CONVERGENCE OF A MONTE CARLO METHOD FOR FULLY NON-LINEAR ELLIPTIC AND PARABOLIC PDES IN SOME GENERAL DOMAINS

ARASH FAHIM

ABSTRACT. In this paper, we introduce a probabilistic numerical scheme for a class of parabolic and elliptic fully non-linear PDEs in bounded domains. In the main result, we provide the convergence of a discrete-time approximation to the viscosity solution of a fully non-linear parabolic equation by assuming that comparison principle holds for the PDE.

1. INTRODUCTION

The aim of this paper is to introduce a probabilistic numerical method for a class of elliptic and parabolic fully non-linear boundary value problems on bounded domains. We follow the same methodology as in [7] and [8]. The proof of convergence relies on the result of [1] where the convergence of general monotone schemes are discussed. Since the domain is bounded, we introduce a discrete exit time of the Euler discretization of the underlying process.

The Monte Carlo approximation is provided for semi-linear PDEs on \(\mathbb{R}^d \) in [12] and [5], for semi-linear PDEs with free boundary in [11] and [3], and for semi-linear PDEs in bounded regular domains [3]. In all these papers backward stochastic differential equations (BSDE) is used to provide the approximation. If the domain is \(\mathbb{R}^d \), the rate of convergence obtained in [12] and [3] is \(h^{1/2} \) where \(h \) is the length time step. For free boundary problems, \(h^{1/2} \) is obtained for the rate of convergence in [11] and [3]. For bounded regular domains, in [3] the rate of \(h^{1/4} - \varepsilon \) is provided for any \(\varepsilon > 0 \). In all the mentioned results are obtained by using the regularity of the solution of BSDE. For fully non-linear PDEs on \(\mathbb{R}^d \), a Monte Carlo approximation is obtained in [7] without using BSDEs. By using the methodology of [7], [3] provide a Monte Carlo approximation for fully non-linear free boundary problems.

The paper is organized as follows. In Section 2, we present the numerical scheme. In Section 3, the main result is explained. Finally, Section 4 provides the proofs of the main results.

Notations. The collection of all symmetric \(d \times d \) matrices is denoted \(\mathbb{S}_d \), and its subset of non-negative symmetric matrices is denoted by \(\mathbb{S}_d^+ \). For \(A \in \mathbb{S}_d^+ \), \(A^- \) is the pseudo-inverse of matrix \(A \). We consider an \(\mathbb{R}^d \)-valued Brownian motion \(W \) on a filtered probability space \((\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P}) \), where the filtration \(\mathbb{F} = \{\mathcal{F}_t, t \in [0, T]\} \) satisfies the usual conditions. Finally, we set \(\mathbb{E}_{t,x} := \mathbb{E}[\cdot | X_t = x] \)

Key words and phrases. Viscosity Solutions, Monotone schemes, Monte Carlo approximation, Fully Non-linear parabolic and elliptic PDEs.
2 CONVERGENCE OF A MONTE CARLO METHOD

for a pre-specified diffusion process X and $\mathbb{E}_t := \mathbb{E}[\mathcal{F}_t]$.

2. DISCRETIZATION

Let $\mathcal{O} \subset \mathbb{R}^d$ be a domain with boundary shown by $\partial \mathcal{O}$. We consider the boundary value problem:

\[-L^X v - F(\cdot, v, Dv, D^2v) = 0, \quad \text{on } [0, T) \times \mathcal{O}, \tag{2.1} \]
\[v = g, \quad \text{on } ([0, T) \times (\mathbb{R}^d \setminus \mathcal{O})) \cup (\{T\} \times \mathbb{R}^d). \tag{2.2} \]

where

\[L^X \varphi := \frac{\partial \varphi}{\partial t} + \mu \cdot D\varphi + \frac{1}{2} a \cdot D^2\varphi, \]

is a linear operator,

\[F : (t, x, r, p, \gamma) \in \mathbb{R}_+ \times \mathcal{O} \times \mathbb{R} \times \mathbb{R}^d \times \mathcal{S}_d \mapsto F(x, r, p, \gamma) \in \mathbb{R}, \]

is a non-linear map, μ and σ are maps from $\mathbb{R}_+ \times \mathcal{O}$ to \mathbb{R}^d and $\mathcal{M}(d, d)$, respectively, $a := \sigma^T$, and $g : [0, T) \times (\mathbb{R}^d \setminus \mathcal{O}) \cup \{T\} \times \mathbb{R}^d \to \mathbb{R}$. Observe that for the sake of numerical schemes, we need g to be defined beyond the parabolic boundary of $[0, T) \times \mathcal{O}$.

For a positive integer n, let $h := T/n$, $t_i = ih$, $i = 0, \ldots, n$, and consider the one step ahead Euler discretization

\[\hat{X}_h^{t_i} := x + \mu(t, x)h + \sigma(t, x)(W_{t_i+h} - W_t), \tag{2.3} \]

of the diffusion X corresponding to the linear operator L^X. Then, the Euler discretization of the process X is defined by $\hat{X}_{t_{i+1}} := \hat{X}_h^{t_{i+1}}$. We also define the first discrete exit time of X from \mathcal{O} by

\[\hat{\tau} := \inf \left\{ t_i; \hat{X}_{t_i} \notin \mathcal{O} \right\}. \tag{2.4} \]

and $\hat{X}_t := \hat{X}_{t \wedge \hat{\tau}}$, i.e. \hat{X} stopped at stopping time $\hat{\tau}$.

If we assume that the PDE (2.1) has a classical solution, it follows from Itô’s formula that for $x \in \mathcal{O}$ and $t_i \in [0, T)$, we can write

\[\mathbb{E}_{t_i,x} \left[v\left(\hat{\tau} \wedge t_{i+1}, \hat{X}_{t_{i+1}} \right) \right] = v(t_i, x) + \mathbb{E}_{t_i,x} \left[\int_{t_i}^{\hat{\tau} \wedge t_{i+1}} L^X v(t, \hat{X}_t) dt \right], \]

holds true where we ignored the difficulties related to local martingale part. Since v solves the PDE (2.1), we have

\[v(t_i, x) = \mathbb{E}_{t_i,x} \left[v\left(\hat{\tau} \wedge t_{i+1}, \hat{X}_{t_{i+1}} \right) \right] + \mathbb{E}_{t_i,x} \left[\int_{t_i}^{\hat{\tau} \wedge t_{i+1}} F(\cdot, v, Dv, D^2v)(t, \hat{X}_t) dt \right]. \]

Observe that if $x \in \mathcal{O}$, then $\hat{\tau} \geq t_{i+1}$ and therefore, $\hat{\tau} \wedge t_{i+1} = t_{i+1}$. By approximating the Riemann integral, this suggest the following approximation of the value function v

\[v^h(T, \cdot) := g \quad \text{and} \quad v^h(t, x) := T_h[v^h](t, x) \text{ for any } x \in \mathbb{R}^d, \tag{2.5} \]
where we denoted for a bounded function $\psi : \mathbb{R}_+ \times \mathbb{R}^d \rightarrow \mathbb{R}$

$$T_h[\psi](t, x) := \begin{cases} \mathbb{E}_{t,x} \left[\psi(t + h, \tilde{X}_{t+h}) \right] + hF \left(\cdot, D_h\psi \right)(t, x) & \text{if } x \in \mathcal{O}, \\ g(t, x) & \text{if } x \notin \mathcal{O}, \end{cases} \quad (2.6)$$

with

$$D_h\psi(t_i, x) = \mathbb{E}_{t,x} \left[\psi(t + h, \tilde{X}_{t+h}) H_h(t, x) \right], \quad (2.7)$$

where $H_h = (H^h_0, H^h_1, H^h_2)^T$ and

$$H^h_0 = 1, \quad H^h_1(t, x) = (\sigma^T)^{-1} \frac{W_h}{h}, \quad H^h_2(t, x) = (\sigma^T)^{-1} \frac{W_h W^T_h - h I_d}{h^2} \sigma^{-1}.$$

For details on the approximation of the derivatives (2.7) see Lemma 2.1 in [7].

3. Asymptotics of the discrete-time approximation

3.1. The main result. Our first main convergence results follow the general methodology of Barles and Souganidis [1], and therefore requires that the nonlinear PDE (2.1) satisfies a comparison result in the sense of viscosity solutions.

We recall that an upper semi-continuous (resp. lower semi-continuous) function \underline{v} (resp. \overline{v}) on $[0, T] \times \overline{\mathcal{O}}$, is called a viscosity sub-solution (resp. super-solution) of (2.1) if for any $(t, x) \in [0, T] \times \overline{\mathcal{O}}$ and any smooth function φ satisfying

$$0 = (\underline{v} - \varphi)(t, x) = \max_{[0, T] \times \overline{\mathcal{O}}} (\underline{v} - \varphi) \left(\text{resp. } 0 = (\varphi - \overline{v})(t, x) = \min_{[0, T] \times \overline{\mathcal{O}}} (\varphi - \overline{v}) \right), \quad (3.1)$$

we have:

- if $t < T$ and $x \in \mathcal{O}$
 $$- L^X \varphi - F(t, x, D\varphi(t, x)) \leq (\text{resp. } \geq) \ 0,$$

- if $t < T$ and $x \in \partial \mathcal{O}$
 $$\min \left\{ -L^X \varphi - F(t, x, D\varphi(t, x)), (\varphi - g)(t, x) \right\} \leq 0 \quad (\text{resp. } \max \left\{ -L^X \varphi - F(t, x, D\varphi(t, x)), (\varphi - g)(t, x) \right\} \geq 0),$$

- if $t = T$, $\underline{v} - g \leq 0$ (resp. $\overline{v} - g \geq 0$).

It is worth mentioning that by Remark 3.2 of [7], in the above definition, we treated the boundary condition and terminal condition in different ways and moreover, the comparison principle for (2.1)-(2.2) should be given in the following way:

Definition 3.1. We say that (2.1)-(2.2) has a comparison for bounded functions if for any bounded upper semi-continuous sub-solution \underline{v} and any bounded lower semi-continuous super-solution \overline{v} on $[0, T) \times \overline{\mathcal{O}}$, satisfying

$$\underline{v}(T, \cdot) \leq \overline{v}(T, \cdot),$$

we have $\underline{v} \leq \overline{v}$.
We denote by F_r, F_p and F_γ the partial gradients of F with respect to r, p and γ, respectively.

Assumption F (i) The non-linearity F is Lipschitz-continuous with respect to (x,r,p,γ) uniformly in t, and $|F(\cdot,\cdot,0,0,0)|_\infty < K$ for some positive constant K;
(ii) F is elliptic and dominated by the diffusion of the linear operator L^X, i.e.
\[
\nabla_\gamma F \leq a \quad \text{on} \quad \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times S_d;
\]
(iii) $F_p \in \text{Image}(F_\gamma)$ and $|F_p^T F_\gamma F_p|_\infty < K$;
(iv) $F_r - \frac{1}{4} F_p^T F_\gamma F_p \geq 0$.

Assumption F(iv) is only made for the sale of simplicity and can be released; see Lemma 3.19 in [7].

Theorem 3.2 (Convergence). Let Assumption F hold true, and $|\mu|_1$, $|\sigma|_1 < \infty$ and σ is invertible. Also assume that the fully nonlinear PDE (2.1) has comparison for bounded functions. Then for every bounded g Lipschitz function on x and $\frac{1}{2}$-Hölder continuous on t, there exists a bounded function v such that $v^h \longrightarrow v$ locally uniformly. In addition, v is the unique bounded viscosity solution of problem (2.1)-(2.2).

4. Proofs of the main results

4.1. Proof of the convergence result. The proof Theorem 3.2 uses the argument of [1] which introduces the following sufficient conditions for convergence:

(i) Let φ be a smooth function with bounded derivatives. Then for all $(t,x) \in [0,T) \times \mathbb{R}^d$:
\[
\lim_{(t',x') \to (t,x)} \frac{|c + \varphi(t',x') - T_h[c + \varphi(t',x')]|}{h} = - (L^X \varphi + F(\cdot,\varphi,D\varphi,D^2\varphi))(t,x). \quad \square
\]

(ii) Let $\varphi, \psi : [0,T] \times \mathbb{R}^d \longrightarrow \mathbb{R}$ be two exponentially bounded functions. Then:
\[
\varphi \leq \psi \implies T_h[\varphi](t,x) \leq T_h[\psi](t,x).
\]

(iii) $(v^h)_h$ is L^∞-bounded, uniformly in h.
(iv) $\lim_{t' \to T} v^h(t',x') = g(T,x)$.

Throughout this section, all the conditions of Theorem 3.2 are in force. (i-ii) are the result of Lemma 3.11, Lemma 3.12, and Remark 3.13 of [7]. We follow the section by proving (iii) and (iv); Lemma 4.1 and Lemma 4.2.

Lemma 4.1. If g is bounded on $\mathbb{R}^d \setminus \mathcal{O}$, the family $(v^h)_h$ defined in (2.2)-(2.4) is bounded on $\bar{\mathcal{O}}$, uniformly in h.

Proof. By Lipschitz property of F, one can write
\[
|v^h(t_i,x)| \leq h |F(t,x,0,0,0)| + C_{i+1}(1 + Ch) \quad \text{if} \quad x \in \mathcal{O}, \quad \text{and} \quad |v^h(t_i,x)| \leq C_n \quad \text{if} \quad x \notin \mathcal{O},
\]
where \(C_n = \sup \{g(t,x)|(t,x) \in [0,T) \times \Omega^j \cup T \times \mathbb{R}^d \} \) and \(C_j = \|u^h(t_j,\cdot)\|_\infty \) for \(j \leq n-1 \); see Lemma 3.14 in [2]. Define \(\tilde{C}_j := \max \{ C_j, C_n \} \). Since \(g \) is bounded, \(\tilde{C}_n = C_n < \infty \). Therefore, we have
\[
\tilde{C}_i \leq hK + \tilde{C}_{i+1}(1 + Ch).
\]

By proceeding backward induction, we obtain \(\tilde{C}_i \leq C_n e^{CT} \) for some constant \(C \) independent of \(h \) which concludes the argument.

Finally, we prove that the terminal condition is preserved by our scheme as the time step shrinks to zero.

Lemma 4.2. For each \(x \in \mathcal{O} \) and \(t_i = ih \) with \(i = 1, \ldots, n \), we have;
\[
|v^h(t_i, x) - g(T, x)| \leq C(T-t)^{\frac{1}{2}}.
\]

Proof. Step 1. Fix \(i \) and let \(\hat{X}_{t_i} = x \in \mathcal{O} \). For \(j \geq i \), we define \(\hat{t}_j := t_j \land \hat{\tau} \) and \(\hat{j} := \frac{t_j}{h} \). Observe that by Lipschitz continuity of \(F \), for all \(j \) with \(j \geq i \), one can write
\[
v^h(\hat{t}_j, \hat{X}_{t_j}^i) = E_{\hat{t}_j} \left[v^h(\hat{t}_{j+1}, \hat{X}_{t_j+1}^i) \left(1 - \alpha_j + (a_j - b_j)h + (\sqrt{\alpha_j} \ln + \sqrt{\beta_j})^2 \right) + h \mathbb{1}_{\{\hat{\tau} > t_j\}} F^0_{t_j} \right],
\]
where \(F^0_{t_j} := F(t_j, \hat{X}_{t_j}^i, 0, 0, 0), 1 \geq \alpha_j \geq 0, a_j, b_j \) are \(\mathcal{F}_{t_j} \)-adapted and bounded random variables defined as in the proof of Lemma 3.11 and Lemma 3.16 in [2], \(a_i = 0 \) on \(\{ \hat{\tau} \leq t_j \} \), and \(N_j := \frac{W_{t_j+1} - W_{t_j}}{\sqrt{h}} \) which has a standard Gaussian distribution.

Combine the above formula for \(j \) from \(i \) to \(n-1 \), we see that
\[
v^h(t_i, x) = E \left[g(\hat{\tau}, \hat{X}_{\hat{t}_i}^i) P_{i,n} \right] + h E \left[\sum_{j=i}^{n-1} \mathbb{1}_{\{\hat{\tau} > t_j\}} \left(v^h(\hat{t}_{j+1}, \hat{X}_{t_j+1}^i) a_j + F^0_{t_j} \right) P_{t,j} \right],
\]
where \(P_{t,k} := \prod_{j=1}^{k-1} \left(1 - \alpha_j - b_j h + (\sqrt{\alpha_j} \ln + \sqrt{\beta_j})^2 \right) \) and for all \(1 \leq i < k \leq n \) and \(P_{i,i} = 1 \).

Since \(|F(\cdot, \cdot, 0, 0, 0)|_\infty \) and \(a_j \) are bounded, and by Lemma 4.11, one can conclude that
\[
E \left[\sum_{j=i}^{n-1} \mathbb{1}_{\{\hat{\tau} > t_j\}} \left(v^h(\hat{t}_{j+1}, \hat{X}_{t_j+1}^i) a_j + F^0_{t_j} \right) P_{t,j} \right] \leq C E \left[\sum_{j=i}^{n-1} \mathbb{1}_{\{\hat{\tau} > t_j\}} P_{t,j} \right].
\]

Observe that, since \(N_j \) is independent of \(\mathcal{F}_{t_j} \), \(\{ P_{t,j} \}_j \) is a martingale with respect to \(\{ \mathcal{F}_{t_j} \} \). This implies that
\[
|v^h(t_i, x) - g(t_i, x)| \leq \left| E \left[(g(\hat{\tau}, \hat{X}_{\hat{t}_i}^i) - g(t_i, x)) P_{t,i} \right] \right| + C(T-t_i).
\]

2. Let \(\{ \rho_\varepsilon \} \) be a family of mollifiers and define \(\{ g_\varepsilon \}_\varepsilon \) by \(g_\varepsilon := g \ast \rho_\varepsilon \). Notice that we have
\[
|g_\varepsilon - g|_\infty \leq C \varepsilon, \| \partial_t g_\varepsilon \|_\infty \leq \varepsilon^{-1} \| \partial_t g \|_\infty, \| Dg_\varepsilon \|_\infty \leq \| Dg \|_\infty \text{ and } \| D^2 g_\varepsilon \|_\infty \leq C \varepsilon^{-1} \| Dg \|_\infty.
\]

Then, by Itô formula, we have
\[
g_\varepsilon(\hat{\tau}, \hat{X}_{\hat{t}_i}^i) - g_\varepsilon(t_i, x) = \int_{t_i}^{\hat{\tau}} \left(\partial_t g_\varepsilon + Dg_\varepsilon \hat{b} + \frac{1}{2} \text{Tr} \left[\hat{a} D^2 g_\varepsilon \right] \right) (s, \hat{X}_{s}^i) ds + \int_{t_i}^{\hat{\tau}} (Dg_\varepsilon \hat{\sigma})(s, \hat{X}_{s}^i) dW_s,
\]
where we denoted \(\hat{b}(s) = b(t_j, \hat{X}^{t_i,x}_{t_j}) \) and \(\hat{\sigma}(s) = \sigma(t_j, \hat{X}^{t_i,x}_{t_j}) \) for \(t_j \leq s < t_{j+1} \) and \(\hat{a} = \hat{\sigma}^T \hat{\sigma} \). On the other hand, by using (4.2) and (4.3), one can write

\[
\left| \mathbb{E}\left[\left(g(\hat{\tau}, \hat{X}^{t_i,x}_{\hat{\tau}}) - g(t_i, x) \right) P_{i,n} \right] \right| \leq \mathbb{E}\left[\left| g(\hat{\tau}, \hat{X}^{t_i,x}_{\hat{\tau}}) - g_{\epsilon}(\hat{\tau}, \hat{X}^{t_i,x}_{\hat{\tau}}) P_{i,n} \right| \right] + \mathbb{E}\left[\left| g(t_i, x) - g_{\epsilon}(t_i, x) P_{i,n} \right| \right] \\
\leq C|g| - g_{\epsilon}|_{\infty} + \mathbb{E}\left[\left| g(\hat{\tau}, \hat{X}^{t_i,x}_{\hat{\tau}}) - g_{\epsilon}(t_i, x) \right| P_{i,n} \right] \leq C\varepsilon + \mathbb{E}\left[\left| P_{i,n} \int_{t_i}^{\hat{\tau}} \left(\partial_1 g_{\epsilon} + Dg_{\epsilon} \hat{b} + \frac{1}{2} \text{Tr} \left[\hat{a} D^2 g_{\epsilon} \right] \right) (s, \hat{X}^{t_i,x}_{s}) ds \right| \right] \\
+ \mathbb{E}\left[P_{i,n} \int_{t_i}^{\hat{\tau}} (Dg_{\epsilon} \hat{\sigma})(s, \hat{X}^{t_i,x}_{s}) dW_s \right]. \tag{4.4}
\]

2.a. Since \(b \) and \(\sigma \) are bounded, by (4.2), we also have

\[
\left| Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) b(s, \hat{X}^{t_i,x}_{s}) + \frac{1}{2} \text{Tr} \left[D^2 g_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) \hat{a}(s, \hat{X}^{t_i,x}_{s}) \right] \right| \leq C + C\varepsilon^{-1}. \tag{4.5}
\]

2.b. By martingale properties of \(\{P_{i,k}\} \), we have \(\mathbb{E}_{t_j+1}[P_{j+1,n}] = 1 \) which implies

\[
\mathbb{E}\left[P_{i,n} \int_{t_i}^{\hat{\tau}} Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) \hat{\sigma}(s) dW_s \right] = \mathbb{E}\left[P_{i,n} \sum_{j=1}^{n-1} \mathbbm{1}_{\{\hat{\tau} > t_j\}} \int_{t_j}^{t_{j+1}} Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) \hat{\sigma}(s) dW_s \right] \\
= \mathbb{E}\left[\sum_{j=1}^{n-1} P_{i,j+1} \mathbbm{1}_{\{\hat{\tau} > t_j\}} \int_{t_j}^{t_{j+1}} Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) \hat{\sigma}(s) dW_s \mathbb{E}_{t_j+1}[P_{j+1,n}] \right] \\
= \mathbb{E}\left[\sum_{j=1}^{n-1} P_{i,j} \hat{\sigma}(t_j) \mathbbm{1}_{\{\hat{\tau} > t_j\}} \mathbb{E}_{t_j} \left[P_{j+1,n} \int_{t_j}^{t_{j+1}} Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) dW_s \right] \right].
\]

Notice that by isometry for Itô integral, one can write

\[
\mathbb{E}_{t_j} \left[P_{j+1,n} \int_{t_j}^{t_{j+1}} Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) dW_s \right] = \mathbb{E}_{t_j} \left[\left(\frac{\alpha_j}{h} (W_{t_{j+1}} - W_{t_j})^2 + 2b_j \sqrt{\alpha_j} (W_{t_{j+1}} - W_{t_j}) \right) \int_{t_j}^{t_{j+1}} Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) dW_s \right] \\
= \frac{\alpha_j}{h} \mathbb{E}_{t_j} \left[\int_{t_j}^{t_{j+1}} 2W_s Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) ds \right] + 2b_j \sqrt{\alpha_j} \mathbb{E}_{t_j} \left[\int_{t_j}^{t_{j+1}} Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) ds \right].
\]

Observe that since \(|Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) \hat{\sigma}(s)| \leq C\varepsilon \), we have

\[
\left| \mathbb{E}_{t_j} \left[\int_{t_j}^{t_{j+1}} Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) ds \right] \right| \leq Ch. \tag{4.6}
\]

On the other hand, by Lemma 2.1 in \([\text{?}]\), one can conclude that

\[
\mathbb{E}_{t_j} \left[\int_{t_j}^{t_{j+1}} W_s Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s}) ds \right] = \int_{t_j}^{t_{j+1}} \mathbb{E}_{t_j}[W_s Dg_{\epsilon}(s, \hat{X}^{t_i,x}_{s})] ds = \int_{t_j}^{t_{j+1}} s \mathbb{E}_{t_j}[D^2 g_{\epsilon}(s, \hat{X}^{t_i,x}_{s})] ds. \tag{4.7}
\]
Then, by (4.2), (4.7) implies that
\[
\mathbb{E} \left[\int_{t_j}^{t_{j+1}} W_s Dg_\varepsilon(s, \hat{X}_s^{t_i,x}) ds \right] \leq C \varepsilon^{-1}.
\] (4.8)

Since \(\sigma \) is bounded, by (4.6), (4.8) and (4.1), one can conclude that
\[
\mathbb{E} \left[\int_{t_i}^{t_i+\delta} Dg_\varepsilon(s, \hat{X}_s^{t_i,x}) \dot{\sigma}(s) dW_s \right] \leq C \varepsilon^{-1} \mathbb{E} \left[\sum_{j=i}^{n-1} P_{i,j} \mathbf{1}_{\{ \tau > t_j \}} \right] \leq C \varepsilon^{-1} (T - t_i).
\]

\textbf{2.c.} Plugging (4.7), (4.6) and (4.8) into (1.3), we obtain
\[
\mathbb{E} \left[\left(g_\varepsilon(\hat{\tau}, \hat{X}_{\hat{\tau}}^{t_i,x}) - g_\varepsilon(t_i,x) \right) P_{i,n} \right] \leq C(T - t_i)(1 + \varepsilon^{-1}),
\]
which by (1.4) provides
\[
|v^h(t_i, x) - g(t_i, x)| \leq C \varepsilon + C(T - t_i).
\]

The result follows from the choice \(\varepsilon = \sqrt{T - t_i} \) and \(\frac{1}{2} \)-Hölder continuity of \(g \) on \(t \). \(\square \)

\textbf{REFERENCES}

(Arash Fahim) \textsc{Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA}

\textit{E-mail address:} fahimara@umich.edu