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1. Introduction

Let X be a noetherian separated scheme over a field k. Let Q be a locally free Lie
algebroid on X, and L a coherent sheaf of Lie OX-algebras (definitions will be given
in Section 2). An exact sequence of Lie algebroids

0→ L → E → Q → 0 (1)

is called an extension of Q by L . Any such extension defines a morphism α : Q →
Out(L ), where Out(L ) is the Lie algebroid of outer derivations of L , by letting

α(x)(y) = {x′, y}E

where x′ is any counterimage of x in E . It also induces a representation of Q on the
centre Z(L ) of L , i.e., a morphism α : Q → Der(Z(L )).

Any two extensions E1, E2 are considered to be equivalent if there is a morphism
E1 → E2 such that the diagram

0 // L // E1
//

��

Q // 0

0 // L // E2
// Q // 0

commutes.
In this paper we study the problem of finding extensions of Lie algebroids as in (1)

such that the induced Q-module structure of Z(L ) coincides with that defined by a
given α. This problem was already studied in [3] by realizing the hypercohomology
groups of a Lie algebroid in terms of Čech complexes. Here, following [2], we adopt an
intrinsic approach.
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If L is abelian, the problem is unobstructed, as α defines an action of Q on L , and
one can define the semidirect product Lie algebroid

E = L oα Q,

where E = L ⊕Q as OX-modules, with bracket

{(`, x), (`′, x′)} = (α(x)(`′)− α(x′)(`), {x, x′})

and anchor a : E → Der(A ) given by the anchor b of Q, i.e., a((`, x)) = b(x). On
the other hand, if L is not abelian, α does not define an action of Q on L , and the
problem of finding an extension of Q by L is obstructed by a class ob(α) in the group

H3(Q;Z(L ))(1) = H3(X, σ≥1Z(L )⊗ Λ•Q∗),

i.e., the third hypercohomology group of a “sharp” truncation of the Chevalley-Eilenberg-
de Rham complex of Q with coefficients in Z(L ).

When the obstruction is zero (which, as we have seen, is always the case when L

is abelian), the equivalence classes of extensions of Q by L , inducing on Z(L ) the
Q-action given by α, are classified by the group

H2(Q;Z(L ))(1) = H2(X, σ≥1L ⊗ Λ•Q∗).

So we have the following theorem.

Theorem 1.1. Given a locally free Lie algebroid Q, a sheaf L of finitely generated Lie
OX-algebras, and a morphism α : Q → Out(L ), the problem of finding an extension of
Q by L inducing on Z(L ) the Q-action given by α is obstructed by a class ob(α) ∈
H3(Q;Z(L ))(1). If ob(α) = 0, the space of equivalence classes of extensions is a torsor
over the group H2(Q;Z(L ))(1).

Remark 1.2. In the abelian case the space of equivalence classes of extensions is naturally
identified with H2(Q;Z(L ))(1), with the zero element of the latter space being identified
with the semidirect product extension. 4

The contents of this paper are as follows. In Section 2 we review the fundamentals
about Lie algebroid cohomology, stressing a few facts that will be needed later on in
the paper. Since some arguments will involve the use of free Lie algebroids, in Section
3 we develop their basic theory. In Section 4 we briefly treat the abelian case; the
classification problem in this case fits into a general theory developed by van Osdol [20].
In Section 5 we treat the nonabelian case. We first construct the obstruction to the
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extension problem for Lie algebroids, and then, assuming that the obstruction vanishes,
we reduce the classification theorem to the abelian case.

Acknowledgements. We thank the referee for the very careful reading of the paper,
and for suggestions which improved its presentation. Part of this research was carried out
while U.B was visiting the Institute for Mathematical Sciences, National University of
Singapore in 2016, and the Department of Mathematics of the University of Pennsylvania
in 2017. We thank G. Powell and F. Sorrentino for useful discussions. This research was
partly supported by INdAM-GNSAGA (also through its Visiting Professor Programme).
U.B. is a member of VBAC. V.R’s research is partly supported by RFBR’s grant
15-01-05990A.

2. Lie algebroids and their hypercohomology

In this section, basically following [18] and [2], we recall some basic facts about the
cohomology of Lie-Rinehart algebras, and the hypercohomology of Lie algebroids over
schemes.

2.1. Lie-Rinehart algebras. As Lie algebroids are in a sense Lie-Rinehart algebras
with coefficients, we start with some issues about Lie-Rinehart algebras.

Let A be a finitely generated commutative, associative unital algebra over a field
k. A (k, A)-Lie-Rinehart algebra is a pair (L, a), where L is an A-module equipped
with a k-linear Lie algebra bracket { , }, and a : L→ Derk(A) a representation of L in
Derk(A) (the anchor) that satisfies the Leibniz rule

{s, ft} = f{s, t}+ a(s)(f) t

where s, t ∈ L and f ∈ A.
We consider a useful class of Lie-Rinehart algebras. Let k be a field, and A a

commutative associative algebra over k. Let V be a k-vector space, and define

L = A⊗k V.

Let G•(L) be the graded algebra generated by L over A, with A in degree 0 and L in
degree one. We have [6]

Proposition 2.1. Lie-Rinehart algebra structures on L are in a one-to-one correspon-
dence with degree -1, graded-symmetric k-Lie brackets on

G0(L)⊕G1(L) = A⊕ L
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that satisfy the Leibniz rule

[αs, s′] = α[s, s′] + [α, s′]s

for α ∈ A, s, s′ ∈ L.

Note that the bracket is required to satisfy a graded Jacobi identity, which implies
the usual Jacobi identity for L. Moreover, the anchor of L is given by the map

a : L→ Derk(A), a(x)(α) = [α, x].

A useful class of examples is provided by taking V = g, where g is a Lie algebra over
k equipped with a k-Lie algebra homomorphism a : g → Derk(A) (the Lie-Rinehart
algebras obtained in this way are called transformation Lie-Rinehart algebras [14]). The
bracket on G0(L)⊕G1(L) is defined as

[α⊗ ξ, β] = α a(ξ)(β)

[α⊗ ξ, β ⊗ η] = αβ [ξ, η] + α a(ξ)(β) η − β a(η)(α) ξ

for α, β ∈ A, ξ, η ∈ g. (Note that the bracket of two elements in G0(L) is always zero
as the bracket is supposed to have degree −1.) The anchor aL of L is given by

aL(α⊗ ξ)(β) = α a(ξ)(β).

2.2. Lie algebroid cohomology. We consider now Lie algebroids. All schemes will
be noetherian. Let X be a separated scheme over a field k (the same results hold in
the holomorphic category). We shall denote by OX the sheaf of regular functions on X,
by kX the constant sheaf on X with stalk k, and by ΘX the tangent sheaf of X (the
sheaf of derivations of the structure sheaf OX), which is a sheaf of kX-Lie algebras. A
Lie algebroid C on X is a coherent OX-module C equipped with:

• a k-linear Lie bracket defined on sections of C , satisfying the Jacobi identity;
• a morphism of OX-modules a : C → ΘX , called the anchor of C , which is also
a morphism of sheaves of k-Lie algebras.

The Leibniz rule

{s, ft} = f{s, t}+ a(s)(f) t

is required to hold for all sections s, t of C and f of OX (actually the Leibniz rule and
the Jacobi identity imply that the anchor is a morphism of kX-Lie algebras).

A morphism (C , a)→ (C ′, a′) of Lie algebroids defined over the same scheme X is a
morphism of OX-modules f : C → C ′, which is compatible with the brackets defined
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in C and in C ′, and such that a′ ◦ f = a. Note that this implies that the kernel of a
morphism of Lie algebroids has a trivial anchor, i.e., it is a sheaf of OX-Lie algebras.

Definition 2.2. A representation of a Lie algebroid C is a pair (M , ρ), where M is a
coherent OX-module, and ρ is an OX-linear morphism C → Endk(M ) satisfying the
condition

ρ(x)(fm) = fρ(x)(m) + a(x)(f)m

for all sections f , x and m of OX , C and M , respectively.

A representation M of C will also be called a C -module. We shall denote by Rep(C )

the category of representations of a Lie algebroid C . Given a representation (M , ρ),
we define the invariant submodule M C of M as the sheaf of kX-modules

M C (U) = {m ∈M (U) | ρ(C )(m) = 0}.

This is an OX-module when the anchor of C is trivial. In general, this defines a functor

(−)C : Rep(C )→ kX-mod.

Assuming that C is locally free, we introduce the Chevalley-Eilenberg-de Rham
complex of C with coefficients in a representation (M , ρ), which is a sheaf of differential
graded algebras. This is M ⊗OX

Λ•OX
C ∗ as a sheaf of OX-modules, with a product given

by the wedge product, and a k-linear differential dC : M ⊗OX
Λ•OX

C ∗ →M ⊗OX
Λ•+1

OX
C ∗

defined by the formula

(dC ξ)(s1, . . . , sp+1) =

p+1∑
i=1

(−1)i−1ρ(si)(ξ(s1, . . . , ŝi, . . . , sp+1))

+
∑
i<j

(−1)i+jξ([si, sj], . . . , ŝi, . . . , ŝj, . . . , sp+1)

for s1, . . . , sp+1 sections of C , and ξ a section of M ⊗OX
Λp

OX
C ∗.

The hypercohomology of the complex (M ⊗OX
Λ•OX

C ∗, dC ), denoted H•(C ; M ), is
called the Lie algebroid cohomology of C with coefficients in (M , ρ). If X is affine, the
hypercohomology H•(C ; M ) reduces the cohomology of the (k,OX(X))-Lie-Rinehart
algebra C (X) with coefficients in M (X) [18].

2.3. Cohomology of transformation Lie algebroids. 1 If L is a locally free sheaf
of kX-Lie algebras, and b : L → Derk(OX) is a morphism of Lie kX-algebras, one
can, in analogy with the case of Lie-Rinehart algebras, define the transformation Lie
algebroid C = OX ⊗k L , with anchor a(f ⊗ ξ) = f ⊗ b(ξ). Let M be a representation

1This section is not used elsewhere in this paper. We record it here for the sake of completeness.
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of C which is locally free as an OX-module; then M is also a representation of L , and
each fibre Mx is a representation of the Lie algebra Lx (the fibre of L at x ∈ X. Then
one immediately has an isomorphism of k-vector spaces

H•(C ; M ) ' H•(L ; M ).

Moreover there is a spectral sequence converging to these groups whose second page is

Ep,q
2 = Hp(X,H q(L ; M )).

Here H q(L ; M ) is a vector bundle whose fibre at x ∈ X is the Chevalley-Eilenberg
cohomology Hq(Lx; Mx) of the Lie algebra Lx with coefficients in the vector space
Mx.

2.4. Lie algebroid cohomology as a derived functor. Given a locally free algebroid
C , we consider the functor

IC : Rep(C )→ k-mod, M 7→ Γ(X,M C ).

This is left-exact, and since Rep(C ) has enough injectives [2], we can take its derived
functors. It was shown in [2] that these derived functors are isomorphic to the hy-
pecohomology functors, that is, for every representation M of C there are functorial
isomorphisms

RiIC (M ) ' Hi(C ; M ), i ≥ 0.

In the same way, the derived functors of the functor (−)C applied to a representation
M give the cohomology sheaves of the Chevalley-Eilenberg-de Rham complex with
coefficients in M :

RiM C 'H i(C ; M ), i ≥ 0.

2.5. A local-to-global spectral sequence. One has IC = Γ◦ (−)C . Moreover, when
I is an injective object in Rep(C ), one has H i(C ; I ) = 0 for i > 0 [2]. As a result,
there is a spectral sequence, converging to H•(C ; M ), whose second term is

Epq
2 = Hp(X,H q(C ; M )).

2.6. A Hochschild-Serre spectral sequence. Let us consider an extension of Lie
algebroids as in (1). As we already noticed, L is a sheaf of OX-Lie algebras, i.e., it has a
vanishing anchor. Thus, if M is a representation of E , the L -invariant submodule M L
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is an OX-module, and moreover, it is a representation of Q. One has a commutative
diagram of functors

Rep(E )
(−)L
//

IE %%

Rep(Q)

IQ

��

Vectk

The functors (−)L and IQ are left-exact, and moreover, (−)L maps injective objects
of Rep(E ) to IQ-acyclic objects of Rep(Q) ([12, Prop. 2.4.6 (vii)],[2]), so that there
is a Grothendieck spectral sequence converging to R•IE (M ), whose second page is
Epq

2 = RpIQ(RqM L ) [7]. This generalizes the Hochschild-Serre spectral sequence one
has for extensions of Lie algebras [10, 3]. Changing notation, we have [2, 3]:

Theorem 2.3. For every representation M of E there is a spectral sequence converging
to H•(E ; M ), whose second page is

Epq
2 = Hp(Q; H q(L ; M )).

It may be useful to record the explicit form of the five-term sequence of this spectral
sequence:

0→ H1(Q; M L )→ H1(E ; M )→ H0(Q; H 1(L ; M ))

→ H2(Q; M )→ H2(E ; M L ) .

2.7. The universal enveloping algebroid. The universal enveloping algebra U(L)

of a (k, A)-Lie-Rinehart algebra L was defined in [18]. It is a k-algebra equipped with a
homomorphism (in fact a monomorphism) ı : A→ U(L) of k-algebras and a k-module
morphism  : L→ U(L), such that the following relations hold:

[(s), (t)]− ([s, t]) = 0 , s, t ∈ L , (2)

[(s), ı(f)]− ı(a(s)(f)) = 0 , s ∈ L, f ∈ A (3)

(here a : L → Derk(A) is the anchor morphism). One way to construct U(L) is to
consider the standard enveloping algebra U(Ao L) of the semi-direct product k-Lie
algebra Ao L and then mod out the ideal generated by the relation f(g, s)− (fg, fs).
U(L) is an A-module via the morphism ı, but observe that due to (3) the left and
right A-module structures are different. (The other relation (2) simply says  is a
morphism of k-Lie algebras.) We also have a morphism ε : U(L)→ U(L)/I = A (the



9

augmentation morphism) where I is the ideal generated by (L). Note that ε is a
morphism of U(L)-modules but not of A-modules, as

ε(fs) = a(s)(f)

when f ∈ A, s ∈ L.
The construction of the universal enveloping algebra U(L) of a (k, A)-Lie-Rinehart

algebra is functorial, and therefore one can define the universal enveloping algebra
U(C ) of a Lie algebroid C by taking the sheaf associated with the presheaf obtained by
applying the previous definition to every (k,OX(U))-Lie-Rinehart algebra C (U), where
U runs over the open sets in X [2].

2.8. Lie algebroid hypercohomology and derivations. We assume that the Lie
algebroid C is locally free. The category Rep(C ) and the category of U(C )-modules are
equivalent, and the functors Hi(C ;−) and ExtiU(C )(OX ,−) are isomorphic as functors
Rep(C )→ k-mod [2] . Let J be the kernel of the augmentation morphism U(C )→
OX . By applying the functor HomU(C )(−,M ) to the exact sequence of U(C )-modules

0→J → U(C )→ OX → 0 . (4)

we obtain the exact sequence

0→ IC (M )→ Γ(X,M )→ HomU(C )(J ,M )→ H1(C ; M )→ H1(X,M )

So every element in H1(C ; M ) which goes to zero in H1(X,M ) (for instance, this
will always happen if X is affine) is represented by a morphism of U(C )-modules
φ : J →M . This in turn induces a morphism Dφ : C →M by letting

Dφ(x) = φ(i(x))

where i is the natural inclusion C → I . This is a derivation of C with values in M ,
as one has

Dφ({x, y}) = φ(i({x, y}))) = φ(i(x)i(y)− i(y)i(x)) = x(Dφ(y))− y(Dφ(x)).

The morphism φ 7→ Dφ establishes indeed an isomorphism

HomU(C )(J ,M ) ' Der(C ,M ) .

Thus the module J (co)represents the functor of derivations M 7→ Der(C ,M ) . There
is an entirely similar situation for the sheaf of derivations, namely

H omU(C )(J ,M ) ' Derk(C ,M ) .
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2.9. The truncated complex. Under the standing assumption that C is locally free,
from [18] we obtain that the homological version of the Chevalley-Eilenberg complex of
C is a flat resolution of OX :

· · · → U(C )⊗OX
Λ2C → U(C )⊗OX

C → U(C )→ OX → 0 .

Using (4) to slice the above sequence we obtain in turn a flat resolution of the module
J :

· · · → U(C )⊗OX
Λ2C → U(C )⊗OX

C →J → 0 .

The above motivates to consider for a Lie algebroid C and a C -module M , the sharp
truncation of the Chevalley-Eilenberg complex σ≥1Λ•C ∗ ⊗M defined by

0 // C ∗ ⊗M // Λ2C ∗ ⊗M // · · ·

with the term ΛpC ∗ ⊗M placed in degree p. There is an obvious short exact sequence

0 // σ≥1Λ•C ∗ ⊗M // Λ•C ∗ ⊗M // M [0] // 0 ,

where M [0] is the complexe consisting solely of M placed in degree 0, giving rise to
the long exact sequence

· · · → Hi(C ; M )(1) → Hi(C ; M )→ H i(X,M )→ Hi+1(C ,M )(1) → · · · (5)

where we have denoted by H•(C ; M )(1) the hypercohomology of the truncated complex.
Note that H0(C ; M )(1) = 0.

Remark 2.4. When X is affine the exact sequence (5) splits into

0→ H0(C ; M )→ H0(X,M )→ H1(C ,M )(1) → H1(C ,M )→ 0,

Hi(C ,M )(1) ' Hi(C ,M ), i ≥ 2.

4

By applying the functor HomU(C )(−,M ) to the short exact sequence (4), we also
obtain the long exact sequence

· · · → Hi(C ; M )→ H i(X,M )→ ExtiU(C )(J ,M )→ Hi+1(C ; M )→ · · · (6)

where we have used that HomU(C )(U(C ),M ) ' Γ(X,M ), as well as RiIC (M ) '
ExtiU(C )(OX ,M ), combined with the identification with the Lie Algebroid cohomology
recalled in sect. 2.4. Comparing the sequences (5) and (6) we obtain the isomorphisms

ExtiU(C )(J ,M ) ' Hi+1(C ,M )(1) , i ≥ 0 .



11

One easily shows that the derivation functor

Der(C ,−) : Rep(C )→ Vectk, M 7→ Der(C ,M )

is left-exact. As a simple corollary of what was proved in [2], we have the following

Proposition 2.5. The cohomology of the truncated complex is isomorphic (up to a
shift) to the derived functors of the derivation functor:

Ri Der(C ,M ) ' Hi+1(C ; M )(1) .

Proof. Indeed, we are deriving Der(C ;−) ' HomU(C )(J ,−). �

Remark 2.6. If we analogously denote by H •(C ; M )(1) the cohomology sheaves of the
truncated complex, we have of course

H 0(C ; M )(1) = 0, H i(C ; M )(1) = H i(C ; M ) for i > 1 ,

and

H i+1(C ; M )(1) ' Ri Derk(C ,M ) ; in particular, H 1(C ; M )(1) ' Derk(C ,M ) .

4

Remark 2.7. The hypercohomology H•(C ; M )(1) can be computed as the cohomology
of the total complex of the double complex Hp,q = Čp(U, σ≥1ΛqC ∗ ⊗M ), where U is
any affine cover of X, and Č• denotes the associated Čech complex. Since H0,0 = 0, we
have H0(C ; M )(1) = 0, as already noted. 4

2.10. A long exact sequence for the Der functor. Let us consider an extension
of Lie algebroids as in (1). As we already discussed, the center Z(L ) is a Q-module,
and hence also an E -module. Moreover, we give it also the structure of a trivial L -
module. Note that the forgetful functors Rep(Q)→ Rep(E ) and Rep(E )→ Rep(L )

are exact, so that they map injective objects of Rep(Q) to injective objects of Rep(E )

and Rep(L ). We take an injective resolution I • of Z(L ) as an object in Rep(Q), and
apply the functor Der(−,I •) to the exact sequence (1). We obtain an exact sequence
of complexes of vector spaces

0→ Der(Q,I •)→ Der(E ,I •)→ Der(L ,I •)→ 0
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and taking the long exact sequence of cohomology we obtain (as Ri Der(Q, Z(L ))

' Hi+1(Q;Z(L ))(1))

0→ Der(Q, Z(L )→ Der(E , Z(L ))→ Der(L , Z(L ))
δ−→

H2(Q;Z(L ))(1) → H2(E ;Z(L ))(1) → . . . (7)

3. Free Lie algebroids

3.1. Free Lie and associative algebras over a set. We start by recalling the
construction of the free Lie algebra over a set and its universal enveloping algebra ([17],
see also [19]). Let k be a field and A a commutative, associative k-algebra with unit. If
S is a set, and MS the associated magma, the vector space AS = k[MS] freely generated
by MS over k is an algebra over k, with product given by the product in the magma.

Let IS be the two-sided ideal ideal generated in AS by the elements

xx, x ∈ AS and (xy)z + (zx)y + (yz)x, x, y, z ∈ AS.

The quotient AS/IS is a k-Lie algebra — the free k-Lie algebra over S — that we
denote Lie k,S.

Similarly, let VS be the vector space freely generated by S over k, and let Assk,S be
its tensor algebra — the free associative k-algebra over the set S. Assk,S turns out to
be isomorphic to the universal enveloping algebra of Lie k,S [17, 19].

Any Lie algebra g over k can be realized as the quotient of a free Lie algebra. If
S = {xi} is a set of generators of g, one has indeed a surjection Lie k,S → g.

3.2. The free Lie-Rinehart algebra over a set. Let k be a field, and A a commu-
tative associative algebra over k. Let S be a set equipped with a map aS : S → Derk(A)

such the induced map Lie k,S → Derk(A) is a morphism of k-Lie algebras (that we
denote by the same symbol).2 With this data, we can make

LA,S = A⊗k Lie k,S

into a (k, A)-Lie-Rinehart algebra. We call this the free (k, A)-Lie-Rinehart algebra
over the pair (S, aS). It has a natural map S → LA,S.

2We could equivalently require the existence of the map Lie k,S → Derk(A), as the composition with
the canonical map S → Lie k,S yields the associated map S → Derk(A).
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Proposition 3.1. Let (L, aL) be a (k, A)-Lie-Rinehart algebra, and let f : S → L be a
map such that the diagram

S
f
//

aS ##

L

aL
��

Derk(A)

commutes. There is a unique Lie-Rinehart algebra morphism g : LA,S → L such that
the diagram

S
f

!!��

LA,S g
// L

commutes.

Proof. By regarding L as a k-Lie algebra, there is a map g̃ : Lie k,S → L making the
diagram

S
f

""

iS
��

Lie k,S
g̃
// L

commutative. This defines the map g as g(α⊗ ξ) = α g̃(ξ). The only thing we need to
check is the compatibility between the anchors. If we set ξ = iS(s), we have indeed

aL(g(α⊗ ξ)) = α aL(g̃(iS(s))) = α aL(f(s)) = α aS(s) = aLA,S
(α⊗ ξ).

�

The universal enveloping algebra of LA,S can be constructed as follows. Let Assk,AtS

be the free associative k-algebra generated by S and A,3 and let ıAtS : S → AssA,S be
the natural map. Let us temporarily denote the image of the elements of A t S under
ıAtS by angle brackets: 〈α〉 = ıAtS(α), and 〈s〉 = ıAtS(s). Now, let J be the two-sided
ideal in Assk,AtS generated by the elements

〈α〉+ 〈β〉 − 〈α + β〉 ,

〈α〉〈β〉 − 〈αβ〉 ,

〈s〉〈α〉 − 〈α〉〈s〉 − 〈aS(s)(α)〉 ,

k − 〈k〉 ,

(8)

3A is considered as a set.
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for all α, β ∈ A, s ∈ S, and k ∈ k, and define

ÃssA,S = Assk,AtS /J .

ÃssA,S is a k-algebra4 and the map ıA : A→ ÃssA,S defined by sending α to the class
of the generator 〈α〉 is a k-algebra homomorphism.

Remark 3.2. One can informally define ÃssA,S as the k-algebra generated by A (as
a k-algebra) and S subject to the relation sα − αs = aS(s)(α). Thus there are
certain similarities between ÃssA,S and the so-called “skew polynomial rings,” or formal
differential operator algebras, and extensions thereof (see, for instance [8]). In fact they
are the same when S is equal to a singleton. 4

Remark 3.3. There is an alternative—perhaps more conceptual—definition of ÃssA,S,
where we realize it as an algebra of differential operators defined in the following way.

Let AssA,S = A ⊗k Assk,S be the free A-algebra generated by S, and let R =

Endk(AssA,S) denote the ring of endomorphism of the underlying k-module. For all
α, β ∈ A and s ∈ S consider the following endomorphisms in R:

σs(α⊗ x) = α⊗ sx+ aS(s)(α)⊗ s ,

σβ(α⊗ x) = βα⊗ x ,

where x is any word of the generators in S, namely x = s1 ⊗ · · · ⊗ sn, for some n ∈ N,
and sx means s⊗ x. It is not difficult to see that the subring of R generated by the
above endomorphisms is isomorphic to ÃssA,S as a k-algebra, and that the map ıA

defined above corresponds to the map α 7→ σα, for all α ∈ A. 4

The algebra ÃssA,S admits two notable filtrations (cf. [11, §5.2]). One is recursively
defined by F nÃssA,S = 0 if n < 0, and

F nÃssA,S =
{
u
∣∣∣ [u,A] ⊆ F n−1ÃssA,S

}
.

This is like the standard filtration one would use in rings of differential operators, and
it makes ÃssA,S a D-algebra in the sense of [1]. The other filtration is based on the
number of generators from S, namely define GnÃssA,S to be the k-submodule generated
by words in elements of A and S containing up to n elements of S, that is

GnÃssA,S =
{∑

αi0 si1αi1 . . . sikαik
∣∣ sij ∈ S, αij ∈ A}, (9)

where the sum is over finite subset {si1 , . . . , sik} ⊂ S, k ≤ n. The number n above is
the “degree” of u, which is well defined thanks to the relation sα− αs = aS(s)(α). (We

4Observe that the relation 0− 〈0〉 automatically holds by cancellation.
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can think of an element u as a noncommutative polynomial in the variables {s ∈ S}
with coefficients in A.) Then, it is immediately verified that

grF• ÃssA,S = A[S] , and grG• ÃssA,S = AssA,S,

where on the left we have the free (polynomial) commutative A-algebra generated by
S, whereas on the right we have the free (not necessarily commutative) A-algebra
generated by S.

Remark 3.4. While G• only defines a filtration on ÃssA,S, observe that for each u ∈
GnÃssA,S its class in AssA,S has a representative we can define by choosing a definite
ordering, for example by placing all generators from S to the right. Thus u can
unambiguously be written as

∑
k≤n u

(k) where each term u(k) is inductively defined
to have the same formal expression in terms of A and S as each projection πk(u −∑

n≥l>k u
(l)) in grGk

(
ÃssA,S

)
, k ≤ n, namely each u(k) is of the form u(k) = αk si1 . . . sik .

4

Proposition 3.5. ÃssA,S is isomorphic to the universal enveloping algebra of the free
(k, A)-Lie-Rinehart algebra LA,S over S.

Proof. To begin with, we recall the universal property of the universal enveloping
algebra U(L) of a (k, A)-Lie-Rinehart (L, a) [15]. If B is a unital associative k-algebra,
we denote by BLie the algebra B regarded as a Lie algebra with the commutator bracket.
The universal enveloping algebra U(L) solves the following problem: for every k-algebra
homomorphism i : A → B, and every morphism of k-Lie algebras j : L → BLie such
that for all α ∈ A and x ∈ L

i(α) j(x) = j(αx) and [j(x), i(α)] = i(a(x)(α)) , (10)

there is a unique morphism of A-modules U(L)→ B such that the diagrams

L
j
//

��

B

U(L)

==
A

i
//

��

B

U(L)

==

commute (here B is an A-module via the map i).
By Proposition 3.1 we have a map L : LA,S → ÃssA,S, which together with ıA : A→

ÃssA,S satisfy the relations (10). Therefore there is a unique morphism u : U(LA,S)→
ÃssA,S. To prove that u is an isomorphism, we show that ÃssA,S is itself universal with
respect to the property just recalled.
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To this end, let ıB : A → B be a k-algebra morphism and let B : LA,S → BLie be
a k-Lie algebra morphism satisfying (10). B has an underlying set map 0 : S → B

which we combine into the set map (ıB, 0) : A t S → B . Consider the diagram:

A t S
(ıB ,0)

//

��

B

Assk,AtS

ṽ

99

��

ÃssA,S

v

BB

The upper solid triangle results from the universal property of the free associative
k-algebra, and it is easily verified that ṽ vanishes on the relations (8), so J ⊆ Ker ṽ, and
the map v exists. Evidently, we have ıB = v ◦ ıA, and, by restricting to the generator
in S and Proposition 3.1, we also see that B = v ◦ L, so ÃssA,S satisfies the universal
property, as wanted. �

For any Lie-Rinehart algebra L, the left augmentation ideal of U(L) is K = Ker(ε),
where ε : U(L)→ A is defined by ε(u) = ā(u)(1), and ā is the extension of the anchor
map of L to its enveloping algebra. Indeed, ā is the unique map determined by the
universal property of U(L) relative to the morphism provided by the anchor map:
a : L→ Derk(A) ⊂ Endk(A). Note that ε is not a homomorphism, but it satisfies the
identity ε(uv) = ε(u ε(v)), for all u, v ∈ U(L) [15]. K is generated by the image of L in
U(L), and U(L)/K ' A.

Let us denote by KA,S the augmentation ideal for L = LA,S.5

Proposition 3.6. KA,S is a free U(LA,S)-module. As a consequence the cohomology
groups H i(LA,S;M) vanish for i ≥ 2 for any representation M of LA,S.

Proof. The ideal KA,S is generated by the image of LA,S. Therefore KA,S is generated
by S. More directly, recall that in ÃssA,S we can unambiguously write u of degree n as

u =
∑
i:|i|≤n

si αi ,

where αi ∈ A, i is a multiindex, and si = si1 . . . sik . Therefore ε(u) = 0 precisely when u
has the form u =

∑
s∈S us s, us ∈ ÃssA,S, i.e. u belongs to KA,S. Thus KA,S is the image

of the free left ÃssA,S-module generated by S under the map
∑

s∈S us ⊗ s 7→
∑

s∈S us s.

5The following result is not used elsewhere in this paper. We record it here for the sake of
completeness.
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Suppose
∑

s∈S us s = 0. By Remark 3.4, and the considerations on the G-filtration (9)
preceding it, we can assume the terms are ordered as discussed there, namely with all
the generators from S to the right, and as consequence we can also assume the us to
be homogeneous of degree n in the number of generators in S, projecting to the graded
algebra AssA,S. We have

0 =
∑
s∈S

us s =
∑

s∈S,i:|i|=n

αssi1 . . . sin s .

Since the rightmost letters are all different, and AssA,S is free as an A-module, this
implies that all αs = 0, and so us = 0.

By applying the functor HomU(LA,S)(−,M) to the resolution

0→ KA,S → U(LA,S)→ A→ 0

of A by free U(LA,S)-modules, one gets the second claim; one uses the isomorphism
H i(LA,S,−) ' ExtiU(LA,S)

(A,−) as functors Rep(LA,S)→ Vectk [18, 2]. �

Theorem 3.7. Every (k, A)-Lie-Rinehart algebra L is a quotient of the universal free
(k, A)-Lie-Rinehart algebra LA,S over some set S.

Proof. If we look at L as a Lie algebra over k, there is a surjective Lie algebra morphism
f : Lie k,S → L for some set S. We define aS : Lie k,S → Derk(A) as aS = a ◦ f , and
use this to define a free Lie algebroid LA,S = A ⊗ Lie k,S, with a naturally defined
map f̃ : LA,S → L. One easily checks that this an A-linear morphism which is also a
morphism of k-Lie algebras, and satifies a ◦ f̃ = aS : LA,S → Derk(A). �

Remark 3.8. (A functorial construction) The previous construction of free Lie-Rinheart
algebras has an equivalent description in terms of adjoint functors [4, 11]. Let Vectk

and Liek be the categories of k-vector spaces and k-Lie algebras, respectively. Then the
free Lie algebra functor Fliek : Vectk → Liek is the left adjoint to the obvious forgetful
functor Liek → Vectk. If we consider the categories Vectk/Derk(A) and Liek/Derk(A)

of pairs (V, b), (L, a) respectively, with b : V → Derk(A) a linear morphism, and
a : L→ Derk(A) a morphism of Lie algebras, we obtain a functor

Vectk/Derk(A)→ Liek/Derk(A)

which is again left adjoint to the obvious forgetful functor. Composing this with the
tensor product functor A⊗− we get the free Lie-Rinehart functor

FreeLR : Vectk/Derk(A)→ LRA (11)
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(where LRA is the category of (k, A)-Lie-Rinehart algebras).
Finally, let Set/Derk(A) be the category of pairs (S, aS), where S is a set, and aS

map aS : S → Derk(A) such that the induced map Lie k,S → Derk(A) is a morphism of
k-Lie algebras. By taking the free vector space over S this gives a functor

Set/Derk(A)→ Vectk/Derk(A).

By composing this functor with the functor (11) one obtains the functor (S, aS) 7→ LA,S

we implicitly defined in Section 3.2. 4

3.3. Free Lie algebroids. As all constructions in the previous sections are functorial,
they can be sheafified. So, if S is a sheaf of sets on a scheme X, we can at first construct
a sheaf Lie k,S of kX-Lie algebras, by taking the sheaf associated to the presheaf whose
space of sections over an open subset U ⊂ X is the free Lie algebra over the set S (U).
Let us assume that aS : S → ΘX is a morphism of sheaves of sets such that the
induced morphism aS : Lie k,S → ΘX is a morphism of sheaves of k-algebras. Then the
OX-module OX ⊗k Liek,S , using the construction of the transformation Lie-algebroid at
the end of Section 2.1, becomes a sheaf of Lie-Rinehart algebras. This defines a sheaf
LS on X which is a Lie algebroid. We call it the free Lie algebroid over S (The choice
of the scheme X is understood. Moreover, although we do not record the choice of the
morphism aS : S → Derk A in the notation, we should remember that LS depends
on it).

Theorem 3.7 immediately implies

Corollary 3.9. Every Lie algebroid over X is the quotient of the free Lie algebroid LS

for some sheaf of sets S on X and some morphism of sheaves of sets aS : S → ΘX .

Also the functorial construction of Section 3.8 immediately generalizes to Lie alge-
broids.

Remark 3.10. If the sheaf of sets S is locally constant with a finite stalk, the sheaf
of Lie algebras Lie k,S is a locally free kX-module of finite rank. As a result, the
free Lie algebroid LS is a locally free OX-module of finite rank. Corollary 3.9 can
be strengthened to the claim that every locally free Lie algebroid of finite rank is the
quotient of a free Lie algebroid which is a locally free OX-module of finite rank. 4
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4. Abelian extensions of Lie algebroids

4.1. The extension problem. Let Q be a locally free Lie algebroid on a scheme X,
and L a coherent sheaf of Lie algebras over X, i.e., a coherent Lie algebroid with
vanishing anchor. Fix a morphism

α : Q → Out(L ),

where Out(L ) is the sheaf of outer derivations of L (note that Out(L ) has a natural
structure of Lie algebroid). Such a morphism gives the center Z(L ) of L a Q-
module structure, so that we may consider the hypercohomology H•(Q;Z(L )) (we
drop the dependence on the morphism α from the notation), and its truncated version
H•(Q;Z(L ))(1).

4.2. Abelian extensions. Consider an extension of Lie algebroids as in (1), with L

abelian. As in Section 2.10, we give L a structure of Q-, E - and L -module. Note that
Der(L ,L ) = EndOX

(L ), so that the morphism δ in (7) yields a morphism

EndOX
(L )→ H2(Q; L )(1) .

Applying this morphism to the identity of L we obtain a set-theoretic map (classifying
morphism)

ExtLA(Q; L )→ H2(Q; L )(1)

where ExtLA(Q; L ) is the set of equivalence classes of extensions of Q by L compatible
with the morphism α, with the usual equivalence relation.

In the abelian case, the problem of extending a Lie algebroid Q by a sheaf of abelian
algebras L is unobstructed. The problem of classifying the extensions may be cast
in the general form of the theory developed in the paper [20]. There it is shown that
extensions are classified by the first derived functor of the functor Der(Q;−) applied to
L . With the identification of these derived functor with the shifted functors H•(Q,−)(1)

(Proposition 2.5) we obtain Theorem 1.1 for the abelian case.

5. Nonabelian extensions

5.1. The obstruction class. As we already discussed, in the nonabelian case the
problem of finding an extension of Q by L inducing a given morphism α : Q →
Der(Z(L )) is obstructed by a class in the group H3(Q;Z(L ))(1). This obstruction
class was already built in [3] using Čech resolutions. Here we want to give an more



20

abstract construction, using the formalism so far developed in this paper. What we are
going to do is essentially to generalize the treatment in [13] to Lie algebroids.

As we saw, Q can be represented as a quotient of a free Lie algebroid, which we
denote F ; we also denote

T = ker(F → Q).

The epimorphism F → Q induces an epimorphism U(F ) → U(Q). Let K be the
corresponding kernel, so that we have

0→ K → U(F )→ U(Q)→ 0.

Moreover we denote by J the kernel of the augmentation morphism U(F ) → OX .
Note that K injects into J , and KJ injects to K . If we denote

K̃ i = K i/K i+1, J̃ i = K iJ /K i+1J , for i = 0, . . .

(with K 0 = U(F )), the sheaves K̃ i, J̃ i are locally free OX-modules with a U(Q)-
module structure. The previous injections define morphisms K̃ i → J̃ i−1 and J̃ i →
K̃ i. Moreover, there is a morphism J̃ 0 → U(Q).

Let X be a sheaf of sets, and aF : X → Derk(OX) a morphism such that the
associated free Lie algebroid is isomorphic to F . Analogously, let Y be a sheaf of sets
whose associated sheaf of free Lie algebras is isomorphic to T . Then Y generates K

as a sheaf of free U(Q)-algebras. Moreover, products of i sections of Y mod K i+1

generate K̃ i, and products of i copies of Y times sections of X mod K i+1J generate
J̃ i.

Lemma 5.1. The sequence

· · · → K̃ 2 → J̃ 1 → K̃ 1 → J̃ 0 → U(Q)→ OX → 0.

is a resolution of OX by locally free U(Q)-modules.

Proof. Brute force diagram chasing. �

We can again slice this exact sequence into

0→J → U(Q)→ OX → 0 ,

· · · → K̃ 2 → J̃ 1 → K̃ 1 → J̃ 0 →J → 0 . (12)
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Moreover, we pick a lift α̃ : F → Der(L ) of α, so that we have a commutative
diagram

0 // T //

β
��

F //

α̃
��

Q //

α
��

0

0 // Z(L ) // L //
ad
// Der(L ) // Out(L ) // 0

(13)

where β is the induced morphism.
We define a morphism

o : J̃ 1 → Z(L ).

It is enough to define o on an element of the type yx, where x is a generator of F , and
y is a generator of T . We let

o(yx) = β({x, y})− α̃(x)(β(y)). (14)

To show that this takes values in Z(L ) one checks by direct computation the identities

α̃(x)(β(y)) = α̃({x, y}) = adα̃(x)(β(y)) = adβ({x,y})

so that α̃(x)(β(y)) and β({x, y}) differ indeed by a section of Z(L ).
We apply the functor HomU(Q)(−, Z(L )) to the resolution (12), obtaining,

0→ Der(Q, Z(L ))→ HomU(Q)(J̃
0, Z(L ))

d1−→ HomU(Q)(K̃
1, Z(L ))

d2−→ HomU(Q)(J̃
1, Z(L ))

d3−→ HomU(Q)(K̃
2, Z(L ))→ . . . (15)

By Section 2.9, the cohomology of this complex is isomorphic to H•+1(Q;Z(L )). Note
also that o is an element in HomU(Q)(J̃

1, Z(L )).

Lemma 5.2. d3(o) = 0. Moreover, the cohomology class of o in H3(Q;Z(L ))(1) only
depends on α.

Proof. To prove that d3(o) = 0 we need to show that o(yx), as in equation (14), is zero
when both y and x are sections of T . But this follows from the commutativity of the
diagram (13) (that is, from the definition of β). To prove that the cohomology class of
o only depends on α means to show that this cohomology class vanishes when α = 0. In
this case, α̃ takes values in the inner derivations, i.e., there is a morphism α̂ : F → L

such that α̃(x)(y) = {α̂(x), y}. Moreover, α̂|T = β, so that

o(yx) = α̂({x, y})− {α̂(x), α̂(y)} = 0.

�
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Definition 5.3. We denote by ob(α) the cohomology class induced in H3(Q;Z(L ))(1)

by o, and call it the obstruction class associated with α.

Theorem 5.4. Given a Lie algebroid Q, a coherent sheaf L of Lie algebras over OX ,
and a morphism α : Q → Out(L ), an extension of Lie algebroids as in (1) inducing on
Z(L ) the Q-module structure given by α exists if and only if ob(α) = 0.

Proof. Assume that an extension as in (1) exists, inducing the given morphism α. Write
Q as the quotient of a free algebroid F , and lift the morphism E → Q to F , obtaining
a commutative diagram

0 // T //

β
��

F //

γ
��

Q // 0

0 // L // E // Q // 0

where β is the induced morphism. Define α̃ : F → Der(L ,L ) by letting α̃ = − ad ◦ γ.
Then α̃ is a lift of α, and for all sections t of T and x of F one has

β({x, t})− α̃(x)(β(t)) = 0 (16)

so that the obstruction class ob(α) vanishes.
Conversely, assume that ob(α) = 0, and take a lift α̃ : F → Der(L ,L ). The

corresponding cocycle lies in the image of the morphism d2 in (15), so it defines a
morphism β : T → L , which satisfies the equation (16). Again, we consider the
extension

0→ T → F → Q → 0.

Note that L is an F -module via F → Q. The semidirect product L o F contains
the sheaf of Lie algebras

H = {(`, x) |x ∈ T , ` = β(x)}.

The quotient E = L o F/H provides the desired extension. �

5.2. Classifying extensions. We assume now that the obstruction class ob(α) = 0 is
zero, so that the set ExtLA(Q,L ) of equivalence classes of extensions of Q by L is not
empty. We want to show that ExtLA(Q,L ) is a torsor on the group H2(Q;Z(L ))(1).
The idea is to reduce the problem to the abelian case. We shall be inspired by the
treatment in [16] for the case of Lie algebras (actually, this is in turn an adaption to
the case of Lie algebras of what was done by Eilenberg and Maclane for groups [5], and
the Eilenberg-Maclane paper is much easier to read).
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In particular, we shall prove the following result. For clarity, for every morphism
α : Q → Out(L ) we denote by α0 the induced morphism α0 : Q → Der(Z(L )).

Proposition 5.5. The equivalence classes of extensions of Q by L inducing α are
in a one-to-one correspondence with equivalence classes of extensions of Q by Z(L )

inducing α0, and are therefore in a one-to-one correspondence with the elements of the
group H2(Q;Z(L ))(1).

To prove Proposition 5.5 we need to develop some machinery. Let C1, C2 be two
Lie algebroids, and assume there are two surjective morphism fi : Ci → Q. The fibre
product C1 ×Q C2 has a natural structure of Lie algebroid. Assuming that ker f1 and
ker f2 have isomorphic centres, which we denote Z , we define a product C1 ? C2 by
letting

C1 ? C2 = C1 ×Q C2/Z ,

where Z is mapped to C1 ×Q C2 as z 7→ (z,−z).
Moreover, we shall consider pairs (K , α), where K is a coherent sheaf of OX-Lie

algebras on X, whose centre is isomorphic to a fixed sheaf of abelian OX-Lie algebras
Z , and α is a morphism Q → Out(K ). We assume that the obstruction class ob(α0)

vanishes, so that for every pair (K , α) there are extensions

0→ K → E → Q → 0

such that the induced morphism Q → Out(K ) coincides with α — i.e., every pair
(K , α) is extendible.

Given two pairs (K ′, α′), (K ′′, α′′), we define their product

(K ′, α′) ? (K ′′, α′′) = (K ′ ⊕K ′′/Z , α′ ? α′′)

where Z is embedded as above, and α′ ? α′′ : Q → Out(K ′ ⊕K ′) is the sum of α′

and α′′, which acts on the image of Z in K ′ ⊕K ′′ as the derivation (α0,−α0). It is
easy to check that if E ′ and E ′′ are extensions of Q by (K ′, α′), (K ′′, α′′), respectively,
then E ′ ? E ′′ is an extension of Q by (K ′, α′) ? (K ′′, α′′). Since this is compatible with
equivalence, in particular we have a map

Ext1(Q,K ′)× Ext1(Q,K ′′)→ Ext1(Q,K ′ ?K ′′). (17)

Note that a derivation of a sheaf of Lie algebras always restricts to a derivation of its
centre.

Lemma 5.6. Given pairs (K , α) and (Z , β), where β is the restriction of α to Z ,
one has (K , α) ? (Z , β) ' (K , α).
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Proof. Direct computation. �

Remark 5.7. In this case, the map (17) becomes

Ext1(Q,K )× Ext1(Q,Z )→ Ext1(Q,K )

(i.e., it is the Baer sum, see e.g. [9]), and on representing cocycles it is expressed by the
sum of cocycles. 4

We now fix a reference point in ExtLA(Q,L ), that is, we fix an extension E of Q by
L . The following two Lemmas provide a proof of Proposition 5.5.

Lemma 5.8. Any extension E ′ of Q by L is equivalent to a product E ?D of E by
an extension D of Q by Z(L ).

Proof. Since Q is locally free, given an open affine covering U = {Ui}, we may fix local
splittings si : Q|Ui

→ E|Ui
. Then we can associate with E a triple of Čech cochains

{αi} ∈ Č0(U,Q∗⊗Der(L ,L )), {ρi} ∈ Č0(U ,Λ2Q∗⊗L ), {φij} ∈ Č1(U,Q∗⊗L )

by letting, for all sections x, y of Q and ` of L ,

αi(x)(`) = {si(x), `}, ρ(x, y) = {si(x), si(y)} − si({x, y}), φij = si|Ui∩Uj
− sj |Ui∩Uj

.

The αi are local lifts of the morphism α : Q → Out(Z(L )), and satisfy the conditions

[αi(x), αi(y)]− αi({x, y}) = ad(ρi(x, y)), αi − αj = adφij. (18)

Moreover, {φij} is a cocycle which describes E as an extension of OX-modules. The
cochain {ρi} is closed under the Lie-Rinehart differential

dαi
ρi(x, y, z) = αi(x)(ρi(y, z))− ρi({x, y}, z) + cycl. perm. = 0

and describes E (Ui) as a Lie-Rinehart extension of Q(Ui) by L (Ui). Finally, these
cochains satisfy a compatibility condition for the Lie-Rinehart algebra structures on
Ui ∩ Uj:

(δρ)ij = dαi
φij.

If ({α′i}, {ρ′i}, {φ′ij}) is a triple describing the extension E ′, one can modify {φ′ij} by
adding a coboundary so that α′i = αi. If we define

ψij = φ′ij − φij (19)

then for all sections x of Q and ` of L one has {ψij(x), `)} = 0, so that

{ψij} ∈ Č1(U,Q∗ ⊗ Z(L )).



25

We obtain therefore an extension of OX-modules

0→ Z(L )→ D → Q → 0.

Finally, we define a 2-cochain {σi} ∈ Č0(U,Λ2Q∗ ⊗L )

σi = ρ′i − ρi. (20)

Since both ρ and ρ′ satisfy the first condition in (18), {σi} takes values in the centre
Z(L ), and moreover it satisfies the conditions

dαi
σi = 0, (δσ)ij = dαi

ψij.

So the triple ({αi}, {σi}, {ψij}) gives D a Lie algebroid structure.
Equations (19) and (20) express the fact that E ?D ' E ′. �

Lemma 5.9. Given an extensions E of Q by L and two extensions D1, D2 of Q by
Z(L ), the extensions E1 = E ? D1 and E2 = E ? D2 are equivalent if and only if D1

and D2 are equivalent.

Proof. If D1 and D2 are equivalent, then E1 and E2 are certainly equivalent. Let us
prove the converse. One has a Lie algebroid morphism f : E1 → E2 such that the
diagram

E1

  

f

��

0 // L

>>

  

Q // 0

E2

>>

commutes. If {φij} is a cocycle representing the extension class of E , and {ψ(1)
ij } and

{ψ(2)
ij } are cocycles representing the extension classes of D1 and D2 respectively, then,

as E1 and E2 are isomorphic as OX-modules,

φij + ψ
(1)
ij = φij + ψ

(2)
ij + χi − χj

for some 0-cocycle χ. So the classes of {ψ(1)
ij } and {ψ

(2)
ij } in Ext1(Q, Z(L )) coincide,

i.e, D1 and D2 are equivalent as OX-module extensions. Then we identify D1 and D2

as OX-modules.
We can introduce local splittings {s1i }, {s2i } for E1 and E2 with the corresponding

representing triples. We can again redefine the cocycle (say) {φ(2)
ij } so that α(1)

i = α
(2)
i
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(and we shall denote this αi). We also introduce {bi} ∈ Č0(U,Q∗ ⊗ L ) by letting
f ◦ s(1)i = bi + s

(2)
i . As

αi(x)(`) = f(αi(x)(`)) = {f(s(1)(x)), `} = αi(x)(`) + {bi(x), `},

{bi} actually has values in Z(L ). The Lie algebroids D1, D2 are represented by the
triples

({αi}, {σ(j)
i = ρ

(j)
i − ρi}, {ψ

(j)
kl }), j = 1, 2.

Moreover, one has the equalities

f(ρ
(1)
i (x, y)) = ρ

(2)
i (x, y) + {s(2)(x), bi(y)} − {s(2)(y), bi(x)} − bi({x, y})

= ρi(x, y) + σ
(2)
i (x, y) + (dαi

bi)(x, y)

f(ρ
(1)
i (x, y)) = ρi(x, y) + σ

(1)
i (x, y)

so that

σ
(2)
i = σ

(1)
i − dαi

bi.

Therefore, D1 and D2 are equivalent. �

Proof of Proposition 5.5. After fixing an extension E0, given any other extension E we
can realize it as E0 ?D ; the extension D gives an element in H2(Q;Z(L ))(1), which
as a consequence of Lemma 5.9 only depends on the equivalence class of E . The
resulting map ExtLA(Q,L ) → H2(Q;Z(L ))(1) is bijective because it is so in the
abelian case. �

It is clear that we have proved that ExtLA(Q,L ) is a torsor over H2(Q;Z(L ))(1).
This completes the proof of Theorem 1.1 in the nonabelian case.
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