Determinant Functors for Triangulated Categories $A N D$
CATEGORICAL RiNgS

Octoberfest 2023

Ettore Aldrojandi (Florida state university)
w/ C.LESTER (COLLEGE OF WDOSTER)
TAC 39 (2023) 769-80

CATEGORIFICATION OF DETERTINANTS

- $f: k^{n} \longrightarrow k^{n}$ homomozphism $\longrightarrow n \times n$ matuix $A \in M_{n}(k)$
- $\Lambda^{m} f: \Lambda^{m} k \longrightarrow \Lambda^{n} k$
$\omega=v_{1} \wedge \ldots \wedge v_{m} \longmapsto \operatorname{det}(A) \omega$ oolume form
- For any finite-dim. vect. space V, and isomorphism $f: V \cong W$

$$
\begin{array}{ll}
* & \operatorname{det}(V)=\left(\Lambda^{\operatorname{dim}(v)} V, \operatorname{dim}(V)\right) \\
* & \operatorname{det}(f)=\Lambda^{\operatorname{dim}(V)} f \\
& \operatorname{det}:^{*} \text { Vect }_{k}^{\text {fol, iso }} \longrightarrow \text { Limes }_{k}^{\mathbb{Z}}
\end{array}
$$

Objects $\left(\right.$ Limes $\left._{k}^{\mathbb{Z}}\right) \quad(L, n): L 1$-dim vector space $/ k$ $n \in \mathbb{Z}$

Morphisms $\left(\right.$ Lines $\left._{k}^{\mathbb{Z}}\right) \quad(L, x) \longrightarrow\left(L^{\prime}, n^{\prime}\right) \quad$ isomorphism $L \cong L^{\prime}$ if $n=n$ ' and \varnothing otherwise

Symmetuc Structure (Lines ${ }_{k}^{2}$)

- $\quad(L, n) \otimes\left(L^{\prime}, n^{\prime}\right):=\left(L \otimes L^{\prime}, n+n^{\prime}\right)$
- $(L, n) \otimes\left(L^{\prime}, n^{\prime}\right) \xrightarrow{\text { comm. }}\left(L^{\prime}, n^{\prime}\right) \otimes(L, n), \mu \otimes v 1 \longrightarrow(-1)^{n n^{\prime}} * \otimes \mu$
$\operatorname{Limes}_{k}^{\mathbb{Z}}$ is a Picard Eroupoid $(=$ gym. Categorical group $)$ and

$$
\operatorname{det}: \text { Vect }_{k}^{\text {food. , iso }} \longrightarrow \text { Limes }_{k}^{\mathbb{Z}}
$$

Categonifies the deteremimast

Determinant Functors (Deligne, le détermimant de la chomologie '87)

- E: exact catugry (w/ short exact sequences)
- P: Picard Gnoupoid
- A determinant is a functor
$\operatorname{det}:$ iso $\mathcal{C} P$
equipped with adolitinity data

$$
\operatorname{det}(\Delta): \operatorname{det}(z)+\operatorname{det}(x) \longrightarrow \operatorname{det}(y)
$$

for each exact sequence $\Delta: X \longrightarrow Y \rightarrow Z$ satisfying naturality
associativity
commutativity

TRiangulated Categories

- Additive category T
- Equivalence $\Sigma: \tau \longrightarrow \tau$ (suspension)
- Class of distinguished triangles $\Delta: X \xrightarrow{f} y \xrightarrow{\rho} z \xrightarrow{h} \Sigma$ satisfying well known axioms

$$
g f=h g=0
$$

- A functor $F: T \longrightarrow T^{\prime}$ between triangulated categories is expect if;

$$
\begin{aligned}
& -\quad F \sum \simeq \sum F \\
& -\quad F(\Delta): F(x) \rightarrow F(y) \rightarrow F(z) \rightarrow \sum F(x)
\end{aligned}
$$ is distinguished

Determinant Functors (M.Breuning '06-'II)

- T: Triangulated category
- P: Picard Gnoupoid
- A determinant is a functor
deft : iso $\tau \longrightarrow \rho$
equipped with additivity data

$$
\operatorname{det}(\Delta): \operatorname{det}(Z)+\operatorname{det}(x) \longrightarrow \operatorname{det}(y)
$$

for each distinguished triangle

$$
\Delta: \quad x \rightarrow y \rightarrow z \rightarrow \Sigma x
$$

satisfying naturality, associativity commutativity

Naturality:

Commutativity:

$$
\Delta_{1}: \quad x \rightarrow x \oplus y \rightarrow y \xrightarrow{0} \Sigma x \quad \Delta_{2}: y \rightarrow X \oplus y \rightarrow x \xrightarrow{\circ} \Sigma x
$$

~

$$
\operatorname{det}(Y)+\operatorname{det}(X) \xrightarrow{\operatorname{comm} .} \operatorname{det}(X)+\operatorname{det}(Y)
$$

Associtivity:

Associtivity:

Associativity:

For every octahedron

We must have:

$$
\begin{aligned}
& \operatorname{det}(z) \\
& \operatorname{det}\left(\Delta_{2}\right) \\
& \operatorname{det}(v)+\operatorname{det}(x) \\
& \operatorname{det}(w)+\operatorname{det}(y) \\
& \operatorname{det}\left(\Delta_{4}\right)+i d \uparrow \\
& \hat{\imath} i d+\operatorname{det}\left(\Delta_{1}\right) \\
& (\operatorname{det}(w)+\operatorname{det}(u))+\operatorname{det}(X) \underset{\text { assoc. }}{\longrightarrow} \operatorname{det}(w)+(\operatorname{det}(u)+\operatorname{det}(X))
\end{aligned}
$$

Universal Determinant
Define natural isomnotphisms det $\Rightarrow \operatorname{det}^{\prime}: T \longrightarrow P$ to dotain a groupoid

$$
\operatorname{DET}(J ; P)
$$

Thwrem (Breuning'06) The 2-functor

$$
\operatorname{DET}\left(T_{j}-\right): P_{1} c \longrightarrow G R P D
$$

is representable:

Universal Determinant
Define natural isomnotphisms det $\Rightarrow \operatorname{det}^{\prime}: T \longrightarrow P$ to dotain a groupoid

$$
\operatorname{DET}(J ; P)
$$

Thwrem (Breuning'06) The 2-functor

$$
\operatorname{DET}\left(T_{;}-\right): P_{1} C \longrightarrow G R P D
$$

is representable:

Universal Determinant
Define natural isomonphisms det $\Rightarrow \operatorname{det}^{\prime}: T \longrightarrow P$ to dotain a groupoid

$$
\operatorname{DET}(J ; P)
$$

Theorem (Breuming '06) The 2-functor

$$
\operatorname{DET}\left(T_{j}-\right): P_{1} C \longrightarrow G R P D
$$

is representable:

Theorem (Murs,Tonks, witte'08) There are matural isomorphisms with Neeman's K-Theory:

$$
\begin{aligned}
& \pi_{0} V(T) \cong K_{0}(T) \\
& \pi_{1} V(J) \cong K_{1}(T)
\end{aligned}
$$

TENSOR TRIANGULATED CATEGORIES (Bolmer, May, keller. Neeman,...)
$(T, \infty, I) \quad J$ - triangulated
minimal
($): J \times \tau$

brexact \& (symmetic) monoiobal with unit object I. (Belmer), but more axioms canbe considered (Mey, Keller-Neemen, ...)

Rumk TT-Cats behave like 2-rigs, but vay non canomically. Exaeuple:

$$
\begin{aligned}
& X \otimes Z \longrightarrow(x \otimes z) \oplus(Y \otimes z) \longrightarrow Y \otimes Z \longrightarrow \Sigma(x \otimes z) \\
& X \otimes Z \rightarrow(X \oplus Y) \otimes Z \longrightarrow Y \otimes Z \rightarrow \sum(X \otimes Z)
\end{aligned}
$$

TENSOR TRIANGULATED CATEGORIES (Bolmer, May, keller. Neeman,...)
$(T, \otimes, I) \quad J$-triangulated
minimal
($): J \times \tau$

brexact \& (symmetic) monoiobal with unit object I. (Belmer), but more axioms canbe considered (Mey, Keller-Neemen, ...)

Rumk TT-Cats behave like 2-rigs, but vay non conomically. Exaeuple:

$$
\begin{aligned}
& x \otimes z \longrightarrow(x \otimes z) \oplus(y \otimes z) \longrightarrow Y \otimes z \longrightarrow \Sigma(x \otimes z) \\
& \cong \nexists \exists \| \\
& X \otimes Z \rightarrow(X \oplus Y) \otimes Z \longrightarrow Y \otimes Z \rightarrow \sum(X \otimes Z)
\end{aligned}
$$

TENSOR TRIANGULATED CATEGORIES (Bolmer, May, keller. Neman,...)
$(T, \otimes, I) \quad J$-triangulated
minimal
($): J \times \tau$ \qquad brexact \& (symmetric) monoiobal with unit object I.
requirements
 (Belmer), but more axioms cam be considered (May, Keller-Naemen,...)

Rump TT-cats behave like 2-rigs, but var non canonically. Exeeuple:

$$
\begin{aligned}
& x \otimes z \longrightarrow(x \otimes z) \oplus(y \otimes z) \longrightarrow Y \otimes z \longrightarrow \Sigma(x \otimes z) \\
& \cong \downarrow \exists \quad\|\| \\
& X \otimes Z \rightarrow(X \oplus Y) \otimes Z \longrightarrow Y \otimes Z \rightarrow \sum(X \otimes Z)
\end{aligned}
$$

non canonical olistributor
Similarly for other "structural" map.

TENSOR TRIANGULATED CATEGORIES (Bolmer, May, keller. Norman,...)
$(T, \otimes, I) \quad J$-triangulated
minimal
($)$: $J \times \tau$ \qquad brexact \& (symmetric) momoidal with unit object I. (Belmer), but more axioms cam be considered (May, Keller-Naemen,...)

Rump TT-Cats behave like 2-rigs, but var non canonically. Exaeuple:

$$
\begin{array}{cc}
x \otimes z & \rightarrow(x \otimes z) \oplus(y \otimes z) \\
\cong \neq y & \longrightarrow \Sigma(x \otimes z) \\
\| & \|
\end{array}
$$

Question $F_{02}(T, \otimes, I)$, is the universal determirsant equipped with

$$
V(\mathcal{T}) \times V(\tau) \longrightarrow V(\tau) \text { ? }
$$

BEHAVIOR WITHRESTECT TO BIEXAT (M-EXRCT) FUNCTORS

- $F: J_{1} \times J_{2} \longrightarrow J$ is biexact if (1) exact in each variable
(2)

$$
\begin{array}{cl}
F(\Sigma x, \Sigma y) & \longrightarrow \sum F(x, \Sigma y) \\
\downarrow & (-1) \quad \downarrow \\
\Sigma F(\Sigma x, y) \rightarrow \Sigma^{2} F(x, y)
\end{array}
$$

- Same for m-exact $F: J_{1} \times \cdots \times J_{n} \longrightarrow T$
- GRPD-enriched multicategory ($=2$-maltiategory) TRCAT with
$T_{\text {RCAT }}\left(J_{1}, \ldots, T_{n} ; T\right)=n$ exact fenctors $J_{1} \times \ldots x J_{n} \longrightarrow T$ and motaral iso cmouphisms
(Schmürer, '15)
- Same for PIC: multicategory (GRPD-enriched) of PICARD Groupoid PIC with Pic $\left(P_{1}, \ldots, P_{n} ; P\right)=n$. monoible functors \& mat. isomrozplisons
- $V\left(J_{1}\right) \times \cdots \times V\left(T_{m}\right) \longrightarrow V(T) \quad$ in $\xlongequal{\text { Pic }}$

MULTIDETERMINANTS J_{1}, \ldots, J_{n} _tmieugulated Cuts
P - Picand Groupoid

- n-functor det : iso $T_{1} \times \cdots \times$ iso $T_{n} \longrightarrow P$
- $\operatorname{det} L_{s_{i}}$ is a determinast functor in each varieble $i=1, \ldots, n$

MULTIDETERMINANTS J_{1}, \ldots, J_{n} _tmieugulated Cuts
P - Picand Groupoid

- n-functor det : iso $T_{1} \times \cdots \times$ iso $T_{n} \longrightarrow P$
- $\operatorname{det} L_{s_{i}}$ is a determinasst functor in each variable $i=1, \ldots, n$
- Computibility with $f_{i}: X_{i} \rightarrow X_{i} \in J_{i}, \Delta_{j} \in J_{j}$

MULTIDETERMINANTS J_{1}, \ldots, J_{n} _tmieugulated Cuts
P - Picard Graupoid

- n-functor let : iso $T_{1} \times \cdots \times$ iso $T_{n} \longrightarrow P$
- $\operatorname{det} L J_{i}$ is a determinant functor in each variable $i=1, \ldots, n$
- $\Delta_{i}: x_{i} \rightarrow y_{i} \rightarrow z_{i} \rightarrow \Sigma x_{i}$ in T_{i}
$\Delta_{j}: x_{j} \rightarrow y_{j} \rightarrow Z_{j} \rightarrow \sum x_{j}$ in T_{j}
- Compatibility with $f_{i}: X_{i} \rightarrow X_{i}^{\prime} \in J_{i}, \Delta_{j} \in J_{j}$

MuLTIDETERMINANTS J_{1}, \ldots, J_{n} _twieugulated Cats
P- Picard Gwoupoid

- n-functor let: iso $T_{1} \times \ldots \times$ iso $T_{n} \longrightarrow P$
- $\operatorname{det} I_{J_{i}}$ is a determinant functor in each variable $i=1, \ldots, n$
- $\Delta_{i}: x_{i} \rightarrow y_{i} \rightarrow z_{i} \rightarrow \Sigma x_{i} \quad$ in $T_{i} \quad$ Notation: $\operatorname{det}\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}, \ldots, x_{n}\right]$
$\Delta_{j}: x_{j} \rightarrow y_{j} \rightarrow z_{j} \rightarrow \Sigma x_{j}$ in T_{j}
- Compatibility with $f_{i}: X_{i} \rightarrow x_{i}^{\prime} \in J_{i}, \Delta_{j} \in J_{j}$

Universal Multideterminant
Define natural isormonphisms det $\Rightarrow \operatorname{det}^{\prime}: \tau_{1} \times T_{2} \times \cdots \times T_{n} \longrightarrow P$ to dotaim a groupoid $\operatorname{DET}\left(J_{1}, J_{2}, \ldots, J_{n} ; P\right)$.

Recall:

$$
\text { (symm.) multicateyory } \stackrel{M}{=} \underset{\sim m}{\text { (symm.) monoiblal category } \underline{M}^{x}}
$$

Universal Multideterminant
Define natural isomorphisms set $\Rightarrow \operatorname{det}^{\prime}: \tau_{1} \times T_{2} \times \cdots \times T_{n} \longrightarrow P$ to detain a groupoiol $\operatorname{DET}\left(J_{1}, J_{2}, \ldots, J_{n} ; P\right)$.

Recall:

Theorem (E.A., C. LEsTER) There is an equivalence of groufoids

$$
\operatorname{DET}\left(J_{1}, \ldots, J_{m} ; \beta\right) \simeq \operatorname{PIC}\left(V\left(J_{1}\right), \ldots, V\left(J_{m}\right) ; P\right)
$$

That is, the object $\left(V\left(T_{1}\right), \ldots, V\left(T_{n}\right)\right)$ of Pic corepresents:

$$
\operatorname{DET}\left(T_{1}, \ldots, T_{m} ;-\right): \underline{P_{1 C}} \longrightarrow \text { GRPD }
$$

Universal Multideterminant
Define natural isormonphisms det $\Rightarrow \operatorname{det}^{\prime}: T_{1} \times T_{2} \times \cdots \times T_{n} \longrightarrow P$ to dotaim a groupoiol $\operatorname{DET}\left(J_{1}, J_{2}, \ldots, T_{n} ; P\right)$.
Recall:

$$
\text { (symm.) multicateyory } \stackrel{\mu}{=} \underset{\text { knm }}{\text { (Jymm.) monoiblal category } \underline{\underline{M}}^{\times}}
$$

Theorem (E.A., C.LEster) There is an equinaleme of groupords

$$
\begin{equation*}
\operatorname{DeT}\left(J_{1}, \ldots, J_{n} ; B\right) \simeq P_{C}\left(V\left(T_{1}\right), \ldots, v\left(J_{n}\right) ; P\right) \tag{*}
\end{equation*}
$$

That is, the object $\left(V\left(T_{1}\right), \ldots, V\left(T_{n}\right)\right)$ of ${\underset{P}{P_{C}}}^{x}$ conepresents:

$$
\operatorname{Der}\left(T_{1}, \ldots, T_{m} ;-\right): \stackrel{P_{11}}{=} \longrightarrow \text { GRPD }
$$

Theorem (E.A., C.Lestre) For each Picard groupoid $P(*)$ deternuines

$$
\operatorname{DET}(-; \beta): \text { TRCAT }^{*} \text { verdier } \longrightarrow \text { GRPD }
$$

VERDIER STRUCTURES (Beilinsom-Bemstein-Daligne/May/Keller-Neemen)

$$
\downarrow^{\perp} x^{\prime} \rightarrow \Sigma^{\downarrow} y^{\prime} \rightarrow \sum^{\downarrow} z^{\prime} \rightarrow \Sigma^{-1} x^{\prime}
$$

The M-diagram:
Each line is a distinguished triangle.

VERDIER STRUCTURES (Beilinson-Bemstein-Daligne/May/Keller-Neemen)

The M-diagram:
Each line is a distinguished triangle.

Consider the triangle

$$
x^{\prime} \longrightarrow y \longrightarrow A \longrightarrow \Sigma x^{\prime}
$$

VERDIER STRUCTURES (Beillinson-Bemstein_Daligne/May/Keller-Neemen)
The \%-diagram las a

$\Sigma x^{\downarrow}=\Sigma x^{\prime}$

Verier structure
if there exist octahedra

(3)

$$
\begin{aligned}
& \downarrow \\
& \sum z^{\prime}=\stackrel{\downarrow}{\Sigma z^{\prime}} \\
& \downarrow \\
& \sum A \rightarrow \sum 2
\end{aligned}
$$

Verdier Siructures (e.a., c.lester)
$F: J_{1} \times \ldots \times T_{n} \longrightarrow J$ multiexact admits a Verolier structure if for all $\Delta_{i} \in \tau_{i}, \Delta_{i} \in \tau_{j}$, $i<j$, the diegram

admits a Verdier structure

CATEGORICAL RINGS
Def A Picard groupaid $(P,+, 0)$ is a categorical ring if there exists a second monvidal strincture

- $: P \times P \longrightarrow P$
which is biesact, unital, associative.

This is the biased version : associativity, etc. require higher arity structures by composition. Alternatively:

Def A categorical ring is a (commutative) monoid in Pic This is the unbiased version.

Rank Similarly, we consider a $T T$-cat (T, \otimes, I) as a monoid in $\underline{\underline{R} C_{A T}}$

DET lo @
Theorem ($E . A ., C$. Lester) $\cdot(J, \otimes, I)$ - Tensor Triangulated cat.

- (x) admits Verolver

Then the universal Picard croupoid $V(T)$ is a categorical ring

DET \& ©
Theorem (E.A., C. Lester) - (T, \otimes, I) - Tencon Trimangulated at.

- (X) adunits Verolver

Then the univessal Picard sroupoid $V(T)$ is a categorical ring
ldea of proof

DET lo @
Theorem ($E . A ., C$. Lester) $\cdot(J, \otimes, I)$ - Tensor Triangulated cat.

- (©) admits Verolver

Then the universal Picard sroupoid $V(T)$ is a categorical ring
lee of proof

As a Corollary, we get the well known fact

$$
\begin{aligned}
& K_{0}(T) \cong \pi_{0} V(T) \quad \text { ring } \\
& K_{1}(T) \cong \pi_{1} V(T) \quad K_{0}(T) \text {-bimodube }
\end{aligned}
$$

OUTLOOK
What does the Postrikov Invariant

$$
\eta_{V(\tau)} \in T H H^{3}\left(\pi_{0} V\left(T\left|, \pi_{1} V\right| T\right)\right)
$$

Say about (τ, \otimes, I) ?

OUTLOOK
What does the Postrikov Invariant

$$
\eta_{V(T)} \in T H H^{3}\left(\pi_{0} V\left(T\left|, \pi_{1} V\right| T\right)\right)
$$

Say about (τ, \otimes, I) ?

