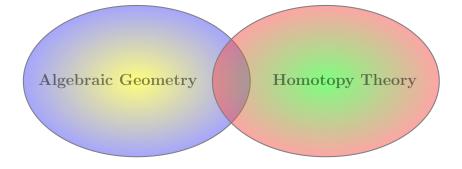
Intersection theory and homotopy types with algebraic structure

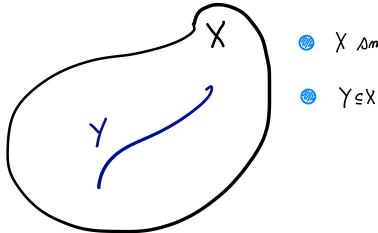
Ettore Aldrovandi

FSU Mathematics Colloquium, November 18, 2015

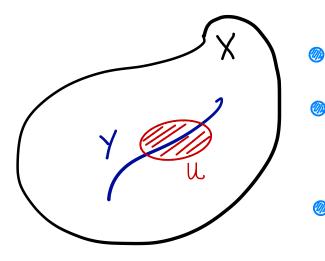


INTERSECTIONS

CLASSICAL QBJECTS : DIVISORS

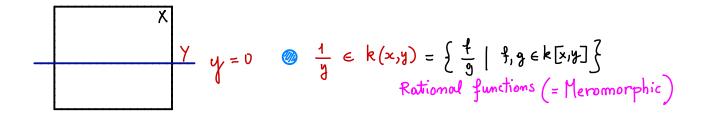


CLASSICAL QBJECTS : DIVISORS



$$X = A_k^2 = \text{Spec } k[x,y]$$

 $\gg Y = \text{Spec } \frac{k[x,y]}{(y)} \cong \text{Spec } k[x] = A_k^1$



Define
$$\mathcal{L} = k[x,y] < \frac{1}{y} > = \{ f : \frac{1}{y} \mid f \in k[x,y] \}$$
Module Generated by $\frac{1}{y}$

EXAMPLE: Pk (PROJECTIVE SPACE) $\int [x_0:0:X_2] \int PLANE \longrightarrow X_2 = 1 : [X_0:X_1:1] = [x:y:1]$ $\begin{bmatrix} A_{k} \\ \vdots \\ x_{i} \\ \vdots \\ x_{i} \\ \vdots \\ x_{2} \end{bmatrix} = \left\{ \lambda(X_{0}, X_{1}, X_{2}) \middle| \lambda \in \mathbb{R}^{2} \right\} \in \mathbb{P}_{\mathbb{R}}^{2}$ $\overline{X}_{k} \otimes \mathbb{P}_{k}^{2} = \mathcal{U}_{0} \cup \mathcal{U}_{1} \cup \mathcal{U}_{2}, \quad \mathcal{U}_{i} = \{ X_{i} \neq 0 \}$ Ø U₀: $\mathcal{L}_{o} = k[x,y] < \frac{1}{y} >$ $\frac{1}{M} = z' \perp \qquad \mathcal{L}_{o} \xrightarrow{\simeq} \mathcal{L}_{1}$ L1 = k[x', 2] < 1> 🧼 U1 : $1 = y'' \frac{1}{n} \quad \mathcal{L}_{1} \stackrel{\simeq}{=} \mathcal{L}_{2}$ 🧼 Uz : $\mathcal{L}_{2} = k[y'', z''] < \frac{1}{2}, >$ $\frac{1}{y''} = x \frac{1}{u} \quad \mathcal{L}_2 \xrightarrow{\simeq} \mathcal{L}_o$

MORE PRECISELY ...

MORE PRECISELY ...

CARTIER

 $\subset H'(X)$

$$H^{\circ}(X, \mathcal{K}^{*}_{(0^{*})}) \cong H^{\circ}(X, \mathcal{O}^{*}) = \operatorname{Pic}(X)$$

Fquations

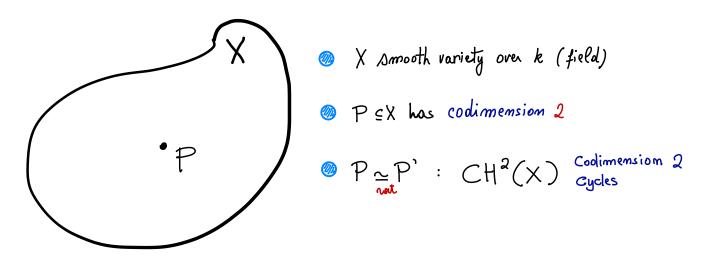
$$f \sim f^{\circ} \text{ iff } f^{\circ} = u f \qquad \mathcal{L} \sim \mathcal{L}^{\circ}$$

invertible

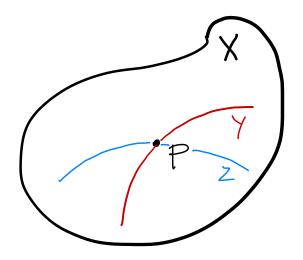
Coolimonsion $1 \leq X$ $Y \simeq Y'$ MORE PRECISELY ...

CARTIER

CODIMENSION 2 : NON CLASSICAL



CODIMENSION 2 : NON CLASSICAL



WEIL VS. CARTIER

WEIL CARTIER $\begin{array}{ll} H^{\circ}(X,\mathcal{K}^{*}_{0}) \cong H^{\prime}(X,\mathcal{O}^{*}) = \operatorname{Pic}(X) \\ \overbrace{}^{\mathcal{F}}_{\text{Equations}} & \operatorname{Lime Bundles} \\ \overbrace{}^{\mathcal{F}} \sim \overbrace{}^{\mathcal{F}}^{2} & \mathcal{L} \sim \mathcal{L}^{2} \end{array}$ CH'(X) Coolimonsion 1 ≤ X X "NICE $l, \sim l'$ $\gamma \simeq \gamma'$ $CH^{2}(X)$ Coolimension 2 < $P \simeq P'$ $CH'(X) \times CH'(X) \longrightarrow CH^{2}(X)$

WEIL VS. CARTIER

WEIL CARTIER $\begin{array}{ll} H^{\circ}(X,\mathcal{K}^{*}_{0}) \cong H^{\prime}(X,\mathcal{O}^{*}) = \operatorname{Pic}(X) \\ \overbrace{}^{\mathcal{F}}_{\text{Equations}} & \operatorname{Lime Bundles} \\ \overbrace{}^{\mathcal{F}} \sim \overbrace{}^{\mathcal{F}}^{2} & \mathcal{L} \sim \mathcal{L}^{2} \end{array}$ CH'(X) Coolimonsion 1 ⊆ X X "NICE $\lambda = \lambda,$ $CH^{2}(X)$ Coolimension 2 < $P \simeq P'$ $CH'(X) \times CH'(X) \longrightarrow CH^{2}(X)$

WHAT IS A HOMOTOPY TYPE ?

DEFINITION Let
$$m \in \mathbb{N}$$
, $m \ge 1$.
(a) X is, or more precisely, represents, our m -Type, if
 $\pi_i(X) = 0$, $i > m$ & $i = 0$.
(b) $X \sim X'$: $X \simeq_{W.e.} X'$ Same homotopy m -Type
REMARK $i = 0$: commected
REMARK $i = 0$: commected
REMARK Top , sSET, s(Fre)Sheaves, Grothemolieck Topo \int_{Ses}^{i} ,...

EXAMPLE : EILENBERG - MACLANE K(G, 1)

$$\begin{array}{l} @ G: group (in one of the chosen categories) \\ @ K(G_{1}) space s.t. \pi_{i}(K(G_{1})) = \begin{cases} G & i=1 \\ o & i\neq 1 \end{cases} \quad K(G_{1}) \text{ is a } 1-type \\ @ Classifying Property : X space \\ \pi_{o} \operatorname{Princ}_{G}(X) = \begin{cases} P \\ X \end{cases} \begin{array}{l} \operatorname{princ}_{page} \\ \operatorname{homogeneous} \\ \operatorname{fibration} \\ G_{X}P \rightarrow P \end{array} \begin{array}{l} \cong [X, K(G_{1}, I)] \\ \operatorname{homotopy} \\ \operatorname{classes} \end{cases}$$

P/6 =X

Simplicial Model :

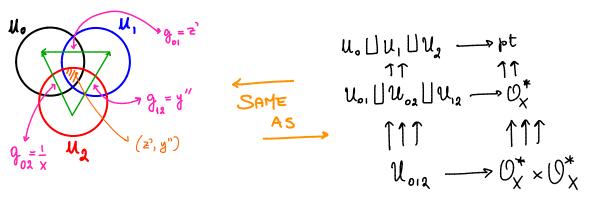
EXAMPLE : EILENBERG - MACLANE K(G, 1)

Simplicial Model :

Example : $Y \leq X = \mathbb{P}_{k}^{2}$

$$\gg$$
 Y= lime X_1=0 $\leq \mathbb{P}_k^2$: we have constructed $\mathcal{L}_y \longrightarrow \mathbb{P}_k^2$, here $G = \mathcal{O}_X^*$

 \otimes (lassifying map $\mathbb{P}_k^2 \longrightarrow k(\mathcal{Q}_X^*, I)$



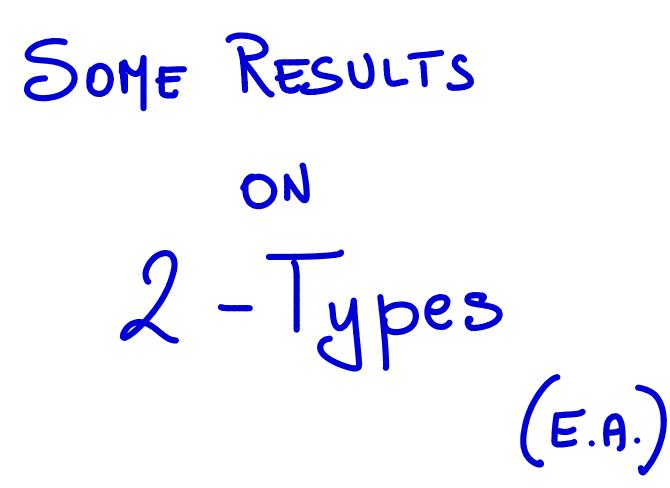
Simplicial Model :

 $P^{t} \stackrel{\leftarrow}{\leftarrow} G \stackrel{\leftarrow}{\leftarrow} G \times G \stackrel{\leftarrow}{\leftarrow} G \times G \times G \stackrel{\leftarrow}{\leftarrow} (g_{1}, g_{2}) \stackrel{i \longrightarrow}{\longmapsto} g_{2} \\ g_{1} \stackrel{\rightarrow}{\longrightarrow} g_{2} \\ g_{2} \stackrel{\rightarrow}{\longmapsto} g_{2} \\ g_{3} \stackrel{\rightarrow}{\longrightarrow} g_{3} g_{3}$

Example : $Y \subseteq X = \mathbb{P}_{R}^{2}$

Y = Pime X_1=0 ≤ PP_k^2 : we have constructed
$$C_y \to P_k^2$$
, here $G = O_X^+$

 Ourseifying map $P_k^2 \to k(O_X^*, 1)$
 $P_k^2 \to P_k^2$
 $P_k^2 \to P_k^2$



IN GENERAL ...

IN GENERAL ...

Pt
$$\neq G \neq G \times G \neq G \times G \times G \neq Is$$
 a prototype of a simplicial object
 $in particular$

Simplicial Group
Moore Complex: $N_0 \leftarrow N_1 \leftarrow N_2 \leftarrow \cdots$
N_j = $\bigcap_{i=0}^{j-1} kar(a_i:G_j \rightarrow G_{ij-1})$
Suspension: $G_1, \cdots , BG_0 \in pt \notin G_0 \times G_1 \notin G_2 \notin G_1 \end{pmatrix}$

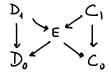
IN GENERAL ...

In particular
In particular
In particular
Go, EG, EG, EG, EG, EG, EG, G, G, EG, Sorps Simplicial dojet
Moore Complex: No < N, < N2 < ... Nj.
$$\bigcap_{i=0}^{j-1} kan(d_i:G_j \rightarrow G_{ij-1})$$
Suspension: Go,
BG. : pt EG, xG, EG, xG, K2,
DEFINITION $\pi_k(G_0) = H_k(N_0)$
Incore $\pi_{k+1}(BG_0)$
COROLLARY X = BG. is an m-type if N.(G) is supported on $[0, m-1]$

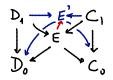
MORPHISMS OF 2-TYPES

$$\otimes$$
 X, Y: 2-types ~~> $C_1 \xrightarrow{2} C_0$ and $D_1 \xrightarrow{2} D_0$ (Moore Complexes)

> A butterfly from D. to C. is a diagnorm of group dojects



ightarrow A morphism of butterflies is an isomorphism $E \xrightarrow{\simeq} E^{\circ}$



(WITH BEHRANG NOOHI)

MORPHISMS OF 2 - TYPES

$$X \longrightarrow C. \quad C_1 \xrightarrow{2} C_0 \quad \text{and} \quad Y \longrightarrow D. \quad D_1 \xrightarrow{2} D_0$$

$$\mathbb{R} \text{Hom}(D_0, C_0) - \text{Category} \quad \mathcal{F} \quad \begin{array}{c} D_1 \\ 1 \\ D_0 \end{array} \in \begin{array}{c} C_1 \\ C_0 \end{array}$$

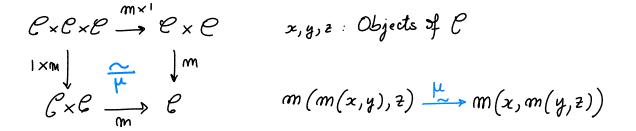
There is an equivalence:

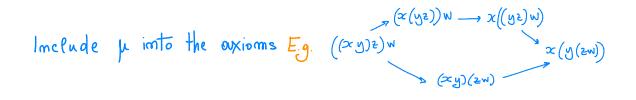
$$\operatorname{Hom}_{\mathcal{Q}}_{\operatorname{Types}}(Y, X) \simeq \operatorname{\mathbb{R}}_{\operatorname{Hom}}(D_{\bullet}, C_{\bullet})$$

REMARK To work out X m> C, 2 C. we had to reprove Kam's theory in a topos of sheaves

X : 2-type, C.: C,
$$\xrightarrow{2}$$
 C.
 Reconstruct the simplicial group : Co \equiv Co \times C, \equiv Co \times G, \approx G, $\stackrel{<}{=}$
 In
 Norve (\mathcal{C}) C : Category (Groupoid)
 Objects = Co
 Objects = Co
 Morphisms = Co \times C,
 Action via $\xrightarrow{2}$

Source (P)
Setter: C is the stack quotient of
$$C_0 \times C_1 \rightarrow C_0$$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_1 \rightarrow C_0$
Setter: C is the stack quotient of $C_0 \times C_$



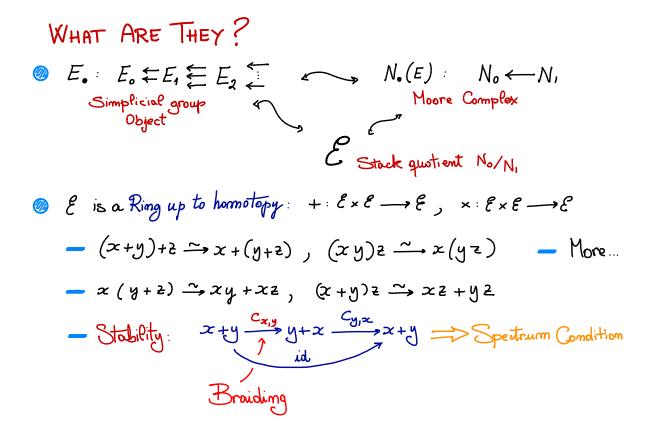


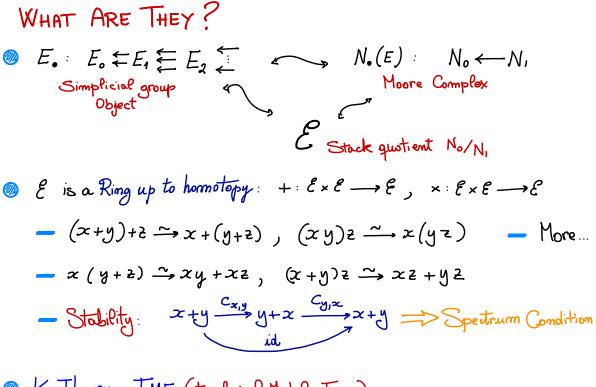
Non ABELIAN COHONOLOGY Hom_{Ho}(spaces) (T, BG.) i = 1 $H^{i}(T, C) = def Hom_{Ho}(spaces) (T, G.) <math>i = 0$ Hom_{Ho}(spaces) (T, Q.G.) i < 0

$$C_{\bullet}: C_{\bullet} \xrightarrow{2} C_{\bullet} = A \longrightarrow 0$$
, A abelian

Prime (T)
$$\cong$$
 GERBES(T, A)

DETOUR : RING CONNECTIVE SPECTRA CATEGORICAL RINGS





K-Theory, TMF (topological Modular Forms),

WHAT ARE THEY? Simplicial group Moore Complex Object E Stack quotient No/N. - $(x+y)+z \rightarrow x+(y+z)$, $(xy)z \rightarrow x(yz)$ - More... - x (y+2) → xy + x2, (x+y)2 → x2+y2 - Stability $x+y \xrightarrow{C_{x,y}} y+x \xrightarrow{C_{y,x}} x+y$ $\pi_{\sigma}(\mathcal{E}) = \pi_{\sigma}(\mathcal{E}_{\bullet}) = H_{\sigma}(N_{\bullet}(\mathcal{E})) = \operatorname{Coker} \mathcal{P} \operatorname{Ring}$ $\pi_{\Lambda}(\mathcal{E}) = \pi_{\Lambda}(\mathcal{E}_{\bullet}) = H_{\Lambda}(N_{\bullet}(\mathcal{E})) = \ker \mathcal{P} \operatorname{To} - \operatorname{BimaDule}$

Some Results About Cat-Rings

Theory Appl. Cot. <u>30</u> (2015) E.A. (ArXiv.org: 1501.07592)

STRICT PICARD CONDITION C_{x,x}: x+x = identity

Some Results ABOUT CAT. RINGS
Strict Ricard Condition
$$C_{x,x}: x + x \xrightarrow{\sim} x + x = identity$$

E.A. (ArXiv.org: 1501.07592)

THEOREM E cost ring with Moore Complex
$$N_1 \xrightarrow{2} N_0$$

Then we have a crossed extension of algebras

$$0 \longrightarrow \pi_{i}(\ell) \longrightarrow N_{i} \xrightarrow{2} N_{o} \longrightarrow \pi_{o}(\ell) \longrightarrow 0$$

$$N_0 \longrightarrow \pi_o(\mathcal{E}) \quad \text{Ring homomorphism}$$

$$N_1 : N_0 - \text{bimodule} , \quad \Im : N_1 \longrightarrow N_0 \text{ bimodule homomorphism}$$

$$\pi_1(\mathcal{E}) : \pi_o(\mathcal{E}) - \text{bimodule}$$

COMPUTING MORPHISHS & ----> J :

$$H_{orm}_{Got Rings}(\mathcal{E},\mathcal{F}) \cong H_{orm}(BE_{\bullet}, BF_{\bullet}) \cong \mathbb{R}H_{orm}(N.(E), N.(F))$$

Some Results ABOUT CAT-RINGS STRICT PICARD CONDITION $c_{x,x}: x + x \xrightarrow{\sim} x + x = identity$ E.A. (ArXiv.org: 1501.07592)

POSTNIKOV INVARIANT (\mathcal{E}) = CHAR CLASS ($0 \rightarrow \pi, \rightarrow N_1 \rightarrow N_0 \rightarrow \pi_0$)

HEOREM
$$k(\mathcal{E}) \in H^{3}(\pi_{o}(\mathcal{E}), \pi_{i}(\mathcal{E}))$$
 And \tilde{re} . Quillen cohomology of rings

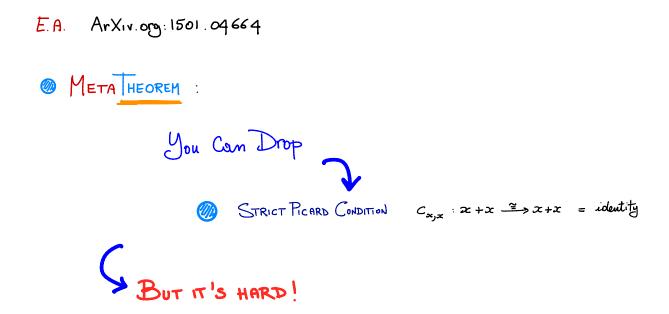
REMARK My calculation holds in a general Topos

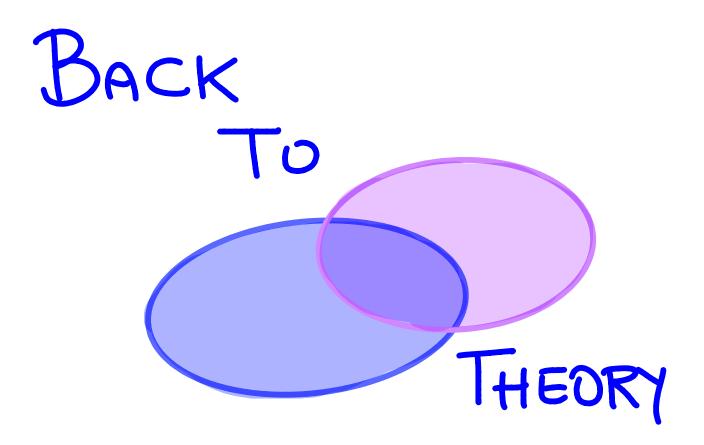
Some Results About Cat-Rings

E.A. ArXiv.og: 1501.04664

META_HEOREN : You Can Drop STRICT PICARD CONDITION C_{xyx} : x+x = identity

Some Results About Cat-RINGS





ArXiv.org: 1510.01825

WITH

NIRANJAN RAMACHANDRAN (UMD)

RECALL :

WEIL CARTIER $\begin{array}{ll} H^{\circ}(X,\mathcal{K}^{*}_{0}) \cong H^{\prime}(X,\mathcal{O}^{*}) = \operatorname{Pic}(X) \\ \overbrace{}^{\mathcal{F}}_{\text{Equations}} & \operatorname{Lime Bundles} \\ \overbrace{}^{\mathcal{F}} \sim \overbrace{}^{\mathcal{F}}^{2} & \mathcal{L} \sim \mathcal{L}^{2} \end{array}$ CH'(X) Coolimonsion 1 ⊆ X X NICE $L \sim L'$ $\lambda = \lambda,$ $CH^{2}(X)$ Coolimension 2 < $P \simeq P'$ $CH'(X) \times CH'(X) \longrightarrow CH^{2}(X)$

RECALL :

WEIL CARTIER $\begin{array}{ll} H^{\circ}(X,\mathcal{K}^{*}_{0}) \cong H^{\prime}(X,\mathcal{O}^{*}) = \operatorname{Pic}(X) \\ \overbrace{}^{\mathcal{F}}_{\text{Equations}} & \operatorname{Lime Bundles} \\ \overbrace{}^{\mathcal{F}} \sim \overbrace{}^{\mathcal{F}}^{2} & \mathcal{L} \sim \mathcal{L}^{2} \end{array}$ CH'(X) Coolimonsion 1 ⊆ X X "NICE $\lambda = \lambda,$ $CH^{2}(X)$ Coolimension 2 < $P \simeq P'$ $CH'(X) \times CH'(X) \longrightarrow CH^{2}(X)$

BLOCH-QUILLEN FORMULA $CH^2(X) \simeq H^2(X, K_{2,X})$

GERSTEN RESOLUTION

$$0 \to \mathcal{K}_{2,X} \to \mathcal{K}_{2}(\mathbf{k}(\mathbf{x})) \to \bigoplus_{C \in X} \mathcal{K}_{1}(\mathbf{k}(C)) \to \bigoplus_{P \in X} \mathcal{K}_{0}(\mathbf{k}(p)) \to 0$$

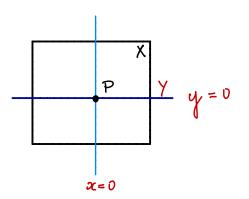
$$k(C)^{*}$$

BLOCH-QUILLEN FORMULA CH2(X) = H2(X, K2,X)

GERSTEN RESOLUTION

OBJECTS $(C,f) : C \ni P$, $f \in k(C)$, $\nabla_{p}(f) = 1$ MORPHISMS $(C,f) \longrightarrow (D,g) : u \in K_{2}(k(X))$ $T_{C}(u) = f$, $T_{D}(u) = g^{\dagger}$

BACK TO A2k



$$k(C) = k\left(\frac{k[x,y]}{(y)}\right) = k(x) \quad \exists x = f$$

$$k(D) = k\left(\frac{k[x,y]}{(x)}\right) = k(y) \quad \exists y = g$$

$$Morphism((y),x) \longrightarrow ((x), y)$$

$$\{x,y\} \in K_g(k(x,y))$$
TAME SYMBOL

DICTIONARY	
CARTIER	WEIL
$H^{\circ}(X, \mathcal{K}^{\ast}_{\mathcal{O}^{\ast}}) \cong H^{\circ}(X, \mathcal{O}^{\ast}) = \operatorname{Pic}(X)$	\simeq $CH'(X)$
$\begin{array}{ll} H^{\circ}(X,\mathcal{K}^{*}_{0}) \cong H^{\prime}(X,\mathcal{O}^{*}) = \operatorname{Pic}(X) \\ & f \\ & f \\ & f \sim f^{2} \\ \end{array} \qquad \qquad$	X "NICE" Codimension $\bot \subseteq X$ $Y \simeq Y'$ rat.
$H^{1}(X, K_{1}(k(X))/K_{2,X}) \cong H^{2}(X, K_{2,X})$ Coolim 2 Contier $K_{2,X}$ -GERBES	$CH^{2}(X)$ Coolimension $2 \leq X$ $P \approx P'$
?	С́́Н'(Х) × С́́Н'(Х) → с́́Н²(Х)

DICTIONARY	
CARTIER	WEIL
$H^{\circ}(X, \mathcal{K}^{*}_{0^{*}}) \cong H^{\prime}(X, 0^{*}) = \operatorname{Pic}(X)$	\simeq $CH'(X)$
$\begin{array}{ll} H^{\circ}(X,\mathcal{K}^{*}_{0}) \cong H^{\prime}(X,\mathcal{O}^{*}) = \operatorname{Pic}(X) \\ \\ Equations \\ f \sim f^{\prime} \qquad \qquad$	X NICE Coolimonsion $\bot \subseteq X$ $Y \simeq Y'$ rat.
$H^{1}(X, K_{1}(\mathbf{k}(X))/\mathcal{K}_{2,X}) \cong H^{2}(X, \mathcal{K}_{2,X})$ Coolim 2 Contier $\mathcal{K}_{2,X}^{-} \text{GERBES}$	$CH^{2}(X)$ Coolimension $2 \leq X$ $P \approx P'$
	СН'(Х) ×СҢ'(Х) → СӇ ^₄ (Х)

$$\begin{array}{c|c} & & & \\ \hline \mathsf{Cartier} & & & \mathsf{Weil} \\ H^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \cong H^{i}(x, \mathcal{O}^{*}) = \mathsf{Pic}(x) & & & \\ \downarrow & & \\ f^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \cong H^{i}(x, \mathcal{O}^{*}) = \mathsf{Pic}(x) & & \\ \downarrow & & \\ f^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \cong H^{i}(x, \mathcal{O}^{*}) = \mathsf{Pic}(x) & & \\ \downarrow & & \\ f^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \cong \mathcal{L}^{\circ}(x, \mathcal{O}^{*}) & \\ f^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \cong \mathcal{L}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ H^{i}(x, \mathcal{K}_{i}(\mathsf{k}(x))_{\mathcal{K}_{\mathcal{O}^{*}}, x}) \cong H^{2}(x, \mathcal{K}_{\mathcal{O}^{*}, x}) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \cong \mathcal{C}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \cong \mathcal{C}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \longrightarrow \mathsf{Gerbes}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{\circ}(x, \mathcal{K}^{*}) \longrightarrow \mathsf{CH}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \longrightarrow \mathsf{Gerbes}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \longrightarrow \mathsf{CH}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \longrightarrow \mathsf{CH}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \longrightarrow \mathsf{CH}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}) \longrightarrow \mathsf{C}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{\circ}(x, \mathcal{K}^{\circ}(x, \mathcal{K}^{*}_{\mathcal{O}^{*}}, x)) & \\ \mathcal{C}^{\circ}(x, \mathcal{K}^{\circ}(x, \mathcal{K}^{$$

ANIMATING A CUP PRODUCT

$$\begin{array}{c} \text{Tors}(\mathcal{O}_{X}^{*}) \times \text{Tors}(\mathcal{O}_{X}^{*}) \longrightarrow \text{Gierbes}(X, \mathcal{K}_{J,X}) \\ \downarrow \qquad \downarrow \\ CH'(X) \times CH'(X) \longrightarrow CH^{2}(X) \end{array}$$
is based on the following
$$\begin{array}{c} \text{HEOREM} \quad (E.A., N. RAMACHANDRAN, '15) \\ \text{In any topos there exists a commical control extension of groups} \\ 0 \longrightarrow A \otimes B \longrightarrow \mathcal{H}_{A,B} \longrightarrow A \times B \rightarrow 0 \\ \text{inducing the morphism of types} \\ K(A \times B, i) \simeq k(A, i) \times k(B, i) \longrightarrow k(A \otimes B, 2) \\ \text{Then apply to } A = B = \mathcal{O}_{X}^{*} = k_{i,X}, \text{ follow by } \mathcal{K}_{i,X} \otimes \mathcal{K}_{i,X} \longrightarrow \mathcal{K}_{2,X} \end{array}$$

