fileName

! Local Variables
INTEGER :: i,j,fUnit

IF (PRESENT(fileName)) THEN
OPEN(UNIT=fUnit,FILE=fileName)

ELSE
fUnit = 6 ! 6 is the terminal screen

END IF
!

DO i = 1,N
DO j = 1,N

WRITE(fUint,’(A2,I3,A2,I3,A2,F10.6,A1)’,ADVANCE=’NO’)’A[’,i,’][’,j,’]=’mat(i,j),’ ’
END DO
WRITE(fUint,’(A2,I3,A2,I3,A2,F10.6)’)’A[’,i,’][’,j,’]=’mat(i,j)

END DO
!

IF (PRESENT(fileName)) THEN
CLOSE(fUnit)

END IF
END SUBROUTINE PrintMatrix˙Formatted

3



7.5 Recursive Procedures in Fortran
Many mathematical formulae lend themselves to a recursive formulation, like the Fast Fourier Transform (FFT).

But, as we mentioned in Chap. 4, normally a FUNCTION or SUBROUTINE cannot reference itself, directly or
indirectly. However, if we invoke that the procedure is RECURSIVE self-reference is possible.

7.5.1 Recursive Functions

We start with a canonical example of a recursive function to compute the factorial, n!, for some integer n. This
example also introduces a SELECT CASE, which is a common alternative to IF statements.

Recursive Function
RECURSIVE FUNCTION factorial(n) RESULT(factorial˙n)

IMPLICIT NONE
INTEGER,INTENT(IN) :: n

! Determine if recursion is required
SELECT CASE(n)
CASE (0)

! Recursion reached the end
factorial˙n = 1.0˙RP

CASE (1:) ! any integer above 0
! Recursion call(s) required

factorial˙n = n*factorial(n-1)
CASE DEFAULT

! If n is negative, return error
PRINT*,’ERROR: n is negative’
factorial˙n = 0.0˙RP

END SELECT
END FUNCTION factorial

7.5.2 Recursive Subroutines

We can also create recursive subroutines. Another example arises in the bisection method, where one recursively
halves an interval based on the function f(x) to locate the root of a function. We also enable the termination of
the subroutine once we reach a certain number of iterations (interval halvings)

halveInterval.f90
RECURSIVE SUBROUTINE halveInterval(f,xL,xR,tol,iter˙count,zero,delta,err)

IMPLICIT NONE
REAL(KIND=RP),INTENT(IN) :: tol
REAL(KIND=RP),INTENT(INOUT) :: xL,xR
INTEGER ,INTENT(INOUT) :: iter˙count
REAL(KIND=RP),INTENT(OUT) :: zero,delta
INTEGER ,INTENT(OUT) :: err
REAL(KIND=RP),EXTERNAL :: f

! Local Variables
REAL(KIND=RP) :: xM

delta = 0.5˙RP*(xR-xL)
! Check to see if you’ve reached the tolerance for the root

IF (delta.LT.tol) THEN
! Yes! - Return result

err = 0
zero = xL + delta

ELSE
! No root yet - check iterations and halve again

iter˙count = iter˙count - 1
IF (iter˙count.LT.0) THEN

! Max iterations w/o solution - return error

4



err = -2
zero = xL + delta

ELSE
! Keep iterating

xM = xL + delta
IF (f(xL)*f(xm).LT.0.0˙RP) THEN

CALL halveInterval(f,xL,xM,tol,iter˙count,zero,delta,err)
ELSE

CALL halveInterval(f,xM,xR,tol,iter˙count,zero,delta,err)
END IF

END IF
END IF

END SUBROUTINE halveInterval

5


	Object Oriented Programming
	Derived Types
	Example: Matrices
	Interfaces


