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1 Introduction

Below I try to hash out the ever-confusing market price of risk (MPOR). I show
how it naturally appears when the underlying is not tradable, and why it is
absent exactly when the underlying is tradable.

I start with a derivation of the Black-Scholes PDE using the hedging portfolio
approach. I don’t show how to solve the PDE as that is fairly standard (see [2]).
Continuing with the Black-Scholes model, I then derive the option price from
a totally different approach - that of risk-neutral pricing. I should mention the
original, “hedging portfolio” approach was the one used by Black, Scholes and
Merton in 1973, along with Vasicek in 1977. Harrison and Pliska are usually
noted for coming up with the risk-neutral approach in 1983, which is far more
general for pricing. It is in this risk-neutral approach that the MPOR appears,
but does so only by “forcing” it to - it is only a rearranging of an SDE, which
is done to change the measure.

In contrast, in interest rate derivatives the MPOR naturally appears, and
this is the topic I take up in the next section. Following this interest rate deriva-
tive section, I compare it with Black-Scholes to see that the MPOR vanishes
in the latter, and this is exactly due to the underlying (stock) being a tradable
asset.

2 Black-Scholes

Goal: Price a derivative written on a stock whose price is governed by the SDE

dS(t) = µS(t)dt+ σS(t)dW (t).

2.1 PDE Approach

Method: Explicitly construct a self-financing portfolio that perfectly hedges a
short position in the derivative. A perfect hedge is riskless, so the portfolio must
instantaneously earn exactly the risk-free instantaneous rate r, else arbitrage.
To do this, we explicitly construct (that is, we actually find the number of shares
∆ of underlying to own in terms of a computable quantity) a trading strategy by
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trading in the underlying (stock) where for all 0 ≤ t ≤ T , we own just the right
amount of stock such that the portfolio implementing this strategy is riskless.
We will see this then gives a PDE for the option price.

Implementation: construct a self-financing portfolio short 1 option worth
V (t, S(t)) and long ∆(t) shares of the stock, each worth S(t). The value Π(t) of
this portfolio is Π(t) = ∆(t)S(t)− V (t). The self-financing assumption implies
that the change in the portfolio value is

dΠ(t) = ∆(t)dS(t)− dV (t, S(t)).

Suppressing the arguments, note

dV =
∂V

∂t
dt+

∂V

∂x
dS +

1

2

∂2V

∂x2
dSdS

=
∂V

∂t
dt+

∂V

∂x
[µSdt+ σSdW ] +

1

2

∂2V

∂x2
[
σ2S2dt

]
=

[
∂V

∂t
+ µS

∂V

∂x
+
σ2S2

2

∂2V

∂x2

]
dt+ σS

∂V

∂x
dW,

so

dΠ = ∆µSdt+ ∆σSdW −
[
∂V

∂t
+ µS

∂V

∂x
+
σ2S2

2

∂2V

∂x2

]
dt− σS ∂V

∂x
dW

=

[
∆µS − ∂V

∂t
− µS ∂V

∂x
− σ2S2

2

∂2V

∂x2

]
dt+

[
∆σSdW − σS ∂V

∂x

]
dW.

Here’s the strategy: at each time 0 ≤ t ≤ T , long ∆(t) = ∂V
∂x (t, S(t)) shares

of stock. Then

dΠ =

[
−∂V
∂t
− σ2S2

2

∂2V

∂x2

]
dt

= rΠdt

= r

(
∂V

∂x
S − V

)
dt,

where the second equality is true to rule out arbitrage. Hence

− ∂V

∂t
− σ2S2

2

∂2V

∂x2
= rS

∂V

∂x
− rV

⇐⇒ ∂V

∂t
+
σ2S2

2

∂2V

∂x2
+ rS

∂V

∂x
− rV = 0.

Ignoring boundary and initial conditions, this is our “pricing” PDE for V =
V (t, x),

∂V

∂t
+
σ2x2

2

∂2V

∂x2
+ rx

∂V

∂x
− rV = 0
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2.2 Risk-Neutral Pricing Approach

Method: Construct a self-financing strategy that replicates the derivative pay-
off X(S(T )). By no-arbitrage, the value Π(t) of the portfolio implementing
such a strategy must be the price of the derivative. Self-financing replicating
strategies are guaranteed to exist by the Martingale Representation Theorem
(MRT), so we won’t explicitly construct the strategy as in the PDE approach
but instead call on the MRT to give us one. Then, the FTAP states that if the
discounted stock price processes e−rtS(t) is a Q-martingale, then the value Π(t)
of a portfolio implementing any self-financing replicating strategy is

Π(t) = EQ[e−r(T−t)X(S(T ))|Ft]

Then, again to rule out arbitrage, the RHS must be the value of the derivative
for all 0 ≤ t ≤ T .

Implementation: With S(t) governed by dS(t) = µS(t)dt+ σS(t)dW (t) and
a constant interest rate r, the discounted stock price e−rtS(t) is governed by
(suppressing arguments)

d
(
e−rtS

)
= −re−rtSdt+ e−rtdS

= −re−rtSdt+ e−rt [µSdt+ σSdW ]

= e−rtS [(µ− r)dt+ σdW ] (1)

= e−rtSσ

[
µ− r
σ

dt+ dW

]
. (2)

Note eqn (1) shows the instantaneous expected return on the discounted stock
is µ − r, but the volatility is the same. In eqn (2) we see for the first time the
market price of risk, which we’ll call λ = µ−r

σ .
Finally, let W (t) be our BM on a probability space (Ω,F , P ), and let λ(t)

be adapted to the filtration for W (t). Define the processes

Z(t) = exp

(
−
∫ t

0

λ(s)dW (s)− 1

2

∫ t

0

λ2(s)ds

)
,

W̃ (t) = W (t) +

∫ t

0

λ(s)ds

and define the random variable Z = Z(T ) (Z is a Radon-Nikodym derivative).
Finally, define a probability measure Q by

Q(A) =

∫
A

Z(ω)dP (ω), for all A ∈ F .

Then by Girsanov’s theorem, W̃ (t) is a Q-BM.
So, let λ(t) = λ = µ−r

σ in Girsanov’s theorem. Define Z(t) = exp
(
−λW (t)− 1

2λ
2t
)

and W̃ (t) = W (t) + λt. Define the random variable Z = Z(T ) and define the
probability Q by Q(A) =

∫
A
Z dP . Then W̃ (t) is a Q-BM, and thus

d
(
e−rtS

)
= e−rtSσdW̃ ,
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so e−rtS is a Q-martingale. Since we’ve found a measure for which e−rtS is
a martingale, the value Π(t) of any portfolio using a self-financing replicating
strategy is Π(t) = EQ[e−r(T−t)X(S(T ))|Ft] by the FTAP. By no-arbitrage,

EQ[e−r(T−t)X(S(T ))|Ft]

is the price of the derivative with payoff X(S(T )).
Some items worth noticing at this point:

• In the “hedging portfolio” (first) approach, we didn’t say, “the price of
the portfolio must be the same as the option, else arbitrage.” This is
the argument used in the risk-neutral approach, where instead of a hedg-
ing portfolio, we have a replicating portfolio. Instead, we simply use the
hedging portfolio as a tool to get to the pricing PDE.

• The MPOR was the adapted process we used in Girsanov’s theorem to
change the drift of our discounted underlying process.

• the µ and σ seen in the MPOR were the µ and σ from the asset used to
hedge the derivative, where the asset price S was governed by an SDE of
the form dS = µSdt + σSdW . The coefficients µ and σ may depends on
(t, S) as well, but the asset used as a hedge was written as an exponential
SDE.

• The only source of randomness anywhere is the stock, and hence this is
the only source of randomness in the derivative. We then hedge this single
source of randomness with the stock.

• MPOR parameters are for the tradable asset. Think: talk about returns
over risk-free per unit of risk - these are terms for tradable assets only!

3 Interest Rate Derivatives

Goal: Price a “derivative” “written on” an interest rate whose value is governed
by a general SDE

dr(t) = α(t, r(t))dt+ β(t, r(t))dW (t).

3.1 Overview of SDE Assumption

Where do SDEs come from? Below, Vasicek’s argument from his seminal paper
[1] is summarized, where he gives explicit assumptions that lead to an SDE for
the underlying r (spot rate). Assumptions:

A.1 The spot rate r follows a continuous Markov process (probability distri-
bution of {r(s), s ≥ t} is completely determined by the value of r(t)).
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A.2 The price P (t, T ) of a discount bond is determined by the assessment, at
time t, of the segment {r(s), t ≤ s ≤ T} of the spot rate over the term of
the bond.

A.3 The market is efficient. In particular,

• There are no transaction costs,

• Information is available to all investors simultaneously,

• Every investor acts rationally (prefers more wealth to less and uses
all available info).

Continuous Markov processes are called diffusion processes, and can be de-
scribed by an SDEs. Fix a probability space (Ω,F , P ). then by [A.1], the
evolution of r(t) is governed by

dr(t) = α(t, r(t))dt+ β(t, r(t))dW (t), (3)

where W is a P -BM and α, β are given functions.
By [A.1] the development of the spot rate over an interval (t, T ), given its

values prior to t, depends only on the current value r(t). Then, [A.2] implies
P (t, T ) = P (t, T, r(t)); i.e., the current spot rate is the only state variable for
the entire term structure.

3.2 PDE Approach

Method: Explicitly construct a self-financing portfolio that perfectly hedges a
short position in the derivative (bond). A perfect hedge is riskless, so the
portfolio must instantaneously earn exactly the risk-free instantaneous rate r
(spot rate), else arbitrage. To do this, we explicitly construct a trading strategy
by trading in another derivative, which will be a bond of another maturity, where
for all 0 ≤ t ≤ T , we own just the right amount of the “hedging” derivative such
that the portfolio implementing this strategy is riskless. Just like for the stock
derivative, this riskless assumption with lead to a pricing PDE.

Implementation: Note first that since r follows the SDE (3) and since P =
P (t, T, r(t)),

dP =
∂P

∂t
dt+

∂P

∂r
dr +

1

2

∂2P

∂r2
drdr

=
∂P

∂t
dt+

∂P

∂r
[αdt+ βdW (t)] +

1

2

∂2P

∂r2
[
β2dt

]
=

(
∂P

∂t
+ α

∂P

∂r
+

1

2
β2 ∂

2P

∂r2

)
dt+ β

∂P

∂r
dW (t)

= µ(t, T )Pdt+ σ(t, T )PdW (t),
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where

µ(t, T, r) =
1

P (t, T, r)

(
∂

∂t
+ α

∂

∂r
+

1

2
β2 ∂

2

∂r2

)
P (t, T, r),

σ(t, T, r) =
1

P (t, T, r)
β
∂

∂r
P (t, T, r).

Above, we emphasize the dependencies of the parameters by including and
excluding some function arguments. E.g. for Ito’s lemma we view P = P (t, r(t))
as T is just a parameter. In dP = µ(t, T )Pdt − σ(t, T )PdW (t) we emphasize
that the coefficients depend on maturity T and of course the current time t,
although they also depend on r as well. The dependence on maturity is the
relevant dependence later, so we emphasize it now.

Now construct a portfolio short one bond (a derivative) with price P1 :=
P (t, T1) and long ∆(t) units of another bond with price P2 := P (t, T2) where
t ≤ T1 < T2. Again, by the self-financing assumption the change in value Π of
this portfolio is

dΠ = ∆dP2 − dP1

= ∆ [µ2P2dt− σ2P2dW ]− [µ1P1dt− σ1P1dW ]

= (∆µ2P2 − µ1P1) dt− (∆σ2P2 − σ1P1) dW,

where, e.g., µ1 := µ(t, T1). Here’s the strategy: at each time 0 ≤ t ≤ T1, long
∆(t) = σ1P1

σ2P2
units of the T2-bond. Then

dΠ =

(
σ1P1

σ2
µ2 − µ1P1

)
dt = rΠdt = r

(
σ1P1

σ2
− P1

)
dt,

where the second equality is to rule out arbitrage. Hence

σ(t, T1)P1

σ(t, T2)
µ(t, T2)− µ(t, T1)P1 = r

σ(t, T1)P1

σ(t, T2)
− rP1

⇐⇒ µ(t, T2)− r
σ(t, T2)

=
µ(t, T1)− r
σ(t, T1)

. (4)

Since (4) is valid for arbitrary maturity dates it follows that the ratio µ(t,T )−r
σ(t,T )

is independent of T . Let λ(t, r) denote the common value of this ratio for any
T , given the current spot rate of r(t) = r:

λ(t, r) =
µ(t, T, r)− r
σ(t, T, r)

, T ≥ t

⇐⇒ σ(t, T, r)λ(t, r) = µ(t, T, r)− r.

Substituting the value for µ and σ we arrive at a PDE for the bond price:

1

P
β
∂

∂r
Pλ =

1

P

(
∂

∂t
+ α

∂

∂r
+

1

2
β2 ∂

2

∂r2

)
P − r

⇐⇒ ∂P

∂t
+

1

2
β2 ∂

2P

∂r2
+ (α− βλ)

∂P

∂r
− rP = 0.
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Again ignoring boundary and initial conditions we have a “pricing” PDE for
P (t, r):

∂P

∂t
+

1

2
β2 ∂

2P

∂r2
+ (α− βλ)

∂P

∂r
− rP = 0.

Some items worth noticing at this point:

• We used an arbitrage argument (setting dΠ = rΠdt) to arrive at the
conclusion that the expected return on any bond in excess of the spot rate
is proportional to its standard deviation (Eq. (4)). This property was then
used to derive a PDE for the bond prices.

• The MPOR appears explicitly in the pricing PDE. Compare this with the
BS PDE, where it is absent. We’ll see in the next section that this is
exactly due to the underlying (r in the interest rate derivative case) not
being tradable.

4 Comparing Interest Rate and Stock Deriva-
tives

Takeaway: The fundamental difference between interest rate and stock deriva-
tives is that the underlying for stock derivatives is tradable, and we use the
underlying itself to trade in for the hedging portfolio, while the underlying for
the interest rate derivatives is NOT tradable (interest rates aren’t directly trad-
able), so we instead trade in another derivative in the hedging portfolio. We’ll
see below that when the underlying is tradable, the MPOR disappears.

Note: being careful about “hedging” and “replicating” portfolios. So far,
we haven’t shown these hedging portfolio actually replicate the payoff - all we
care about is if the hedge is just right (choosing ∆ just right), the return on
the portfolio must be risk-free, which then gives us a PDE for the option price.
Replicating portfolios take a different approach.

Let’s construct the BS PDE with the general SDE we used for the interest
rate. We’ll make a slight change to (3) in that we’re going to write the value S
explicitly, as opposed to implicitly in the coefficients α and β. This results in
a slight simplification down the road, but for now we make the remark that if
you’re going to be trading in it, make the SDE exponential.

The dynamics for the underlying stock are given by

dS(t) = α(t)S(t)dt+ β(t)S(t)dW (t). (5)
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Again, first note that

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
dSdS

=
∂V

∂t
dt+

∂V

∂S
[αSdt+ βSdW ] +

1

2

∂2V

∂S2

[
β2S2dt

]
=

(
∂V

∂t
+ αS

∂V

∂S
+

1

2
β2S2 ∂

2V

∂S2

)
dt+ βS

∂V

∂S
dW

= µ(t, V )V dt+ σ(t, V )V dW,

where

µ(t, S(t)) =
1

V (t, S(t))

(
∂

∂t
+ α(t)S(t)

∂

∂r
+

1

2
β(t)2S(t)2

∂2

∂S2

)
V (t, S(t)),

σ(t, S(t)) =
1

V (t, S(t))
β(t)S(t)

∂

∂S
V (t, S(t)).

The dynamics of the self-financing hedging portfolio are

dΠ = ∆dS − dV
= ∆[αSdt+ βSdW ]− [µV dt+ σV dW ]

= (∆αS − µV )dt+ (∆βS − σV )dW.

Again, set ∆(t, S(t)) = σ(t)V (t,S(t))
β(t)S(t) . Then the portfolio is riskless for all

0 ≤ t ≤ T , so

dΠ =

(
σV α

β
− µV

)
dt = r

(
σV

β
− V

)
dt.

Hence we have

σV α

β
− µV = r

σV

β
− rV

⇐⇒ α− r
β

=
µ− r
σ

. (6)

Eqn. (6) is the key difference between the underlying being tradable or not.
Because the underlying was tradable, the MPOR for the derivative µ−r

σ is the
same as the MPOR for the underlying α−r

β . We derived this result (6) by a
no-arbitrage argument, namely that the portfolio hedging the derivative must
earn the risk-free rate, and hence all tradables in a market should have the same
MPOR.

As before set λ(t, S(t)) = µ(t,S(t))−r
σ(t,S(t)) ⇐⇒ σ(t, S(t))λ(t, S(t)) = µ(t, S(t))−

r. We again get our PDE from this equation:

1

V
βS

∂V

∂S
λ =

1

V

(
∂V

∂t
+ αS

∂V

∂r
+

1

2
β2S2 ∂

2P

∂S2

)
⇐⇒ ∂V

∂t
+

1

2
β2S2 ∂

2V

∂S2
+ (α− λβ)S

∂V

∂S
− rV = 0.
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The key difference now is that the MPOR λ vanishes. Indeed, since λ = α−r
β ,

plugging this in above gives the usual BS PDE:

∂V

∂t
+

1

2
β2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.
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