
Reading in a 2D array of numbers into Fortran

arrays

September 26, 2014

Let’s say you have a file array.txt that has the contents

1.0 1.1 0.0 0.0 0.0

1.2 1.3 1.4 0.0 0.0

0.0 1.5 1.6 1.7 0.0

0.0 0.0 1.8 1.9 1.0

0.0 0.0 0.0 1.1 1.2

Just to learn the peculiarities of the read(*,*) statement, let’s try to read
this 5x5 array of numbers into two, 3x3 Fortran arrays.

Method 1

programReadPractice

implicit none

real, dimension(3,3) :: array1, array2

open(12, file="array.txt")

! read in values

read(12,*) array1

array1 = transpose(array1)

read(12,*) array2

array2 = transpose(array2)

call printMatrix(array1,3,3)

print*,

call printMatrix(array2,3,3)

close(12)

end program ReadPractice

subroutine printMatrix(array, n, m)

1



implicit none

real, intent(in) :: array(n,m)

integer, intent(in) :: n,m

integer :: i

do i = 1,n

print*, array(i,:)

end do

end subroutine printMatrix

This results in the output

1.00000000 1.10000002 0.00000000

0.00000000 0.00000000 1.20000005

1.29999995 1.39999998 0.00000000

0.00000000 1.50000000 1.60000002

1.70000005 0.00000000 0.00000000

0.00000000 1.79999995 1.89999998

Compare this with the file:

1.0 1.1 0.0 0.0 0.0

1.2 1.3 1.4 0.0 0.0

0.0 1.5 1.6 1.7 0.0

0.0 0.0 1.8 1.9 1.0

0.0 0.0 0.0 1.1 1.2

Some comments on this method:

• No loops necessary!

• Fortran automatically fills the entire arrays with a single read statement,
but does so by columns. Once we transpose each array, you can see the
ordering of the data in the array more closely matches the ordering in the
file.

• The last number read into array1 is the 0.0 to the right of the 1.4 on
the second line of array.txt. Then, the first number read into array2

is the 0.0 to the left of the 1.5 on the third line of array.txt. That is,
the rest of the second line of the file was skipped after the program filled
array1, and the program jumped to the next line of the file to begin filling
array2. This is consistent with new read statement = new line.

2



Method 2:

program ReadPractice

implicit none

real, dimension(3,3) :: array1, array2

integer :: i, j

open(12, file="array.txt")

! read in values

read(12,*) ((array1(i,j), j=1,3), i=1,3), &

((array2(i,j), j=1,3), i=1,3)

call printMatrix(array1,3,3)

print*,

call printMatrix(array2,3,3)

close(12)

end program ReadPractice

subroutine printMatrix(array, n, m)

implicit none

real, intent(in) :: array(n,m)

integer, intent(in) :: n,m

integer :: i

do i = 1,n

print*, array(i,:)

end do

end subroutine printMatrix

3



This results in the output

1.00000000 1.10000002 0.00000000

0.00000000 0.00000000 1.20000005

1.29999995 1.39999998 0.00000000

0.00000000 0.00000000 1.50000000

1.60000002 1.70000005 0.00000000

0.00000000 0.00000000 1.79999995

Compare this with the file:

1.0 1.1 0.0 0.0 0.0

1.2 1.3 1.4 0.0 0.0

0.0 1.5 1.6 1.7 0.0

0.0 0.0 1.8 1.9 1.0

0.0 0.0 0.0 1.1 1.2

Some comments on this method:

• This method used a construct known as an “implied do loop”, i.e. the
((array1(i,j),j=1,3),i=1,3). If you compare the printed array1 with
the file array.txt it should be clear what this loop is doing.

• Note that array1 is filled with the same numbers as in method 1, but
because we explicitly stated the order to fill it (fix a row, go across the
columns - refer to the implied do loop) there is no need to transpose it.

• Note there is only one read statement. Again, array1 is the same as
before, with the last number read in being the 0.0 to the right of the 1.4

in the second line of array.txt. However, notice that the program DOES
NOT jump to the next line of the file to begin filling array2. Instead, it
continues where it left off in the file, and the first number read into array2

is the last 0.0 on the second line of array.txt.

4


