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Abstract

The weak units of strict monoidal 1- and 2-categories are defined respectively in [15]

and [14]. In this paper, we define them for group-like 1- and 2-stacks. We show that

they form a contractible Picard 1- and 2-stack, respectively. We give their cohomo-

logical description which provides for these stacks a representation by complexes of

sheaves of groups. Later, we extend the discussion to the monoidal case. We consider

the (2-)substack of cancelable objects of a monoidal 1-(2-)stack. We observe that this

(2-)substack is trivially group-like, its weak units are the same as the weak units of the

monoidal 1-(2-)stack, and therefore we can recover the contractibility results in [15] and

[14] by analyzing it.

1. Introduction

Saavedra in [18] gives an alternative way of defining units in monoidal categories. He

observes that a unit e in a monoidal category C with the composition law ⊗ : C×C→C

can be defined as a cancellable idempotent object, that is, an object e equipped with an

isomorphism ϕ : e ⊗ e→e and with the property that − ⊗ e and e ⊗ − are equivalences

of C. In the traditional way, a unit is an object equipped with left and right constraints

(i.e. the isomorphisms lX : e⊗X→X and rX : X ⊗ e→X) satisfying some compatibility

conditions. In [15], Kock analyzes these two definitions of units in a monoidal category.

He calls the units defined as cancellable idempotent objects Saavedra units, and the units

extracted from the definition of bicategories with one object classical units. He shows that

these two notions of units are equivalent and the category they form is contractible.

In a subsequent work [14], Joyal and Kock carry out the discussion for units of monoidal

categories to units of monoidal 2-categories. They give an alternative definition to the

notion of classical unit in monoidal 2-categories. In this classical notion a unit is an object

equipped with left and right constraints which are weakly invertible 1-morphisms and

with a 2-isomorphism between the left and the right constraints. These data are required

to satisfy certain conditions (see [14, §6]). On the other hand, Joyal and Kock define a

unit of a monoidal 2-category as an appropriate generalization of a Saavedra unit. This is
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an object e equipped with a weakly invertible morphism ϕ : e⊗e→e, and such that −⊗e
and e ⊗ − are biequivalences. Throughout this paper, we call this alternative definition

of unit Joyal-Kock unit. In [14], Joyal and Kock show, as in the 1-categorical case, that

these two notions of units are equivalent and their 2-category is contractible.

The language of Saavedra units and Joyal-Kock units in the context of group-like 1-

and 2-stacks is very helpful. Their capability of expressing units without referring to left

and right constraints is very beneficial if one considers the amount of data and coherence

conditions required to define group-like 1- and 2-stacks. There is no need of mentioning

units in their definitions because the fact every object is cancellable is part of the group-

like data and these notions of units are equivalent to classical notions. The benefits of

this economical way of defining group-like 1- and 2-stacks becomes more significant when

it comes to define (2-)functors. With Saavedra units and Joyal-Kock units, we need not

assume that a unit is transferred to a unit. It is enough to assure that the (2-)functor

transfers the group-like structure to the group-like structure. Another benefit of Saavedra

and Joyal-Kock units can be observed when extensions are described in terms of torsors.

In [7, Theórème 3.2.2], it is shown that given an extension of a discrete group K by a

group-like stack G the G -bitorsor associated to this extension should be trivial when it

is pull backed over the unit element of K so that this trivialization is compatible with

other torsor structures. However in a recent work [5], it is noticed that this trivialization

condition becomes redundant if one works with Saavedra units in case of extensions of

Picard stacks or with Joyal-Kock units in the case of Picard 2-stacks.

In this paper, we define the category (resp. 2-category) of Saavedra units (resp. Joyal-

Kock units) in a group-like stack (resp. group-like 2-stack). We prove they are con-

tractible. To this end we follow a more direct approach. As opposed to showing that the

(2)-category of classical units of a monoidal (2)-category is contractible and showing that

the (2-)category of Saavedra(Joyal-Kock) units is equivalent to the (2-)category of classi-

cal units, as it is done in [15] and in [14], we give explicit construction of the morphisms

between Saavedra units and Joyal-Kock units. Due to the contractibility Saavedra units

and Joyal-Kock units form a Picard stack (resp. 2-stack) of their own which we denote

by I (C ) (resp. I(C)). We expect them to be equivalence relations with contractible quo-

tients, i.e, to be ultimately contractible spaces. We confirm this both by a direct geometric

analysis and by explicitly computing complexes of sheaves of groups that represent them.

Although it immediately follows from the contractibility that these complexes should be

quasi-isomorphic to the zero complex, their explicit computation is interesting because

we compare them directly to the complexes representing the homotopy fiber over 1 in the

Postnikov exact sequence. The comparison allows us to characterize the Saavedra units

as rigid model of the homotopy fibers over 1. We study this in more details in [4].

Lastly, we discuss the weak units of monoidal 1- or 2-stacks. We observe that cancelable

objects of a monoidal 1-(2-)stack form a group-like (2-)substack that can be presented

as the homotopy cokernel of a (2-)crossed module. Directly from the definition of weak

units, it follows that the weak units of a monoidal 1-(2-)stack and the weak units of

the group-like (2-)substack of cancelable objects coincide. Therefore it suffices to study

the group-like (2-)substack of cancelable objects of a monoidal 1-(2-)stack to obtain the

contractibility results in [15] and [14]. This observation also shows that the weak units

of a group-like 1-(2-) stack is the case to study.
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Organization of the paper. In section 2, we quickly recall Saavedra units and Joyal-

Kock units of group-like 1- and 2- categories. In section 3, we examine Saavedra units

of group-like stacks. We show that Saavedra units of a group-like stack C form a con-

tractible Picard stack I (C ). We give a cocyclic description of Saavedra units from which

we deduce a complex of abelian sheaves such that the Picard stack associated to it is

equivalent to I (C ). We finish this section by extending the discussion to monoidal stacks.

In section 4, we follow the same plan as in section 3 for Joyal-Kock units.

Notations and Conventions. We work with strict 2-categories. A 2-groupoid is a 2-

category whose 1-morphisms are weakly invertible and 2-morphisms are isomorphisms.

A 2-functor is used in the sense of [13].

Sheaves and (2-)stacks are defined on a site S. We do not make specific assumptions on

S, except to require that its topology be precanonical, so that the representable presheaves

are sheaves. Whenever we do cocycle computations, we identify the objects of S with the

sheaves that they represent, i.e with the objects of the topos of sheaves on S.

For compactness in the diagrams, we denote the tensoring operation in any category

by juxtaposition. The usual notation ⊗ is used in the names of functors (i.e. X ⊗ −
denotes the functor tensoring by X) and in cases to avoid ambiguities. We use capital

roman letters for categories (C, D, . . .), calligraphic letters for 2-categories (C, D, . . .),

script letters for stacks (C , D , . . .) and double letters for 2-stacks (C, D, . . .).

2. Quick Recall on Weak Units

In this section, we recall briefly the weak units of group-like 1- and 2- categories. The

main references are [15] and [14] where these units are defined for strict monoidal 1- and

2- categories.

2·1. Saavedra Units

Let C be a group-like category. A pair (e, ϕ) is called a unit element where e is an

object and ϕ : ee→e is an isomorphism in C . A unit morphism (e1, ϕ1)→(e2, ϕ2) is given

by an isomorphism u : e1→e2 in C such that the diagram

e1e1

�

uu //

ϕ1

��

e2e2

ϕ2

��
e1 u

// e2

commutes. This defines the groupoid of Saavedra units I(C).

In [15] these units are called Saavedra units since they were first mentioned by Saave-

dra in [18]. Since the classical notion of unit extracted from the definition of a monoidal

category is equivalent to the notion of Saavedra unit and I(C) is contractible ([15, Propo-

sition 2.19]), I(C) is always a Picard category. However, if C is braided, we can define

the tensor product of Saavedra units without referring to the contractibility. If (e1, ϕ1)

and (e2, ϕ2) are two Saavedra units, then (e1, ϕ1) ⊗ (e2, ϕ2) := (e1e2, ϕ) where ϕ is the

composition

(e1e2)(e1e2)
a−1
// ((e1e2)e1)e2

a−1ca // ((e1e1)e2)e2
a // (e1e1)(e2e2)

ϕ1ϕ2 // e1e2 ,

(2·1)
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with a−1ca given by

((e1e2)e1)e2
a //(e1(e2e1))e2

c //(e1(e1e2))e2
a−1
//((e1e1)e2)e2 . (2·2)

The isomorphisms a and c represent the associativity and the braiding constraints, re-

spectively. There is a choice involved in the definition of ϕ, but any two such choices are

connected by a unique isomorphism. This unique isomorphism would be the pasting of

the isomorphisms of the braiding. We also note that our definition coincides with the one

in [15, §2.21] if one assumes strict associativity and uses the compatibility between the

braiding constraint and left and right unit constraints.

In [11], Deligne points out that a Picard category C always has a Saavedra unit, since

tensoring by an object X in C is an equivalence (see the proof of Proposition (2·1)).

2·2. Joyal-Kock Units

Let C be a group-like 2-category. A pair (e, ϕ) is called a unit element in C where e

is an object and ϕ : ee→e is a weakly invertible 1-morphism in C. A unit 1-morphism

(e1, ϕ1)→(e2, ϕ2) is given by a pair (f, θf ) where f : e1→e2 is a weakly invertible 1-

morphism and θf is the 2-isomorphism

e1e1
ff //

ϕ1

��
⇑θf

e2e2

ϕ2

��
e1

f
// e2

A unit 2-morphism (f, θf )⇒(g, θg) is given by a 2-isomorphism δ : f⇒g in C such that

e1e1
ff

⇑δδ //

ϕ1

��

gg

  

⇑θf

e2e2

ϕ2

��
=

e1e1
gg //

ϕ1

��
⇑θg

e2e2

ϕ2

��
e1

f
// e2 e1

g

⇑δ
//

f

>>e2

Unit elements, unit 1-morphisms, and unit 2-morphisms of a group-like 2-category C

form the 2-groupoid I(C) of Joyal-Kock units. We define the tensor product on I(C) in the

same way as the one on I(C). As for Saavedra units, I(C) is always a Picard 2-category.

However if C is group-like, then I(C) is not empty.

Proposition 2·1. A group-like 2-category C always has a Joyal-Kock unit.

This result is not surprising since group-like 2-categories have classical units that are

equivalent to Joyal-Kock units [14, Theorem E]. We give a proof of this fact without

referring to this equivalence.

Proof of Proposition 2·1 For any object X in C, the 2-functor − ⊗ X from C to C

is a biequivalence. Therefore, for any X ∈ C there exists eX ∈ C with a 1-morphism

f : eXX→X. ideX⊗f is a 1-morphism in the category HomC(eX(eXX), eXX). a−1
eX ,eX ,X

◦
(ideX ⊗ f) is a 1-morphism in the category HomC((eXeX)X, eXX) which is equivalent

to HomC(eXeX , eX), since tensoring is a biequivalence. We define ϕ : eXeX→eX as the

image of ideX ⊗ f under this equivalence.
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3. Weak Units of Group-Like Stacks

We define weak units of a group-like stack G over the site S. We call these units Saave-

dra units of G . We show that there exists a unique isomorphism between the Saavedra

units thereby they form a Picard stack I (G ) over S. We give a cohomological descrip-

tion of Saavedra units from which we obtain a complex of abelian sheaves that represents

I (G ). We end this section by extending the discussion to the monoidal case.

3·1. Saavedra Units of a Group-Like Stack

We consider a group-like stack G over S. By [3, Theorem 5.3.6], we assume that G is

represented by a crossed-module λ : G→H of sheaves of groups. Hence, G can be modeled

by Tors(G,H), the group-like stack of (G,H)-torsors. For details of Tors(G,H), we

refer to [6] and [12]. Here, we give a brief reminder. A (G,H)-torsor is a pair (L, x), where

L is an G-torsor and x : L→H is a G-equivariant morphism of sheaves. A morphism

between two pairs (L, x) and (K, y) is a G-equivariant morphism of sheaves ψ : L→K
such that the diagram

L

x
��=======
ψ //

�

K

y
���������

H

commutes. The tensor product on Tors(G,H) is

(L, x)⊗ (K, y) := (L ∧G K,x ∧ y), (3·1)

where L ∧G K is the contracted product and x ∧ y is the G-equivariant morphism from

L ∧G K to H given by x(l)y(k) with (l, k) in L ∧G K.

A Saavedra unit in Tors(G,H) is an idempotent (G,H)-torsor, that is, a (G,H)-torsor

(I, x) with a (G,H)-torsor morphism

ϕ : (I, x)⊗ (I, x) //(I, x).

In other words, we have a (G,H)-torsor morphism

ϕ : (I ∧G I, x2) //(I, x).

We denote these units by ((I, x), ϕ).

A morphism of Saavedra units in Tors(G,H)

((I, x), ϕ) //((J, y), σ) ,

is given by a (G,H)-torsor morphism ψ : (I, x)→(J, y) satisfying the commutative dia-

gram

(I ∧G I, x2)

�

ψ∧ψ //

ϕ

��

(J ∧G J, y2)

σ

��
(I, x)

ψ
// (J, y)

This defines the groupoid of Saavedra units of a group-like stack G . We denote it by

I (G ).
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Example 3·1. The trivial (G,H)-torsor (G, 1) is a Saavedra unit and so is any (G,H)-

torsor globally isomorphic to it.

3·2. Contractibility of Saavedra Units

In this section, we prove that the category of Saavedra units of a group-like stack is

contractible by directly constructing the unique isomorphism between any two Saavedra

units.

Proposition 3·2. All Saavedra units of a group-like stack G over the site S are

uniquely isomorphic to each other. That is, I (G ) is a contractible groupoid over S.

Proof. Let ((I, x), ϕ) be a Saavedra unit of G . We note that (I, x) is globally isomorphic

to (G, 1). In fact, let u be a local section of I. Since I is locally isomorphic to G, there

exists a unique gϕ(u) in G such that ϕ(u, u) = u.gϕ(u). It is banal to observe that gϕ
is the required global isomorphism of (G,H)-torsors between (I, x) and (G, 1). We leave

it to the reader to see that upon choosing another local section u′ of I, we get a global

section s of the Saavedra unit ((I, x), ϕ). For any two Saavedra units ((I, x), ϕ) and

((J, y), σ) of G with global sections s and t, respectively, the morphism

ψ : ((I, x), ϕ) //((J, y), σ) ,

defined by sending s to t provides the isomorphism. The uniqueness of ψ follows from

the fact that s and t are uniquely determined by ϕ and σ, respectively.

From the uniqueness of the isomorphism in Proposition 3·2, it follows

Corollary 3·3. I (G ) is a Picard stack over S.

3·3. The Cocyclic Description of a Saavedra Unit

Let ((I, x), ϕ) be a Saavedra unit of G and V•→∗ a hypercover of the final object

of the topos of sheaves on S, i.e. the sheaf whose value is the point at each object of

S. We assume G is represented by the crossed-module λ : G→H. Let u ∈ I(V0) be a

local section. A simple cocycle calculation shows that the collection (g, gϕ(u), h) where

g ∈ G(V1), gϕ(u) ∈ G(V0), and h ∈ H(V0) satisfying the relations

d∗2(g)d∗0(g) = d∗1(g), (3·2)

d∗0(h) = d∗1(h)λ(g), (3·3)

gd∗0(gϕ(u)) = d∗1(gϕ(u))d∗1h
−1λ(g)d∗1hλ(g), (3·4)

λ(gϕ(u)) = h, (3·5)

represent the Saavedra unit ((I, x), ϕ). The collection (g, gϕ(u), h) is a 1-cocycle with

values in the crossed-module

(id−1
G , λ) : G // ker(idHλ) (3·6)

defined by g 7→ (g−1, λ(g)). The action of ker(idHλ) on G is g(g′,h′) := gh
′

for any g ∈ G
and (g′, h′) ∈ ker(idHλ).

If we chose another local section u′ ∈ I(V0), we find another 1-cocycle cohomologous

to (g, gϕ(u′), h). Therefore the set of equivalence classes of 1-cocycles with values in the

morphism (3·6) classify Saavedra units. In fact, the equivalence classes form a group
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which we denote by H0(∗, G→ ker(idHλ)). The group structure, induced by the crossed-

module structure on (3·6), is defined by (g1, g
′
1, h1)(g2, g

′
2, h2) = (g

d∗0h2

1 g2, g
′h2
1 g′2, h1h2).

3·4. A Complex of Sheaves defining the Stack of Saavedra Units

Since I (G ) is a contractible Picard stack, it is represented by the class of zero complex

0→0. By [11, Lemme 1.4.13], any complex quasi-isomorphic to the zero complex provides

a representation of I (G ), as well. The following complexes arise naturally in the realm

of Saavedra units.
(i) From the cocyclic description of Saavedra units, we know that H0(∗, G→ ker(idHλ))

classify Saavedra units of G . We observe that the crossed-module (3·6) is equipped

with the bracket operation

{−,−} : ker(idHλ)× ker(idHλ) //G (3·7)

defined by {(g1, h1), (g2, h2)} 7→ g1g2g
−1
1 g−1

2 which is symmetric, i.e

{(g1, h1)(g2, h2)}{(g2, h2)(g1, h1)} = 1,

and Picard, i.e. {(g, h)(g, h)} = 1. Hence, the stack associated to the crossed-

module (3·6) is Picard and equivalent to I (G ). We also note that (3·6) is the soft

truncation of

G
(id−1

G ,λ) //GnH
(idHλ) //H ,

which is the cone of the morphism idG : G→G .
(ii) From Proposition 3·2 and Example 3·1, we deduce that ker(λ) parametrizes Saave-

dra units of G and their morphisms. Hence, the Picard stack associated to the

morphism idker(λ) : ker(λ)→ ker(λ) is equivalent to I (G ).

Remark 3·4. If A is a Picard stack, then A can be represented by a class of abelian

sheaf morphisms λ : A→B. In this case, the Saavedra units of A are classified by the

abelian group H0(∗, A→ ker(idBλ)).

Remark 3·5. We would like to point out the relation between I (G ) the Saavedra units

of a (group-like) stack G and G1 the connected components of the identity in G . There

exists a functor from I (G ) to G1 defined by forgetting the morphism ϕ : XX→X. G1

has a richer structure which makes it more interesting than I (G ). More details about

G1 can be found in [4].

3·5. Monoidal Case

Let M be a monoidal stack fibered in groupoids over S. A Saavedra unit of M over

U ∈ S is a pair (e, ϕ) where e is a cancelable object, i.e. − ⊗ e, e ⊗ − : M→M are

fully faithful and ϕ : ee→e is an isomorphism. In fact, the functors − ⊗ e, e ⊗ − are

equivalences. For any object X, the pre-image of the isomorphism (ϕ⊗idX)◦a−1
e,e,X under

the isomorphism Hom(eX,X)→Hom(e(eX), eX) provides an isomorphism between X

and eX. We observe that the only difference between a Saavedra unit (e, ϕ) of a monoidal

stack and a group-like stack is that in a group-like stack e does not need to be assumed to

be cancelable as all objects in a group-like stack are cancelable. From this observation, if

G is the substack of cancelable objects of M which is trivially group-like, then the stack

I (M ) of Saavedra units of M and the stack I (G ) of Saavedra units of G coincide.

Thus, being contractible in I (M ) is the same as being contractible in I (G ). Since by

Proposition 3·2, I (G ) is contractible, we obtain
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Corollary 3·6. I (M ) is contractible groupoid over S. Hence, it is a Picard stack

over S.

This corollary is sheafification of ([15, Proposition 2.19]) and proposes a different

approach to the same end. One shall note that, in [15] Kock proves the contractibility

of the category of Saavedra units by first proving that the category of classical units are

contractible then showing that the categories are equivalent. Whereas we only work with

Saavedra units without any mention of classical units and we deduce the contractibility

of Saavedra units in a monoidal stack from the contractibility of Saavedra units of a

group-like stack which we can represent by a crossed-module.

4. Weak Units of Group-Like 2-Stacks

In this section, we follow the same plan as in section 3. We define weak units of a group-

like 2-stack G associated to a 2-crossed-module of sheaves of groups over the site S. We

call them Joyal-Kock units of G. We show that Joyal-Kock units are equivalent to each

other up to a unique 2-isomorphism thereby they form a Picard 2-stack I(G) over S. We

give the cocyclic description of Joyal-Kock units. We compute a complex of sheaves that

represent I(G). We conclude by discussing the Joyal-Kock units of a monoidal 2-stack.

4·1. Joyal-Kock Units of a Group-Like 2-Stack

Let G be a group-like 2-stack represented by the 2-crossed-module

G
δ //H

λ //K , (4·1)

of sheaves of groups over S. We can model G by the group-like 2-stack Tors(G ,K) of G -

torsors that become trivial over K and where G ' Tors(G,H). However this model has

a downside. The commutative square that corresponds to the group-like stack morphism

G→K that associates to an (G,H)-torsor (P, s) a point λ(s) in K, is not a crossed-square

since λ : H→K is not a crossed-module. There exists a better model for G. Using the

connection between 2-crossed-modules and crossed squares, we model G by Tors(L ,M )

where Λ : L→M is the group-like stack morphism associated to the crossed-square

L

u

��

α //

�

M

v

��
N

β
// P

(4·2)

obtained from the 2-crossed-module (4·1).

We refer to [6, §6.1] for the definition of a torsor over a group-like stack. Let us remind

Tors(L ,M ) from [3, §6.3.4]. An object of Tors(L ,M ) consists of a pair (P, x),

where P is an L -torsor and x : L→M is an L -equivariant map with respect to Λ. A

morphism between any two pairs in Tors(L ,M ) is given by the pair (F, γF )

(F, µF ) : (P, x) //(Q, y) ,
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where F : P→Q is an L -torsor morphism and µF is a 2-morphism

P ×L

��

F×idL //

⇓µF

Q ×L

��
P

F
// Q

expressing the compatibility of the L -torsor structures of P and Q. We also require the

diagram

P
F //

x
!!CCCCCCCC
⇐
γF

Q

y
~~||||||||

M

to commute up to a 2-morphism γF . A 2-morphism in Tors(L ,M )

(P, x)

(F,µF )

%%

(G,µG)

99⇓Γ (Q, y) ,

is given by a natural transformation Γ : F⇒G satisfying the equation of natural trans-

formations

P ×L

F×idL

%%

G×idL

⇓Γ×id //

��
⇓µF

Q ×L

��
=

P ×L
F×idL //

��
⇓µG

Q ×L

��
P

G
// Q P

F

⇓Γ
//

G

:: Q

P
G

⇓Γ //

F

&&

x
!!CCCCCCCC
⇐
γG

Q

y
~~||||||||

=

P
F //

x
!!CCCCCCCC
⇐
γF

Q

y
~~||||||||

M M

The tensor product on Tors(L ,M ) is similar to the tensor product in the stack case.

For the definition of the contracted product of two L -torsors, the reader can refer to [6,

§6.7].

A Joyal-Kock unit in Tors(L ,M ) is an idempotent (L ,M )-torsor. That is, an

(L ,M )-torsor (I , x) with an (L ,M )-torsor morphism

(ϕ, µϕ) : (I , x)⊗ (I , x) //(I , x) ,

where µϕ is a 2-morphism of the form (4·1). In other words, with an (L ,M )-torsor

morphism

(ϕ, µϕ) : (I ∧L I , x2) //(I , x) .

We denote these units in short by ((I , x), ϕ).
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A morphism of Joyal-Kock units in Tors(L ,M )

((I , x), ϕ) //((J , y), σ) ,

is given by an (L ,M )-torsor morphism

(ψ, µψ) : (I , x) //(J , y) ,

and a 2-morphism of (L ,M )-torsors

(I ∧L I , x2)
ψ∧ψ //

ϕ

��

(J ∧L J , y2)

σ

��
(I , x)

ψ
// (J , y)

⇑θψ

We denote these morphisms by the pair (ψ, θψ).

A 2-morphism of Joyal-Kock units in Tors(L ,M )

((I , x), ϕ)

(ψ,θψ)

''

(φ,θφ)

77⇓Γ ((J , y), σ) ,

is given by a 2-morphism of (L ,M )-torsors Γ : ψ⇒φ satisfying the equation of 2-

morphisms

(I ∧L I , x2)

ψ∧ψ
))

φ∧φ

⇓Γ∧Γ //

ϕ

��

(J ∧L J , y2)

σ

��
=

(I ∧L I , x2)
ψ∧ψ //

ϕ

��

(J ∧L J , y2)

σ

��
(I , x)

φ
// (J , y)

⇑θφ

(I , x)
ψ

⇓Γ
//

φ

55
(J , y)

⇑θψ

This defines the 2-groupoid of Joyal-Kock units of a group-like 2-stack G. We denote it

by I(G).

Example 4·1. The trivial (L ,M )-torsor (L , 1) is a Joyal-Kock unit and so is any

(L ,M )-torsor globally equivalent to it.

4·2. Contractibility of Joyal-Kock Units

In this section, we show that there exists a Joyal-Kock unit morphism between any two

Joyal-Kock units of a group-like 2-stack G over S modeled by Tors(L ,M ) as above.

Proposition 4·2. All Joyal-Kock units of G are equivalent up to a unique 2-isomorphism.

That is, I(G) is a contractible 2-groupoid over S.

Proof. Let ((I , x), ϕ) be a Joyal-Kock unit of G and ` be a local section of I . There

exists an L -torsor (P, s)ϕ(`) unique up to a unique isomorphism satisfying the rela-

tion ϕ(`, `) ' `.(P, s)ϕ(`) from which the non-canonical global equivalence between the

(L ,M )-torsors (I , x) and (L , 1) follows. By choosing another local section `′ in I , we
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get a global section s of the Joyal-Kock unit ((I , x), ϕ). We define the morphism be-

tween two Joyal-Kock units ((I , x), ϕ) and ((J , y), σ) by mapping their global sections

to each other. This morphism is unique up to the choice of a global section.

From the uniqueness of the 2-isomorphism in Proposition 4·2, it follows that

Corollary 4·3. I(G) equipped with

((I , x), ϕ)⊗ ((J , y), σ) := ((I ∧L J , xy), ϕ ∧ σ),

where ϕ ∧ σ is of the form (2·1) is a Picard 2-stack over S.

4·3. The Cocyclic Description of a Joyal-Kock Unit

Let ((I , x), ϕ) be a Joyal-Kock unit of a group-like 2-stack G over S modeled by

Tors(L ,M ) and V•→∗ be a hypercover. Upon choosing a local section ` ∈ I (V0) and

a simple cocycle calculation shows that the collection (f, (P, s), g, (Q, t), (K,u)) where

f ∈ L (V2), (P, s) ∈ L (V1), g ∈ L (V1), (Q, t) ∈ L (V0), and (K,u) ∈M (V0) satisfying

the relations

d∗0(u) = d∗1(u)β(s), (4·3)

g : d∗0(Q, t) ' d∗1(Q, t)(P, s), (4·4)

d∗2(g)d∗0(g) = fd∗1(g), (4·5)

β(t) = u, (4·6)

plus the coherence condition on f when it is pulled back to V3 describes a Joyal-Kock

unit in Tors(L ,M ). We note that this collection is a 1-cocycle with coefficients in the

morphism of group-like stacks

(id−1
L ,Λ) : L //Tors(ker(idMα), ker(idPβ)) . (4·7)

We refer to [1, §6.1] for a detailed treatment of cocycles with coefficients in a group-

like stack morphism. We shall describe Tors(ker(idMα), ker(idPβ)). Using the notation

in section 4·1, there exists a group-like stack morphism (Λ, idM ) : L o M→M which

corresponds to the commutative square

LoM
idMα //

(u,v)

��

M

v

��
N o P

idP β
// P

where L o M is the group-like stack associated to the crossed-module (u, v) : L o
M→N o P the semi-direct product of the two vertical crossed-modules in diagram

(4·2). We send the reader to the Appendix for the details of the semi-direct product.

Tors(ker(idMα), ker(idPβ)) is the group-like stack associated to the crossed-module

(u, v) : ker(idMα)→ ker(idPβ). If we choose another local section `′ ∈ I (V0), we find a

cohomologous 1-cocycle. Therefore the classes of 1-cocycles with values in the morphism

(4·7) classify up to equivalence Joyal-Kock units. We denote this set of classes of cocycles

by H0(∗,L→Tors(ker(idMα), ker(idPβ)). This cohomology set makes sense because of

the following observation
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Proposition 4·4. If Λ : L→M is a group-like stack morphism that corresponds to

a crossed-square, then so is (id−1
L ,Λ) : L→Tors(ker(idMα), ker(idPβ)).

Proof. The square corresponding to the group-like stack morphism (id−1
L ,Λ)

L

u

��

(id−1
L ,α) // ker(idMα)

(u,v)

��
N

(id−1
N ,β)

// ker(idPβ)

endowed with the data

• the action of ker(idPβ) on ker(idMα) is the relation (A 2) in the appendix;

• the action of ker(idPβ) on N is n′(n,p) := n′n for every n, n′ ∈ N , p ∈ P ;

• the action of ker(idPβ) on L is l(n,p) := lu(n) for every l ∈ L, n ∈ N , p ∈ P ;

• the map ψ : ker(idMα) ×N→L is defined by ψ((l,m), n) := φ((m−1)β(n), n−1)m

for every l ∈ L, m ∈ M , n ∈ N and with φ : M ×N→L the map of the crossed

square (A 1),

is a crossed-square. We leave it to the reader to verify that these data satisfy the condi-

tions CS-1 to CS-9 given in the Appendix.

4·4. A Complex of Sheaves defining the 2-Stack of Joyal-Kock Units

Since I(G) is a contractible Picard 2-stack over S, it is represented by the class of the

zero complex 0→0→0. By [2], any length 3 complex quasi-isomorphic to the zero complex

provides other representations of I(G). Here we mention two such complexes that arise

naturally in the discussion of Joyal-Kock units that are clearly trivial:

(i) The elements of the set H0(∗,L→ ker(idMα), ker(idPβ)) with coefficients in the

stack morphism (4·7) classify up to equivalence the Joyal-Kock units of Tors(L ,M ).

From [1, Proposition 6.2], H0(∗,L→ ker(idMα), ker(idPβ)) can be identified with

set of the 1-cocycles with coefficients in

L
((idL,α

−1),u) // ker(idMα) oN
((u,v)(id−1

N ,β)) // ker(idPβ) , (4·8)

the cone of (4·7). By [9, Corollary 3.5], the complex (4·8) is a 2-crossed-module.

Moreover it is an exact sequence and hence quasi-isomorphic to the zero complex.

The 2-stack associated to it represents the 2-stack of Joyal-Kock units I(G).

(ii) From Proposition 4·2 and Example 4·1, we deduce that the identity morphism on

Tors(ker(α), ker(β)) represents I(G). Hence, so is its cone

ker (α)
(id−1

ker(α)
,u)
// ker(α) o ker(β)

vidker(β) // ker(β) .

Remark 4·5. If A is a Picard 2-stack over S, then A can be represented by a class of

length 3 complex of abelian sheaves (δ, λ) : A→B→C. As all the actions are trivial, the

commutative square

A //

δ

��

0

��
B

λ
// C

(4·9)
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is trivially a crossed-square. Upon repeating the above arguments with (4·9), we find that

the complex

A
(idA,δ) //A⊕B

(δ,0)+(−idB ,λ) // ker(idC + λ) ,

represents I(A).

Remark 4·6. We know how to associate a group-like 2-stack to a 2-crossed module,

say (δ, λ) : G→H→K(see [16]). Reciprocally, associating a 2-crossed-module to a group-

like 2-stack is also possible whose details will be given in [2]. We also remark that it is

natural to expect that these results extend in a similar way to n-stacks that are at least

group-like.

4·5. Monoidal Case

Let M be a monoidal 2-stack fibered in 2-groupoids over S. A Joyal-Kock unit of M
over U ∈ S is a pair (e, ϕ) where e is a cancelable object, i.e. − ⊗ e, e ⊗ − : M→M are

fully-faithful and ϕ : ee→e is a weakly-invertible 1-morphism. As observed in section

3·5, the fully-faithful 2-functors − ⊗ e, e ⊗ −, that is inducing equivalence on the hom-

categories, are in fact biequivalences and if G is the sub-2-stack of cancelable objects of

M which is trivially group-like and can be represented by a 2-crossed-module (see [2]),

then the 2-stack I (M) of Joyal-Kock units of M and the 2-stack I (G) of Joyal-Kock

units of G coincide. Hence, by Proposition 4·2

Corollary 4·7. I (M) is a contractible 2-groupoid over S. Hence, it is a Picard 2-

stack over S.

This Corollary is sheafification of ([15, Theorem C]). As in section 3·5, it proves the

contractibility of units of a monoidal 2-stack M without referring to the connection

between the classical units and Joyal-Kock units but instead using the complex which

represents the group-like 2-stack of cancelable objects of M.

Appendix A.

For the convenience of the reader, we recall some definitions and results related to

2-crossed modules and crossed squares from [9], [10], and [17] and group-like 1- and

2-categories and their extentions to sheaf theoretic context from [7].

A 2-crossed-module

G
δ //H

λ //K ,

is a sequence of groups equipped with a right action of K on H and G, a right action of

H on G, and a function { , } : H ×H→G called bracket operation satisfying the axioms

(2CM-1) δ and λ are K-equivariant where K acts on itself by conjugation;

(2CM-2) δ{h0, h1} = h−1
0 h−1

1 h0h
λh0
1 for every h0, h1 ∈ H;

(2CM-3) {δg, h} = g−1gh for every g ∈ G and h ∈ H;

(2CM-4) {h, δg} = (g−1)hgλh for every g ∈ G and h ∈ H;

(2CM-5) {h0, h1h2} = {h0, h1}h
−1
0 h2h0{h0, h2} for every h0, h1, h2 ∈ H;

(2CM-6) {h0h1, h2} = {h1, h
−1
0 h2h0}{h0, h2}λh1 for every h0, h1, h2 ∈ H;

(2CM-7) {h0, h1}k = {hk0 , hk1} for every h0, h1 ∈ H and k ∈ K.
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A crossed-square is a commutative diagram of groups and group homomorphisms

L
α //

u

��
�

M

v

��
N

β
// P

(A 1)

equipped with a right action of P on L, on M , and on N , a function φ : M × N→L
satisfying the axioms

(CS-1) u and α are P -equivariant;

(CS-2) v, β, v ◦ α, and β ◦ u are crossed-modules;

(CS-3) α ◦ φ(m,n) = (m−1)β(n)m for every m ∈M , n ∈ N ;

(CS-4) u ◦ φ(m,n) = n−1nv(m) for every m ∈M , n ∈ N ;

(CS-5) φ(α(l), n) = (l−1)β(n)l for every l ∈ L, n ∈ N ;

(CS-6) φ(m,u(l)) = l−1lv(m) for every l ∈ L, m ∈M ;

(CS-7) φ(m0m1, n) = φ(m1, n)φ(m0, n)v(m1) for every m0,m1 ∈M , n ∈ N ;

(CS-8) φ(m,n0n1) = φ(m,n0)β(n1)φ(m,n1) for every m ∈M , n0, n1 ∈ N ;

(CS-9) φ(m,n)p = φ(mp, np).

It follows from the above axioms that the homomorphisms u and α are crossed-modules,

as well.

Corollary. ([9, Corollary 3.5]) The cone of the crossed-square (A 1)

L
∂2 //M oN

∂1 //P,

is a 2-crossed-module where

• ∂1(m,n) = β(n)v(m) and ∂2(l) = (α(l)−1, u(l)) for every m ∈M , n ∈ N , l ∈ L;

• the action of P on MoN is (m,n)p := (mp, np) for every m ∈M , n ∈ N , p ∈ P ;

• the action of P on L is the one that comes with the crossed square (A 1);

• the action of M oN on L is l(m,n) := lβ(n) for every l ∈ L, n ∈ N , m ∈M ;

• the bracket operation { , } : (MoN)×(MoN)→L is given by {(m1, n1), (m2, n2)} :=

φ(m1, n
−1
1 n2n1)} for every mi ∈M , ni ∈ N .

Let u : L→N and v : M→P be the two vertical crossed-modules in the crossed-square

(A 1). The semi-direct product of u and v is the crossed-module (u, v) : LoM→N o P

where the action of N o P on LoM is given by

(l,m)(n,p) := (φ(mp, n)−1lpβ(n),mp). (A 2)

This definition of semi-direct product is deduced form the definition of the semi-direct

product of any two crossed-modules where one acts on the other. We refer to [17] for the

details of actions of crossed-modules.

A group-like category is a groupoid C equipped with:

(i) a functor ⊗ : C× C→C;

(ii) a natural transformation a : ⊗◦(⊗× idC)⇒⊗◦(idC×⊗) whose components at the

objects X,Y, Z in C are the isomorphisms aX,Y,Z : (X ⊗ Y )⊗ Z→X ⊗ (Y ⊗ Z).

The pair (⊗, a) is required to satisfy the usual axioms of a monoidal structure, in partic-

ular a satisfies the so-called “Mac Lane’s pentagon” coherence condition. Moreover, for

any object X in C, the functors −⊗X,X ⊗− : C→C are (functorial) equivalences.
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The definition of a group-like category extends to the sheaf theoretic context. A group-

like stack C over the site S is a stack in groupoids over S equipped with a stack functor

⊗ : C ×C→C and stack natural transformation a : ⊗◦(⊗× idC)⇒⊗◦(idC ×⊗) subject

to the same coherence conditions as in group-like categories.

A group-like 2-category C is a 2-category in fact, a 2-groupoid, equipped with:

(i) a 2-functor ⊗ : C× C→C;

(ii) a natural 2-transformation a : ⊗ ◦(⊗× idC)⇒⊗ ◦(idC ×⊗);

(iii) a modification π

C4

id×⊗×id
???

��???id×id×⊗
���

�����

⊗×id×id // C3

⇓ a×id
⊗×id

��??????? C4

�id×id×⊗
���

�����

⊗×id×id // C3

id×⊗
���

�����
⊗×id

��???????

C3

id×⊗ ��???????
⇐

id×a C3

⇓ aid×⊗
���

�����

⊗×id // C2

⊗
����������

π

V C3

id×⊗ ��???????
⊗×id // C2 ⇐

a

⇓ a

��???????? C2

⊗
����������

C2
⊗

// C C2
⊗

// C

whose component at the objects X,Y, Z,W in C is the natural 2-isomorphism

expressing the obstruction to the commutativity of the Mac Lane’s Pentagon.

The triple (⊗, a, π) is required to satisfy the standard axioms of a monoidal structure, in

particular π satisfies an appropriate coherence condition corresponding to one of “Stash-

eff’s Polytopes” and for any object X in C, the 2-functors − ⊗ X,X ⊗ − : C→C are

(functorial) biequivalences.

Similarly one can extend the definition of a group-like 2-category to the sheaf theoretic

context to define a group-like 2-stack over a site S.
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