Modes of Convergence in Probability Theory

David Mandel

November 5, 2015

Below, fix a probability space (Ω, \mathcal{F}, P) on which all random variables $\{X_n\}$ and X are defined. All random variables are assumed to take values in \mathbb{R} . Propositions marked with " \bigstar " denote results that rely on our finite measure space. That is, those marked results may not hold on a non-finite measure space. Since we already know uniform convergence \Longrightarrow pointwise convergence this proof is omitted, but we include a proof that shows pointwise convergence \Longrightarrow almost sure convergence, and hence uniform convergence \Longrightarrow almost sure convergence.

The hierarchy we will show is diagrammed in Fig. 1, where some famous theorems that demonstrate the type of convergence are in parentheses: (SLLN) = strong long of large numbers, (WLLN) = weak law of large numbers, (CLT) = central limit theorem. In parameter estimation, $\hat{\theta}_n$ is said to be a *consistent* estimator or θ if $\hat{\theta}_n \to \theta$ in probability. For example, by the SLLN, $\bar{X}_n \to \mu$ a.s., and hence $\bar{X}_n \to \mu$ in probability. Therefore the sample mean is a consistent estimator of the population mean.

Figure 1: Hierarchy of modes of convergence in probability.

1 Definitions of Convergence

1.1 Modes from Calculus

Definition $X_n \to X$ pointwise if $\forall \omega \in \Omega, \forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \ge N$,

$$|X_n(\omega) - X(\omega)| < \epsilon$$

Definition $X_n \to X$ uniformly if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall \omega \in \Omega$ and $\forall n \geq N$,

$$|X_n(\omega) - X(\omega)| < \epsilon.$$

1.2 Modes Unique to Measure Theory

Definition $X_n \to X$ in probability if $\forall \epsilon > 0, \forall \delta > 0, \exists N \in \mathbb{N}$ such that $\forall n \geq N$,

$$P(|X_n - X| \ge \epsilon) < \delta.$$

Or, $X_n \to X$ in probability if $\forall \epsilon > 0$,

$$\lim_{n \to \infty} P(|X_n - X| \ge 0) = 0.$$

The explicit epsilon-delta definition of convergence in probability is useful for proving a.s. \implies prob.

Definition $X_n \to X$ in L^p , $p \ge 1$, if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \ge N$,

$$\int_{\Omega} |X_n(\omega) - X(\omega)| \, dP(\omega) =: ||X_n - X||_{L^p}^p < \epsilon.$$

Or, $X_n \to X$ in L^p if

$$\lim_{n \to \infty} ||X_n - X||_{L^p}^p = 0$$

Definition $X_n \to X$ almost surely (a.s.) if $\exists E \in \mathcal{F}$ with P(E) = 0 such that $\forall \omega \in E^c$ and $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \ge N$,

$$|X_n(\omega) - X(\omega)| < \epsilon.$$

Or, $X_n \to X$ a.s. if $\exists E \in \mathcal{F}$ with P(E) = 0 such that $X_n \to X$ pointwise on E^c .

1.3 Mode Unique to Probability Theory

Definition $X_n \to X$ in distribution if the distribution functions of the X_n converge pointwise to the distribution function of X at all points x where F(x) is continuous. That is, $X_n \to X$ in distribution if $\forall x \in \mathbb{R}$ such that F(x) is continuous, $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \geq N$,

$$|F_n(x) - F(x)| < \epsilon.$$

Or, $X_n \to X$ in distribution if $\forall x \in \mathbb{R}$ such that F(x) is continuous,

$$\lim_{n \to \infty} F_n(x) = F(x)$$

2 Convergence Results

Proposition Pointwise convergence \implies almost sure convergence.

Proof Let $\omega \in \Omega$, $\epsilon > 0$ and assume $X_n \to X$ pointwise. Then $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|X_n(\omega) - X(\omega)| < \epsilon$. Hence $X_n \to X$ almost surely since this convergence takes place on all sets $E \in \mathcal{F}$.

Proposition Uniform convergence \implies convergence in probability.

Proof Let $\epsilon > 0$ and assume $X_n \to X$ uniformly. Then $\exists N \in \mathbb{N}$ such that $\forall \omega \in \Omega$ and $\forall n \geq N$, $|X_n(\omega) - X(\omega)| < \epsilon$. Let $n \geq N$. Then $P(|X_n - X| \geq \epsilon) = P(\emptyset) = 0$, so of course $P(|X_n - X| \geq \epsilon) \to 0$ as $n \to \infty$.

Proposition L^p convergence \implies convergence in probability.

Proof Let $\epsilon > 0$ and assume $X_n \to X$ in L^p , $p \ge 1$. Then

$$P(|X_n - X| \ge \epsilon) \le \frac{||X_n - X||_{L^p}^p}{\epsilon^p} \to 0 \text{ as } n \to \infty,$$

where the first inequality is Chebyshev's inequality.

 \bigstar **Proposition** Uniform convergence $\implies L^p$ convergence.

Proof Let $\epsilon > 0$ and assume $X_n \to X$ uniformly. Then $\exists N \in \mathbb{N}$ such that $\forall \omega \in \Omega$ and $\forall n \geq N$, $|X_n(\omega) - X(\omega)| < \epsilon$. Let $n \geq N$. Then

$$||X_n - X||_{L^p}^p = \int_{\Omega} |X_n(\omega) - X(\omega)|^p \, dP(\omega) < \epsilon P(\Omega) = \epsilon.$$

★ **Proposition** Almost sure convergence \implies convergence in probability. This result relies on Egoroff's theorem, which we state now without proof.

Theorem 2.1 (Egoroff) Let $P(\Omega) < \infty$ and assume $X_n \to X$ a.s. Then $\forall \delta > 0$, $\exists E \in \mathcal{F}$ with $P(E) < \delta$ such that $X_n \to X$ uniformly on E^c .

Proof Let $\epsilon > 0$. Also let $\delta > 0$ and let $E \in \mathcal{F}$ such a set as in Egoroff's theorem. Since $X_n \to X$ uniformly on E^c , $\exists N \in \mathbb{N}$ such that $\forall \omega \in E^c$ and $\forall n \ge N$, $|X_n(\omega) - X(\omega)| < \epsilon$. Let $n \ge N$. Then

$$P(|X_n - X| \ge \epsilon) = P(|X_n - X| \ge \epsilon \cap E) + P(|X_n - X| \ge \epsilon \cap E^c)$$

$$< \delta + P(\emptyset) = \delta.$$

Proposition Convergence in probability \implies convergence in distribution.

 ${\bf Proof}$ First, a lemma.

Lemma 2.2 Let X_n and X be random variables. Then $\forall \epsilon > 0$ and $x \in \mathbb{R}$,

$$P(X_n \le x) \le P(X \le x + \epsilon) + P(|X_n - X| > \epsilon),$$

$$P(X \le x - \epsilon) \le P(X_n \le x) + P(|X_n - X| > \epsilon),$$

Proof (lemma) For the first line,

$$P(X_n \le x) = P(X_n \le x, X \le x + \epsilon) + P(X_n \le x, X > x + \epsilon)$$

$$\le P(X \le x + \epsilon) + P(X_n - X \le x - X, x - X < -\epsilon)$$

$$\le P(X \le x + \epsilon) + P(X_n - X < -\epsilon)$$

$$\le P(X \le x + \epsilon) + P(X_n - X < -\epsilon) + P(X_n - X > \epsilon)$$

$$= P(X \le x + \epsilon) + P(|X_n - X| > \epsilon).$$

For the second line,

$$P(X \le x - \epsilon) = P(X \le x - \epsilon, X_n \le x) + P(X \le x - \epsilon, X_n > x)$$

$$\le P(X_n \le x) + P(x - X \ge \epsilon, X_n - X > x - X)$$

$$\le P(X_n \le x) + P(X_n - X > \epsilon)$$

$$\le P(X_n \le x) + P(X_n - X > \epsilon) + P(X_n - X < -\epsilon)$$

$$= P(X_n \le x) + P(|X_n - X| > \epsilon).$$

Let $x \in \mathbb{R}$ be a continuity point of F and let $\epsilon > 0$. The lemma then tells us that

$$F_n(x) \le F(x+\epsilon) + P(|X_n - X| > \epsilon),$$

$$F(x-\epsilon) \le F_n(x) + P(|X_n - X| > \epsilon).$$

Hence

$$F(x-\epsilon) - P(|X_n - X| > \epsilon) \le F_n(x) \le F(x+\epsilon) + P(|X_n - X| > \epsilon).$$

Now let $n \to \infty$, in which case $P(|X_n - X| > \epsilon) \to 0$:

$$F(x-\epsilon) \le \liminf_{n\to\infty} F_n(x) \le \limsup_{n\to\infty} F_n(x) \le F(x+\epsilon).$$

Finally let $\epsilon \to 0^+$ and use continuity of F at x:

$$F(x) \le \liminf_{n \to \infty} F_n(x) \le \limsup_{n \to \infty} F_n(x) \le F(x),$$

hence $\lim_{n \to \infty} F_n(x) = F(x)$.

3 References

References

- Wikipedia
 Proofs of Convergence of Random Variables
 https://en.wikipedia.org/wiki/Proofs_of_convergence_of_ random_variables
- [2] University of Alabama, Birmingham Convergence in Distribution (Lecture Notes) http://www.math.uah.edu/stat/dist/Convergence.html
- [3] Gerald B. Folland Real Analysis: Modern Techniques and Their Applications http://www.amazon.com/Real-Analysis-Modern-Techniques-Applications/ dp/0471317160